
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jun 2008

A Quantum Calculus Formulation of Dynamic Programming and A Quantum Calculus Formulation of Dynamic Programming and

Ordered Derivatives Ordered Derivatives

John E. Seiffertt IV
Missouri University of Science and Technology, jes0b4@mst.edu

Donald C. Wunsch
Missouri University of Science and Technology, dwunsch@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
J. E. Seiffertt and D. C. Wunsch, "A Quantum Calculus Formulation of Dynamic Programming and Ordered
Derivatives," Proceedings of the IEEE International Joint conference on Neural Networks, 2008. IJCNN
2008. (IEEE World Congress on Computational Intelligence), Institute of Electrical and Electronics
Engineers (IEEE), Jun 2008.
The definitive version is available at https://doi.org/10.1109/IJCNN.2008.4634327

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229179374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/IJCNN.2008.4634327
mailto:scholarsmine@mst.edu

Abstract— Much recent research activity has focused on
the theory and application of quantum calculus. This
branch of mathematics continues to find new and useful
applications and there is much promise left for
investigation into this field. We present a formulation of
dynamic programming grounded in the quantum calculus.
Our results include the standard dynamic programming
induction algorithm which can be interpreted as the
Hamilton-Jacobi-Bellman equation in the quantum
calculus. Furthermore, we show that approximate
dynamic programming in quantum calculus is tenable by
laying the groundwork for the backpropagation algorithm
common in neural network training. In particular, we
prove that the chain rule for ordered derivatives,
fundamental to backpropagation, is valid in quantum
calculus. In doing this we have connected two major fields
of research.

Index Terms— dynamic programming, quantum calculus,
time scales, backpropagation, dynamic equations

I. INTRODUCTION

uantum calculus is the modern name for the investigation
of the calculus without limits which began with Euler and
currently enjoys ties to abstract algebra and has found

application in the quantum mechanics literature. The book by
Kac and Cheung [20] covers many of the fundamental aspects
of the quantum calculus. As this field becomes more widely
researched, an increasing number of application areas are
being discovered. For example, a recent study of financial
derivative pricing realized a quantum calculus analog of the
Black-Scholes equation [22]. Additionally, it has been shown
that quantum calculus is a subfield of the more general
mathematical field of time scales calculus. Time scales
provide a unified framework for studying dynamic equations
on both discrete and continuous domains. The texts by Bohner
and Peterson ([11],[12]) collect much of the core theory in the

Manuscript received November 30, 2007. This work was supported in part
by the Mary K Finley Endowment at the Missouri University of Science and
Technology*.

 John Seiffertt is with the Applied Computational Intelligence Laboratory,
Department of Electrical and Computer Engineering, Missouri University of
Science and Technology* (e-mail: jes0b4@mst.edu)

Donald C. Wunsch II is director of the Applied Computational Intelligence
Laboratory, Department of Electrical and Computer Engineering, Missouri
University of Science and Technology* (e-mail: dwunsch@mst.edu)

*(Formerly known as University of Missouri-Rolla)

calculus of time scales. Applications of this mathematics
include population biology [7], geometric analysis [10], real
time communications networks [18], intelligent robotic
control [17], adaptive sampling [16], approximation theory
[28], macroeconomics [1], and financial engineering [27],
among others. Many of these are ideal areas for Approximate
Dynamic Programming (ADP) ([23], [29]).
 Dynamic programming itself has been extensively applied
in computational economics ([21], [30], [32]) and asset price
modeling [13], among a host of engineering topics with which
we assume the reader is familiar. Thus, with the recent work
on quantum calculus applications to finance, it is worthwhile
to extend the investigation to other computational methods
which have enjoyed success in economics and finance.
Dynamic programming concerns itself with allocation of
resources under uncertainty ([2],[3]) and we believe that time
scales calculus, and quantum calculus in particular, may be the
appropriate mathematical framework in which to cast an
important class of decision problems.
 This paper presupposes familiarity with the core ideas of
dynamic programming. Quantum calculus, however, is
introduced and reviewed in section II and the basic structure
of a dynamic programming problem as well as derivation of
the dynamic programming algorithm are presented in section
III. Section IV provides the foundation for backpropagation
on -time scales by proving the chain rule for ordered
derivatives originally introduced for the continuous case by
Werbos. Section V concludes with notes on further research
that can help leverage this newly developing area of
mathematics into applications of engineering interest.

