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Abstract— Much recent research activity has focused on 
the theory and application of quantum calculus. This 
branch of mathematics continues to find new and useful 
applications and there is much promise left for 
investigation into this field.  We present a formulation of 
dynamic programming grounded in the quantum calculus. 
Our results include the standard dynamic programming 
induction algorithm which can be interpreted as the 
Hamilton-Jacobi-Bellman equation in the quantum 
calculus.  Furthermore, we show that approximate 
dynamic programming in quantum calculus is tenable by 
laying the groundwork for the backpropagation algorithm 
common in neural network training.  In particular, we 
prove that the chain rule for ordered derivatives, 
fundamental to backpropagation, is valid in quantum 
calculus.  In doing this we have connected two major fields 
of research. 

Index Terms— dynamic programming, quantum calculus, 
time scales, backpropagation, dynamic equations

I. INTRODUCTION

uantum calculus is the modern name for the investigation 
of the calculus without limits which began with Euler and 
currently enjoys ties to abstract algebra and has found 

application in the quantum mechanics literature.  The book by 
Kac and Cheung [20] covers many of the fundamental aspects 
of the quantum calculus.  As this field becomes more widely 
researched, an increasing number of application areas are 
being discovered. For example, a recent study of financial 
derivative pricing realized a quantum calculus analog of the 
Black-Scholes equation [22]. Additionally, it has been shown 
that quantum calculus is a subfield of the more general 
mathematical field of time scales calculus.  Time scales 
provide a unified framework for studying dynamic equations 
on both discrete and continuous domains. The texts by Bohner 
and Peterson ([11],[12]) collect much of the core theory in the 
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calculus of time scales.  Applications of this mathematics 
include population biology [7], geometric analysis [10], real 
time communications networks [18],  intelligent robotic 
control [17], adaptive sampling [16], approximation theory 
[28], macroeconomics [1], and financial engineering [27], 
among others.  Many of these are ideal areas for Approximate 
Dynamic Programming (ADP) ([23], [29]). 
     Dynamic programming itself has been extensively applied 
in computational economics ([21], [30], [32]) and asset price 
modeling [13], among a host of engineering topics with which 
we assume the reader is familiar. Thus, with the recent work 
on quantum calculus applications to finance, it is worthwhile 
to extend the investigation to other computational methods 
which have enjoyed success in economics and finance.  
Dynamic programming concerns itself with allocation of 
resources under uncertainty ([2],[3]) and we believe that time 
scales calculus, and quantum calculus in particular, may be the 
appropriate mathematical framework in which to cast an 
important class of decision problems.   
     This paper presupposes familiarity with the core ideas of 
dynamic programming.  Quantum calculus, however, is 
introduced and reviewed in section II and the basic structure 
of a dynamic programming problem as well as derivation of 
the dynamic programming algorithm are presented in section 
III.  Section IV provides the foundation for backpropagation 
on -time scales by proving the chain rule for ordered 
derivatives originally introduced for the continuous case by 
Werbos.  Section V concludes with notes on further research 
that can help leverage this newly developing area of 
mathematics into applications of engineering interest. 

II. OVERVIEW OF THE QUANTUM CALCULUS

     A time scale  is any nonempty closed subset of the real 
line .  Examples include the integers , the scaled integers 

 (where  is a scaling factor), as well as more 
mathematically adventurous entities such as the Cantor set.  In 
studying quantum calculus we are concerned with a specific 
time scale, called the -time scale, defined as follows: 

such that .  Dynamic equations in the quantum calculus, 
then, have domain .  It is worth noting that the quantum 
calculus converges to the classical continuous calculus in the 
limit as  approaches  from above. 
     Important in the study of any time scale are three 
characteristic functions.  Let  be a time scale.  The forward 
jump operator  is defined as .  The 
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purpose of this function is to step through to the successor 
element of the time scale, in the sense given in its definition.  
For the time scale ,  for all , and for the 
time scale , .  The -time scale analog of 
the forward jump operator is given by  as the -
time scale is said to be isolated.   In a similar fashion, the 
backward jump operator  is defined as 

.  Central to many formulas of the time scales 
calculus, the graininess function is given by 
.  Note that when ,  and when ,

. The graininess of the -time scale can be shown to 
be  via application of the definition of the 
forward jump operator  and some algebra. 
     To discuss calculus on the -time scale we need to define a 
derivative.  The q-differential of a function f is given by  

(1) 
   
and the q-derivative of the function f is defined by the 
following expression: 

(2) 

   
Further derivatives can be defined in a manner analogous to 

their real counterparts.  For example, the second q-derivative
is defined as 

 (3) 

   

     The standard rules for differentiation of products and 
quotients apply in quantum calculus: 

(4) 

   
 To prove the dynamic programming algorithm, we will 
require the use of induction in the quantum calculus.  
Induction on time scales other than the integers must take into 
consideration the fact that successor and predecessors are not 
necessarily uniform.  Therefore, use of the forward and 
backward jump operators is necessary.  A form of induction 
holds true on time scales.  If  and  is a statement for 
each  such that the following four conditions hold:   

1.  is true  
2.  being true at a right-scattered  forces 

to be true 
3.  being true at a right-dense  forces  to be 

true for all   in a right-neighborhood of 
4.  being true for all  when  is right-

dense forces  to be true 

then it can be concluded that  is true for all .

