283 research outputs found
On the identification of folium by SERS: from crude extracts to illuminated codices
The ancient purple dye known as folium is still a mystery for both scientists and art historians. Today, it is commonly assumed that folium was produced from the fruits of Chrozophora tinctoria (L.) A. Juss., a plant belonging to the Euphorbiaceae family, and efforts have been mainly devoted to highlight the analytical features of the dyes extracted from this plant, whereas detection in ancient manuscripts has been mainly based on poorly selective, non-invasive analytical techniques. As a consequence, the possibility that the actual source for the dye could have been so far misunderstood cannot be excluded. Surface-enhanced Raman spectroscopy (SERS), a highly selective and sensitive analytical technique, has been used here to characterize both extracts from C.\u2009tinctoria and a microsample taken from a medieval manuscript. The behaviour of the dyes as SERS probes has been investigated in order to set up an accurate and selective procedure for the identification of the dye in ancient artworks.
By unambiguously detecting the dye by SERS in the microsample of the medieval manuscript, we also demonstrated that the purple dye mentioned in ancient treatises is definitely linked with the aqueous extract from purple fruits of C.\u2009tinctoria
Universal emission intermittency in quantum dots, nanorods, and nanowires
Virtually all known fluorophores, including semiconductor nanoparticles,
nanorods and nanowires exhibit unexplainable episodes of intermittent emission
blinking. A most remarkable feature of the fluorescence intermittency is a
universal power law distribution of on- and off-times. For nanoparticles the
resulting power law extends over an extraordinarily wide dynamic range: nine
orders of magnitude in probability density and five to six orders of magnitude
in time. The exponents hover about the ubiquitous value of -3/2. Dark states
routinely last for tens of seconds, which are practically forever on quantum
mechanical time scales. Despite such infinite states of darkness, the dots
miraculously recover and start emitting again. Although the underlying
mechanism responsible for this phenomenon remains an enduring mystery and many
questions remain, we argue that substantial theoretical progress has been made.Comment: 9 pages, 2 figures, Accepted versio
Universal surface-enhanced Raman tags : individual nanorods for measurements from the visible to the infrared (514 – 1064 nm)
Surface-enhanced Raman scattering (SERS) is a promising imaging modality for use in a variety of multiplexed tracking and sensing applications in biological environments. However, the uniform production of SERS nanoparticle tags with high yield and brightness still remains a significant challenge. Here, we describe an approach based on the controlled co-adsorption of multiple dye species onto gold nanorods to create tags that can be detected across a much wider range of excitation wavelengths (514 – 1064 nm) compared to conventional approaches that typically focus on a single wavelength. This was achieved without the added complexity of nanoparticle aggregation or growing surrounding metallic shells to further enhance the surface-enhanced resonance Raman scattering (SERRS) signal. Correlated Raman and scanning electron microscopy mapping measurements of individual tags were used to clearly demonstrate that strong and reproducible SERRS signals at high particle yields (>92 %) were readily achievable. The polyelectrolyte-wrapped nanorod-dye conjugates were also found to be highly stable as well as non-cytotoxic. To demonstrate the use of these universal tags for the multimodal optical imaging of biological specimens, confocal Raman and fluorescence maps of stained immune cells following nanoparticle uptake were acquired at several excitation wavelengths and compared with dark-field images. The ability to colocalize and track individual optically encoded nanoparticles across a wide range of wavelengths simultaneously will enable the use of SERS alongside other imaging techniques for the real-time monitoring of cell-nanoparticle interactions
3D visualization of additive occlusion and tunable full-spectrum fluorescence in calcite
From biomineralization to synthesis, organic additives provide an effective means of controlling crystallization processes. There is growing evidence that these additives are often occluded within the crystal lattice. This promises an elegant means of creating nanocomposites and tuning physical properties. Here we use the incorporation of sulfonated fluorescent dyes to gain new understanding of additive occlusion in calcite (CaCO3), and to link morphological changes to occlusion mechanisms. We demonstrate that these additives are incorporated within specific zones, as defined by the growth conditions, and show how occlusion can govern changes in crystal shape. Fluorescence spectroscopy and lifetime imaging microscopy also show that the dyes experience unique local environments within different zones. Our strategy is then extended to simultaneously incorporate mixtures of dyes, whose fluorescence cascade creates calcite nanoparticles that fluoresce white. This offers a simple strategy for generating biocompatible and stable fluorescent nanoparticles whose output can be tuned as required
- …