II. OVERVIEW OF THE QUANTUM CALCULUS

 A time scale is any nonempty closed subset of the real
line . Examples include the integers , the scaled integers

 (where is a scaling factor), as well as more
mathematically adventurous entities such as the Cantor set. In
studying quantum calculus we are concerned with a specific
time scale, called the -time scale, defined as follows:

such that . Dynamic equations in the quantum calculus,
then, have domain . It is worth noting that the quantum
calculus converges to the classical continuous calculus in the
limit as approaches from above.
 Important in the study of any time scale are three
characteristic functions. Let be a time scale. The forward
jump operator is defined as . The

A Quantum Calculus Formulation of Dynamic
Programming and Ordered Derivatives

John Seiffertt, Student Member, IEEE and Donald C. Wunsch II, Fellow, IEEE

Q

3690

978-1-4244-1821-3/08/$25.00 c©2008 IEEE

Authorized licensed use limited to: University of Missouri. Downloaded on December 10, 2008 at 16:16 from IEEE Xplore. Restrictions apply.

purpose of this function is to step through to the successor
element of the time scale, in the sense given in its definition.
For the time scale , for all , and for the
time scale , . The -time scale analog of
the forward jump operator is given by as the -
time scale is said to be isolated. In a similar fashion, the
backward jump operator is defined as

. Central to many formulas of the time scales
calculus, the graininess function is given by
. Note that when , and when ,

. The graininess of the -time scale can be shown to
be via application of the definition of the
forward jump operator and some algebra.
 To discuss calculus on the -time scale we need to define a
derivative. The q-differential of a function f is given by

(1)

and the q-derivative of the function f is defined by the
following expression:

(2)

Further derivatives can be defined in a manner analogous to

their real counterparts. For example, the second q-derivative
is defined as

 (3)

 The standard rules for differentiation of products and
quotients apply in quantum calculus:

(4)

 To prove the dynamic programming algorithm, we will
require the use of induction in the quantum calculus.
Induction on time scales other than the integers must take into
consideration the fact that successor and predecessors are not
necessarily uniform. Therefore, use of the forward and
backward jump operators is necessary. A form of induction
holds true on time scales. If and is a statement for
each such that the following four conditions hold:

1. is true
2. being true at a right-scattered forces

to be true
3. being true at a right-dense forces to be

true for all in a right-neighborhood of
4. being true for all when is right-

dense forces to be true

then it can be concluded that is true for all .

 Further details can be found in [11]. For our purposes this
basic overview will suffice. There is also a dual version which
involves left-scattered and left-dense intervals and uses the
backwards jump operator to perform backwards
inductive proofs. It is actually this dual version that we use in
the proof of the Dynamic Programming Algorithm. Note
further that for the -time scale only conditions 1 and 2 need
to be met since this time scale lacks dense points.
 For the proof of ordered derivatives in the quantum
calculus, we will need to employ differentiation with respect
to a function. The Stieltjes integral provides a means for this
in the traditional calculus, where we have the relation

. We define a similar construction on the -time scale
where . Now, as the -time scale is a
fundamentally discrete set the integrals become expressed as
summations as shown at the end of this section. We present
this notation in the more general case to maintain consistency
with the relationship between the -calculus and general time
scales where the formula is given by ,
where the symbol denotes the idea of delta differentiation,
which is the generalization of -differentiation to any time
scale. Deeper analysis of these concepts is beyond the scope
of this paper; the interested reader is directed to [9], [12], and
[19] for further information on the theory of integration on
time scales.
 Let and be functions on a -time scale

, and define the following -derivative:

 (5)

This is simply the -time scale analog of the expression

 from classical analysis. We will make use of the
notation in our proof of ordered derivatives on time
scales.
 Finally, a further note on the translation of integrals.
Let where Then

, where is the graininess function of the
time scale . In particular, for the -time scale we arrive at
the following:

 (6)

This construction is important in our discussions of dynamic
programming and backpropagation, as it is convenient and
illuminating to first consider the general time scale
formulation in some cases before delving into the particulars
of the quantum calculus version.