 Further details can be found in [11].  For our purposes this 
basic overview will suffice. There is also a dual version which 
involves left-scattered and left-dense intervals and uses the 
backwards jump operator  to perform backwards 
inductive proofs.  It is actually this dual version that we use in 
the proof of the Dynamic Programming Algorithm.  Note 
further that for the -time scale only conditions 1 and 2 need 
to be met since this time scale lacks dense points. 
 For the proof of ordered derivatives in the quantum 
calculus, we will need to employ differentiation with respect 
to a function.  The Stieltjes integral provides a means for this 
in the traditional calculus, where we have the relation 

.  We define a similar construction on the -time scale 
where .  Now, as the -time scale is a 
fundamentally discrete set the integrals become expressed as 
summations as shown at the end of this section. We present 
this notation in the more general case to maintain consistency 
with the relationship between the -calculus and general time 
scales where the formula is given by ,
where the symbol  denotes the idea of delta differentiation,
which is the generalization of -differentiation to any time 
scale.  Deeper analysis of these concepts is beyond the scope 
of this paper; the interested reader is directed to [9], [12], and 
[19] for further information on the theory of integration on 
time scales. 
 Let  and  be functions on a -time scale 

, and define the following -derivative: 

 (5) 

   
This is simply the -time scale analog of the expression 

 from classical analysis.  We will make use of the 
notation in our proof of ordered derivatives on time 
scales. 
 Finally, a further note on the translation of integrals.  
Let  where  Then 

, where  is the graininess function of the 
time scale .  In particular, for the -time scale we arrive at 
the following:  

 (6) 

   
This construction is important in our discussions of dynamic 
programming and backpropagation, as it is convenient and 
illuminating to first consider the general time scale 
formulation in some cases before delving into the particulars 
of the quantum calculus version. 

III. DYNAMIC PROGRAMMING IN THE QUANTUM CALCULUS

     Dynamic programming concerns itself with the solution of 
multistage decision problems.  Key elements include a set of 
decision points for making control choices, definitions of 
system states which capture all salient details of interest to the 
modeler, policies which map states to controls, a set of 
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costs/rewards for each state/decision choice, a cost-to-go 
function measuring the costs of future action under a given 
policy, and a possible source of random disturbance to 
emulate the probability that the decision maker is operating 
under conditions of less than perfect information regarding the 
consequences of control selections upon state transitions.  The 
reader unfamiliar with the above framework is directed to the 
texts [4], [5], [25], and [31] for further details. 
 We set out with the following definitions:  decision points 
contained in a -time scale with a terminal point  a set of 
controls for each state given by , random 
disturbances modeled by a stochastic term , a cost/reward 
function denoted by  with terminal 
point T defined piecewise as , and a dynamic system 
where states  evolve according to the following rule: 

,  (7) 
   
 For policies , we require each set of state-control pairs to 
represent a valid association for both the space and time 
dimensions.  The tail of the policy , denoted as ,
chronicles the sets of state-action pairs starting at decision 
point and ending at the terminal point .  This notion is 
critical for discussion of the optimality principle and the 
subsequent derivation of the dynamic programming algorithm.  
The cost-to-go function is given by  

(8) 

where the expansion in terms of -time scales makes use of 
equation (6). 
 Before continuing, a brief aside on the nature of the 
expectation in the cost-to-go function is in order.  In service of 
the desire to balance the dueling needs of robust modeling and 
mathematical tractability, we force a requirement of 
countability on the random disturbance term .  This 
decision limits us from considering stochastic terms such as 
Brownian motion or Gaussian noise while still permitting a 
wide array of useful probabilistic models. For example, the 
standard discrete-time interpretation of  takes the form of 
a transition probability matrix whose entries  indicate 
the chance the system evolves from state to state  under 
control choice .  While this is perhaps the most widely used 
form of the system, we will proceed with the more general 
equation given by (8) in the interest of maximal mathematical 
abstraction and utility for our theorems. 
 Regardless of the nature of our disturbance terms, we define 
an optimal policy  to be one which minimizes the cost-to-go 
functional .  The corresponding optimal cost-to-go functional 
is denoted  

