2,945 research outputs found

    Heterogeneous perturbations in the Doppler-free S1 ← S0 two-photon spectrum of benzene: Evidence for intrastate coupling

    Get PDF
    Rotational perturbations are identified in Doppler-free two-photon spectra of the 1410 and 1410110 vibronic bands in C6H6. Evidence is found that Coriolis coupling between some of the rotational levels of two distinct vibrational states within S1 is the mechanism responsible. This coupling mechanism is thought to be responsible for irreversible intramolecular relaxation at higher excess energies and higher vibrational state densities

    Investigation of direct solar-to-microwave energy conversion techniques

    Get PDF
    Identification of alternative methods of producing microwave energy from solar radiation for purposes of directing power to the Earth from space is investigated. Specifically, methods of conversion of optical radiation into microwave radiation by the most direct means are investigated. Approaches based on demonstrated device functioning and basic phenomenologies are developed. There is no system concept developed, that is competitive with current baseline concepts. The most direct methods of conversion appear to require an initial step of production of coherent laser radiation. Other methods generally require production of electron streams for use in solid-state or cavity-oscillator systems. Further development is suggested to be worthwhile for suggested devices and on concepts utilizing a free-electron stream for the intraspace station power transport mechanism

    The fragmentation of expanding shells III: Oligarchic accretion and the mass spectrum of fragments

    Full text link
    We use SPH simulations to investigate the gravitational fragmentation of expanding shells through the linear and non--linear regimes. The results are analysed using spherical harmonic decomposition to capture the initiation of structure during the linear regime; the potential-based method of Smith et al. (2009) to follow the development of clumps in the mildly non-linear regime; and sink particles to capture the properties of the final bound objects during the highly non-linear regime. In the early, mildly non--linear phase of fragmentation, we find that the clump mass function still agrees quite well with the mass function predicted by the analytic model. However, the sink mass function is quite different, in the sense of being skewed towards high-mass objects. This is because, once the growth of a condensation becomes non-linear, it tends to be growing non-competitively from its own essentially separate reservoir; we call this Oligarchic Accretion.Comment: 14 pages, accepted for publication in MNRA

    Dynamical polarization, screening, and plasmons in gapped graphene

    Full text link
    The one-loop polarization function of graphene has been calculated at zero temperature for arbitrary wavevector, frequency, chemical potential (doping), and band gap. The result is expressed in terms of elementary functions and is used to find the dispersion of the plasmon mode and the static screening within the random phase approximation. At long wavelengths the usual square root behaviour of plasmon spectra for two-dimensional (2D) systems is obtained. The presence of a small (compared to a chemical potential) gap leads to the appearance of a new undamped plasmon mode. At greater values of the gap this mode merges with the long-wavelength one, and vanishes when the Fermi level enters the gap. The screening of charged impurities at large distances differs from that in gapless graphene by slower decay of Friedel oscillations (1/r21/r^2 instead of 1/r31/r^3), similarly to conventional 2D systems.Comment: 8 pages, 8 figures, v2: to match published versio

    Double Quantum Dots in Carbon Nanotubes

    Full text link
    We study the two-electron eigenspectrum of a carbon-nanotube double quantum dot with spin-orbit coupling. Exact calculation are combined with a simple model to provide an intuitive and accurate description of single-particle and interaction effects. For symmetric dots and weak magnetic fields, the two-electron ground state is antisymmetric in the spin-valley degree of freedom and is not a pure spin-singlet state. When double occupation of one dot is favored by increasing the detuning between the dots, the Coulomb interaction causes strong correlation effects realized by higher orbital-level mixing. Changes in the double-dot configuration affect the relative strength of the electron-electron interactions and can lead to different ground state transitions. In particular, they can favor a ferromagnetic ground state both in spin and valley degrees of freedom. The strong suppression of the energy gap can cause the disappearance of the Pauli blockade in transport experiments and thereby can also limit the stability of spin-qubits in quantum information proposals. Our analysis is generalized to an array of coupled dots which is expected to exhibit rich many-body behavior.Comment: 14 pages, 11 pages and 1 table. Typos in text and Figs.4 and 6 correcte

    Casimir interactions in graphene systems

    Full text link
    The non-retarded Casimir interaction (van der Waals interaction) between two free standing graphene sheets as well as between a graphene sheet and a substrate is determined. An exact analytical expression is given for the dielectric function of graphene along the imaginary frequency axis within the random phase approximation for arbitrary frequency, wave vector, and doping.Comment: 4 pages, 4 figure

    A Quantum Calculus Formulation of Dynamic Programming and Ordered Derivatives

    Get PDF
    Much recent research activity has focused on the theory and application of quantum calculus. This branch of mathematics continues to find new and useful applications and there is much promise left for investigation into this field. We present a formulation of dynamic programming grounded in the quantum calculus. Our results include the standard dynamic programming induction algorithm which can be interpreted as the Hamilton-Jacobi-Bellman equation in the quantum calculus. Furthermore, we show that approximate dynamic programming in quantum calculus is tenable by laying the groundwork for the backpropagation algorithm common in neural network training. In particular, we prove that the chain rule for ordered derivatives, fundamental to backpropagation, is valid in quantum calculus. In doing this we have connected two major fields of research

    Few-body bound states in dipolar gases and their detection

    Full text link
    We consider dipolar interactions between heteronuclear molecules in a low-dimensional setup consisting of two one-dimensional tubes. We demonstrate that attraction between molecules in different tubes can overcome intratube repulsion and complexes with several molecules in the same tube are stable. In situ detection schemes of the few-body complexes are proposed. We discuss extensions to the case of many tubes and layers, and outline the implications of our results on many-body physics.Comment: Published versio
    corecore