III. DYNAMIC PROGRAMMING IN THE QUANTUM CALCULUS

 Dynamic programming concerns itself with the solution of
multistage decision problems. Key elements include a set of
decision points for making control choices, definitions of
system states which capture all salient details of interest to the
modeler, policies which map states to controls, a set of

2008 International Joint Conference on Neural Networks (IJCNN 2008) 3691

Authorized licensed use limited to: University of Missouri. Downloaded on December 10, 2008 at 16:16 from IEEE Xplore. Restrictions apply.

costs/rewards for each state/decision choice, a cost-to-go
function measuring the costs of future action under a given
policy, and a possible source of random disturbance to
emulate the probability that the decision maker is operating
under conditions of less than perfect information regarding the
consequences of control selections upon state transitions. The
reader unfamiliar with the above framework is directed to the
texts [4], [5], [25], and [31] for further details.
 We set out with the following definitions: decision points
contained in a -time scale with a terminal point a set of
controls for each state given by , random
disturbances modeled by a stochastic term , a cost/reward
function denoted by with terminal
point T defined piecewise as , and a dynamic system
where states evolve according to the following rule:

, (7)

 For policies , we require each set of state-control pairs to
represent a valid association for both the space and time
dimensions. The tail of the policy , denoted as ,
chronicles the sets of state-action pairs starting at decision
point and ending at the terminal point . This notion is
critical for discussion of the optimality principle and the
subsequent derivation of the dynamic programming algorithm.
The cost-to-go function is given by

(8)

where the expansion in terms of -time scales makes use of
equation (6).
 Before continuing, a brief aside on the nature of the
expectation in the cost-to-go function is in order. In service of
the desire to balance the dueling needs of robust modeling and
mathematical tractability, we force a requirement of
countability on the random disturbance term . This
decision limits us from considering stochastic terms such as
Brownian motion or Gaussian noise while still permitting a
wide array of useful probabilistic models. For example, the
standard discrete-time interpretation of takes the form of
a transition probability matrix whose entries indicate
the chance the system evolves from state to state under
control choice . While this is perhaps the most widely used
form of the system, we will proceed with the more general
equation given by (8) in the interest of maximal mathematical
abstraction and utility for our theorems.
 Regardless of the nature of our disturbance terms, we define
an optimal policy to be one which minimizes the cost-to-go
functional . The corresponding optimal cost-to-go functional
is denoted

(9)

where the min is considered over all policies. The goal of the
dynamic programming problem is to calculate an optimal
policy . The most basic process by which this is achieved is
called the Dynamic Programming Algorithm.
 This algorithm is a form of backwards induction. Starting
from the terminal decision point and following a schedule of
recursively defined steps backwards in time towards the initial
point t0, the optimal policy can be calculated even in a
stochastically rich environment. The algorithm begins with
setting and proceeds via the following
rule:

(10)

 This recursion is a consequence of Bellman’s Principle of
Optimality, which states that any optimal policy must be still
optimal when enacted on any tail of the system. That is, the
solution which minimizes the cost-to-go function starting at
any given point t,

(11)

is simply the portion of the optimal policy * which coincides
with the particular tail in question. The justification of this
principle runs as a proof by contradiction: If the tail problem
had a different solution than that given, then the cost-to-go
function could be minimized further by changing out the
optimal policy’s tail with this alternate policy, thus prohibiting
the optimal policy from being, in fact, optimal. This cannot be
the case so the optimality principle must hold. This concept is
used in the proof of the dynamic programming algorithm
given below.
 Our proof follows that of [4] and suffices to establish the
viability of dynamic programming in quantum calculus.

Theorem 1: The policy which minimizes the dynamic
programming recursion (10) for all states and all times is
optimal.