(9) 

where the min is considered over all policies.  The goal of the 
dynamic programming problem is to calculate an optimal 
policy .  The most basic process by which this is achieved is 
called the Dynamic Programming Algorithm.
 This algorithm is a form of backwards induction.  Starting 
from the terminal decision point  and following a schedule of 
recursively defined steps backwards in time towards the initial 
point t0, the optimal policy can be calculated even in a 
stochastically rich environment.  The algorithm begins with 
setting  and proceeds via the following 
rule: 

(10) 

 This recursion is a consequence of Bellman’s Principle of 
Optimality, which states that any optimal policy must be still 
optimal when enacted on any tail of the system.  That is, the 
solution which minimizes the cost-to-go function starting at 
any given point t,

(11) 

is simply the portion of the optimal policy * which coincides 
with the particular tail in question.  The justification of this 
principle runs as a proof by contradiction:  If the tail problem 
had a different solution than that given, then the cost-to-go 
function could be minimized further by changing out the 
optimal policy’s tail with this alternate policy, thus prohibiting 
the optimal policy from being, in fact, optimal.  This cannot be 
the case so the optimality principle must hold.  This concept is 
used in the proof of the dynamic programming algorithm 
given below.   
 Our proof follows that of [4] and suffices to establish the 
viability of dynamic programming in quantum calculus. 

Theorem 1: The policy which minimizes the dynamic 
programming recursion (10) for all states and all times is 
optimal. 

Proof:  Set  and proceed, via quantum 
calculus induction, to show that following the dynamic 
programming algorithm’s update rule yields the optimal policy 
each step of the way, i.e. that for all 

.  Since the nature of this algorithm is to proceed 
backwards in time, we will use the dual version of time scales 
induction as described in section II of this paper.  (Recall that 
the backwards jump operator  for the -time scale. 
However, we will maintain the use of the symbol  and 
trust no confusion will arise.  This notation has the advantage 
of more closely mirroring the form of the version of the 
quantum calculus induction algorithm we invoke in the proof.) 
 Letting  yields, by definition, 

(12) 
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  Now assume  for some time point 
 and all states .  Then we have 

(14) 

 Note that the minimization is taken term by term over all 
controls and policies, respectively.  We now use the principle 
of optimality to distribute the min through the expectation, as 
the tail problem is an optimal policy for the sub-problem 
contained within the tail.  This yields the following: 

(15) 

 Using the definition of , which subsumes the term 
minimized over the policy, we can reduce this expression to 

  By the induction hypothesis, we know the optimal cost-to-go 
is equivalent to the approximation due to the dynamic 
programming algorithm.  Thus, we write 

which, by definition, is simply 

(16) 

Which, in turn, is our desired result.
 With this, the dynamic programming algorithm is shown to 
work in quantum calculus.  In fact, this can be interpreted as 
the Hamilton-Jacobi-Bellman equation in the quantum 
calculus, as the -time scale is isolated. It should be noted, 
however, that this algorithm is quite computationally 
expensive, particularly for industrial-scale problems [23].  To 
circumvent this failing, suboptimal methods are routinely 
employed.  Collectively called Approximate Dynamic 
Programming (ADP), these algorithms seek to calculate sub-
optimal policies to whatever degree of accuracy is required by 
a given application.  These techniques are tied quite intimately 
to backpropagation, and section IV of this paper will provide a 
proof of the foundations of backpropagation in quantum 
calculus.  In this way ADP as well as optimal dynamic 
programming is shown to have solid footing on -time scales. 

IV. ORDERED DERIVATIVES AND BACKPROPAGATION

     To generalize from dynamic programming in quantum 
calculus to approximate dynamic programming we need to 
investigate backpropagation. This derivative calculation 
engine is often utilized in neural network training algorithms 
and figures prominently in ADP techniques ([23], [24], [29]).  
It is therefore of interest to demonstrate its validity on -time 
scales.  In his PhD dissertation ([36], reprinted in [34]), Paul 

Werbos introduced the notion of an ordered derivative as 
separate from derivatives of typical application in physical 
systems.  The use of these ordered derivatives is motivated by 
the particular character of analysis of social systems as 
compared to a system operating under strictly physical 
dynamics.  Relying on a series of ordered variables, each a 
consequence of the previous variables in the system, Werbos 
notes that the traditional total derivative chain rule fails to 
provide adequate calculations for investigation of such an 
integrated social system as well as for a wide array of other 
mathematically related connectionist systems, the model 
application given in Werbos’s dissertation being that of 
political forecasting.  Werbos thereby establishes 
backpropagation as a viable manner in which to calculate 
derivatives not only in neural network training but for the 
manipulation of weights in a broad spectrum of adaptive 
systems.  To complete the required calculations Werbos 
proved a special chain rule for these ordered derivatives that 
worked for the applications in which the traditional chain rule 
of continuous analysis broke down.  Further discussion of 
ordered derivatives can be found in [33]. 