Proof: Set and proceed, via quantum
calculus induction, to show that following the dynamic
programming algorithm’s update rule yields the optimal policy
each step of the way, i.e. that for all

. Since the nature of this algorithm is to proceed
backwards in time, we will use the dual version of time scales
induction as described in section II of this paper. (Recall that
the backwards jump operator for the -time scale.
However, we will maintain the use of the symbol and
trust no confusion will arise. This notation has the advantage
of more closely mirroring the form of the version of the
quantum calculus induction algorithm we invoke in the proof.)
 Letting yields, by definition,

(12)

3692 2008 International Joint Conference on Neural Networks (IJCNN 2008)

Authorized licensed use limited to: University of Missouri. Downloaded on December 10, 2008 at 16:16 from IEEE Xplore. Restrictions apply.

 Now assume for some time point
 and all states . Then we have

(14)

 Note that the minimization is taken term by term over all
controls and policies, respectively. We now use the principle
of optimality to distribute the min through the expectation, as
the tail problem is an optimal policy for the sub-problem
contained within the tail. This yields the following:

(15)

 Using the definition of , which subsumes the term
minimized over the policy, we can reduce this expression to

 By the induction hypothesis, we know the optimal cost-to-go
is equivalent to the approximation due to the dynamic
programming algorithm. Thus, we write

which, by definition, is simply

(16)

Which, in turn, is our desired result.
 With this, the dynamic programming algorithm is shown to
work in quantum calculus. In fact, this can be interpreted as
the Hamilton-Jacobi-Bellman equation in the quantum
calculus, as the -time scale is isolated. It should be noted,
however, that this algorithm is quite computationally
expensive, particularly for industrial-scale problems [23]. To
circumvent this failing, suboptimal methods are routinely
employed. Collectively called Approximate Dynamic
Programming (ADP), these algorithms seek to calculate sub-
optimal policies to whatever degree of accuracy is required by
a given application. These techniques are tied quite intimately
to backpropagation, and section IV of this paper will provide a
proof of the foundations of backpropagation in quantum
calculus. In this way ADP as well as optimal dynamic
programming is shown to have solid footing on -time scales.

IV. ORDERED DERIVATIVES AND BACKPROPAGATION

 To generalize from dynamic programming in quantum
calculus to approximate dynamic programming we need to
investigate backpropagation. This derivative calculation
engine is often utilized in neural network training algorithms
and figures prominently in ADP techniques ([23], [24], [29]).
It is therefore of interest to demonstrate its validity on -time
scales. In his PhD dissertation ([36], reprinted in [34]), Paul

Werbos introduced the notion of an ordered derivative as
separate from derivatives of typical application in physical
systems. The use of these ordered derivatives is motivated by
the particular character of analysis of social systems as
compared to a system operating under strictly physical
dynamics. Relying on a series of ordered variables, each a
consequence of the previous variables in the system, Werbos
notes that the traditional total derivative chain rule fails to
provide adequate calculations for investigation of such an
integrated social system as well as for a wide array of other
mathematically related connectionist systems, the model
application given in Werbos’s dissertation being that of
political forecasting. Werbos thereby establishes
backpropagation as a viable manner in which to calculate
derivatives not only in neural network training but for the
manipulation of weights in a broad spectrum of adaptive
systems. To complete the required calculations Werbos
proved a special chain rule for these ordered derivatives that
worked for the applications in which the traditional chain rule
of continuous analysis broke down. Further discussion of
ordered derivatives can be found in [33].

In this section we formulate the ordered derivative in
quantum calculus and prove the chain rule Werbos derived
obtains in this alternate environment. We conclude that the
backpropagation approach to -derivative calculation is as
valid as the one for the classical derivative and, as such, neural
network training on quantum calculus may follow its
traditional counterpart.
 Following [35], we define the following system variables:
input , output which approximates the target output

). We denote the dimension of the outputs by . The
relationship between inputs and outputs is determined via a
series of adaptive weights . It is the goal of
backpropagation, and hence the ordered derivative
calculations, to tune to reduce an error measure between

 and . The implicit time scale is an isolated subset of
. Throughout this section we will consider time scales of

higher generality and will assume , where is not
restricted to a subset of . We will let denote the number of
inputs or the time the system is allowed to compute.
 We define the following measure of predictive system error:

(17)

 This form represents the standard least-squares error
measure in common use among statistical analysts. Note that
the integral plays the part of the generalized summation
operation and is appropriate for any time scale free of
restriction to an isolated or, more specifically, quantum case.
The proper summation that remains in the equation runs over
the dimension of the output vector: a fixed scalar value
unrelated to our time scale and thus not subsumed by an
integral.

2008 International Joint Conference on Neural Networks (IJCNN 2008) 3693

Authorized licensed use limited to: University of Missouri. Downloaded on December 10, 2008 at 16:16 from IEEE Xplore. Restrictions apply.

 Our purposes require investigation of a specific time scale.
Using equation (6), we can translate (17) into the terms of
quantum calculus as follows:

(18)

 Further analysis of the network equations requires the chain
rule for ordered derivatives, as this is the tool used to
transform the network equations into a calculator of the proper
updates of a system’s adaptive weights via backpropagation.
As a preamble to the chain rule theorem, it is therefore
necessary to define what we mean by an ordered derivative.
 Let be an ordered sequence of
variables with . These variables represent stages of a
larger calculation (e.g., layers, in a sense, of a multi-layer
perceptron network) and follow a recursion given by

so that we can speak meaningfully of causation as a basis for
the relationships among the ’s. We are interested in
determining the way the error changes with respect to one of
the ’s, i.e. we want to calculate , or, using the
notation from the preliminaries section, we want to calculate

. Following [34], we set up the error as a sequence of
recursive functions such that

(19)

and

(20)

 Then, the ordered derivative of , which equals via our
construction, is defined to be

(21)

 The backpropagation algorithm of derivative calculation
hinges on sifting the network equations through the ordered
differentiation operator. In particular, the chain rule for
ordered derivatives plays a key role. The following theorem
establishes this chain rule for quantum calculus.

Theorem 2:

Proof: As in [34], we proceed by induction on . We will start
with and end with . With , the recursive
definitions of the ’s and ’s force the terms to zero

and, therefore, they do not contribute to the summation. So, it
will suffice to consider in the range to .
 Let . Then our hypothesis becomes

(22)

 Calling on the definition of the sequence of ’s, we see that

 so that, since , the claim is proven.
 Now assume the hypothesis is true for some .
Our task is to show the claim holds for . Consider

. Since is defined from , the
delta derivative construction reduces to the traditional case.
Also, by definition, .

Therefore,

(23)

 for . From our definition from the preliminaries applied
to our recursive definition of the ordered variables , we have
that when , as the preceeding variables
in the order are unaffected by the later variables in the
causation chain. This result allows us to reduce our equation
to . We collapse the first

remaining term so that it matches the form of our induction

hypothesis , giving us

(24)

which is our desired result.
Thus, the chain rule for ordered derivatives in

quantum calculus is established. With this result, we are able
to construct neural network architectures in quantum calculus
and train them via backpropagation. While the traditional
chain rule of classical analysis fails to hold for ordered
derivatives, the chain rule for ordered derivatives does hold on

-time scales. Since time scales in general, and -time scales
in particular, may be the appropriate mathematical framework
to discuss a certain class of resource allocation problems, and
dynamic programming concerns itself with optimization of
multi-stage decision scenarios, a quantum calculus approach
to the approximation of the optimal solution becomes an
exciting new area of computational decision theory.

3694 2008 International Joint Conference on Neural Networks (IJCNN 2008)

Authorized licensed use limited to: University of Missouri. Downloaded on December 10, 2008 at 16:16 from IEEE Xplore. Restrictions apply.

2008 International Joint Conference on Neural Networks (IJCNN 2008) 3695

Authorized licensed use limited to: University of Missouri. Downloaded on December 10, 2008 at 16:16 from IEEE Xplore. Restrictions apply.

	A Quantum Calculus Formulation of Dynamic Programming and Ordered Derivatives
	Recommended Citation

	A quantum calculus formulation of dynamic programming and ordered derivatives IEEE International Joint Conference on Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence).