In this section we formulate the ordered derivative in 
quantum calculus and prove the chain rule Werbos derived 
obtains in this alternate environment. We conclude that the 
backpropagation approach to -derivative calculation is as 
valid as the one for the classical derivative and, as such, neural 
network training on quantum calculus may follow its 
traditional counterpart. 
 Following [35], we define the following system variables: 
input , output  which approximates the target output 

).  We denote the dimension of the outputs by .  The 
relationship between inputs and outputs is determined via a 
series of adaptive weights .  It is the goal of 
backpropagation, and hence the ordered derivative 
calculations, to tune  to reduce an error measure between 

 and .  The implicit time scale is an isolated subset of 
.  Throughout this section we will consider time scales of 

higher generality and will assume , where  is not 
restricted to a subset of .  We will let  denote the number of 
inputs or the time the system is allowed to compute. 
 We define the following measure of predictive system error: 

(17) 

     This form represents the standard least-squares error 
measure in common use among statistical analysts.  Note that 
the integral plays the part of the generalized summation 
operation and is appropriate for any time scale  free of 
restriction to an isolated or, more specifically, quantum case.  
The proper summation that remains in the equation runs over 
the dimension of the output vector: a fixed scalar value 
unrelated to our time scale and thus not subsumed by an 
integral. 
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     Our purposes require investigation of a specific time scale.  
Using equation (6), we can translate (17) into the terms of 
quantum calculus as follows: 

(18) 

     Further analysis of the network equations requires the chain 
rule for ordered derivatives, as this is the tool used to 
transform the network equations into a calculator of the proper 
updates of a system’s adaptive weights via backpropagation.  
As a preamble to the chain rule theorem, it is therefore 
necessary to define what we mean by an ordered derivative. 
 Let be an ordered sequence of 
variables with .  These variables represent stages of a 
larger calculation (e.g., layers, in a sense, of a multi-layer 
perceptron network) and follow a recursion given by 

so that we can speak meaningfully of causation as a basis for 
the relationships among the ’s.  We are interested in 
determining the way the error  changes with respect to one of 
the ’s, i.e. we want to calculate , or, using the 
notation from the preliminaries section, we want to calculate 

.  Following [34], we set up the error as a sequence of 
recursive functions such that  

(19) 

and  

(20) 
   
     Then, the ordered derivative of , which equals  via our 
construction, is defined to be 

(21) 

     The backpropagation algorithm of derivative calculation 
hinges on sifting the network equations through the ordered 
differentiation operator. In particular, the chain rule for 
ordered derivatives plays a key role.  The following theorem 
establishes this chain rule for quantum calculus. 

Theorem 2: 

Proof: As in [34], we proceed by induction on .  We will start 
with  and end with .  With , the recursive 
definitions of the ’s and ’s force the terms  to zero 

and, therefore, they do not contribute to the summation. So, it 
will suffice to consider  in the range  to .
 Let .  Then our hypothesis becomes 

(22) 

  Calling on the definition of the sequence of ’s, we see that 

 so that, since , the claim is proven. 
 Now assume the hypothesis is true for some .
Our task is to show the claim holds for .  Consider 

.  Since  is defined from , the 
delta derivative construction reduces to the traditional case.  
Also, by definition, .

Therefore, 

(23) 

 for .  From our definition from the preliminaries applied 
to our recursive definition of the ordered variables , we have 
that  when , as the preceeding variables 
in the order are unaffected by the later variables in the 
causation chain.  This result allows us to reduce our equation 
to .  We collapse the first 

remaining term so that it matches the form of our induction 

hypothesis , giving us 

(24) 

which is our desired result.
Thus, the chain rule for ordered derivatives in 

quantum calculus is established.  With this result, we are able 
to construct neural network architectures in quantum calculus 
and train them via backpropagation.  While the traditional 
chain rule of classical analysis fails to hold for ordered 
derivatives, the chain rule for ordered derivatives does hold on 

-time scales.  Since time scales in general, and -time scales 
in particular, may be the appropriate mathematical framework 
to discuss a certain class of resource allocation problems, and 
dynamic programming concerns itself with optimization of 
multi-stage decision scenarios, a quantum calculus approach 
to the approximation of the optimal solution becomes an 
exciting new area of computational decision theory.   
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