37 research outputs found

    Supervillin (p205): A Novel Membrane-associated, F-Actin–binding Protein in the Villin/Gelsolin Superfamily

    Get PDF
    Actin-binding membrane proteins are involved in both adhesive interactions and motile processes. We report here the purification and initial characterization of p205, a 205-kD protein from bovine neutrophil plasma membranes that binds to the sides of actin filaments in blot overlays. p205 is a tightly bound peripheral membrane protein that cosediments with endogenous actin in sucrose gradients and immunoprecipitates. Amino acid sequences were obtained from SDS-PAGE–purified p205 and used to generate antipeptide antibodies, immunolocalization data, and cDNA sequence information. The intracellular localization of p205 in MDBK cells is a function of cell density and adherence state. In subconfluent cells, p205 is found in punctate spots along the plasma membrane and in the cytoplasm and nucleus; in adherent cells, p205 concentrates with E-cadherin at sites of lateral cell–cell contact. Upon EGTA-mediated cell dissociation, p205 is internalized with E-cadherin and F-actin as a component of adherens junctions “rings.” At later times, p205 is observed in cytoplasmic punctae. The high abundance of p205 in neutrophils and suspension-grown HeLa cells, which lack adherens junctions, further suggests that this protein may play multiple roles during cell growth, adhesion, and motility. Molecular cloning of p205 cDNA reveals a bipartite structure. The COOH terminus exhibits a striking similarity to villin and gelsolin, particularly in regions known to bind F-actin. The NH2 terminus is novel, but contains four potential nuclear targeting signals. Because p205 is now the largest known member of the villin/gelsolin superfamily, we propose the name, “supervillin.” We suggest that supervillin may be involved in actin filament assembly at adherens junctions and that it may play additional roles in other cellular compartments

    Systems analysis of the NCI-60 cancer cell lines by alignment of protein pathway activation modules with "-OMIC" data fields and therapeutic response signatures

    Get PDF
    The NCI-60 cell line set is likely the most molecularly profiled set of human tumor cell lines in the world. However, a critical missing component of previous analyses has been the inability to place the massive amounts of "-omic" data in the context of functional protein signaling networks, which often contain many of the drug targets for new targeted therapeutics. We used reverse-phase protein array (RPPA) analysis to measure the activation/phosphorylation state of 135 proteins, with a total analysis of nearly 200 key protein isoforms involved in cell proliferation, survival, migration, adhesion, etc., in all 60 cell lines. We aggregated the signaling data into biochemical modules of interconnected kinase substrates for 6 key cancer signaling pathways: AKT, mTOR, EGF receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), integrin, and apoptosis signaling. The net activation state of these protein network modules was correlated to available individual protein, phosphoprotein, mutational, metabolomic, miRNA, transcriptional, and drug sensitivity data. Pathway activation mapping identified reproducible and distinct signaling cohorts that transcended organ-type distinctions. Direct correlations with the protein network modules involved largely protein phosphorylation data but we also identified direct correlations of signaling networks with metabolites, miRNA, and DNA data. The integration of protein activation measurements into biochemically interconnected modules provided a novel means to align the functional protein architecture with multiple "-omic" data sets and therapeutic response correlations. This approach may provide a deeper understanding of how cellular biochemistry defines therapeutic response. Such "-omic" portraits could inform rational anticancer agent screenings and drive personalized therapeutic approaches. © 2013 American Association for Cancer Research

    BCAR4 induces antioestrogen resistance but sensitises breast cancer to lapatinib

    Get PDF
    Background: High BCAR4 and ERBB2 mRNA levels in primary breast cancer associate with tamoxifen resistance and poor patient outcome. We determined whether BCAR4 expression sensitises breast cancer cells to lapatinib, and identifies a subgroup of patients who possibly may benefit from ERBB2-targeted therapies despite having tumours with low ERBB2 expression. Methods :Proliferation assays were applied to determine the effect of BCAR4 expression on lapatinib treatment. Changes in cell signalling were quantified with reverse-phase protein microarrays. Quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) of ERBB2 and BCAR4 was performed in 1418 primary breast cancers. Combined BCAR4 and ERBB2 mRNA levels were evaluated for association with progression-free survival (PFS) in 293 oestrogen receptor-α (ER)-positive patients receiving tamoxifen as first-line monotherapy for recurrent disease.Results:BCAR4 expression strongly sensitised ZR-75-1 and MCF7 breast cancer cells to the combination of lapatinib and antioestrogens. Lapatinib interfered with phosphorylation of ERBB2 and its downstream mediators AKT, FAK, SHC, STAT5, and STAT6. Reverse transcriptase-PCR analysis showed that 27.6% of the breast cancers were positive for BCAR4 and 22% expressed also low levels of ERBB2. The clinical significance of combining BCAR4 and ERBB2 mRNA status was underscored by the finding that the group of patients having BCAR4-positive/ERBB2-low-expressing cancers had a shorter PFS on tamoxifen treatment than the BCAR4-negative group. Conclusion :This study shows that BCAR4 expression identifies a subgroup of ER-positive breast cancer patients without overexpression of ERBB2 who have a poor outcome and might benefit from combined ERBB2-targeted and antioestrogen therapy

    Pathway Biomarker Profiling of Localized and Metastatic Human Prostate Cancer Reveal Metastatic and Prognostic Signatures †

    Get PDF
    Reverse phase protein microarray technology was used to study key signaling pathways thought to be involved in the progression of benign epithelium to the lethal phenotype of prostate cancer. Specimens of androgen-stimulated localized prostate cancer (N=21) and androgen-deprivation therapy-recurrent local (N=4) or metastatic (N=11) prostate cancer were laser capture microdissected prior to analysis. The results showed significant increases in protein expression levels in malignant epithelial cells and patient-matched stromal tissue, which included higher levels of the apoptotic proteins Bax and Smac/Diablo and increased phosphorylation of Bcl2 (S70). The mitochondrial protein Smac/Diablo and the transcription regulatory protein STAT3 (Y705) correlated with Gleason sum and differed statistically in high Gleason grade (8-10) prostate cancers. Distinct metastasis-specific pathways were activated by caspase cleavage activation, ErbB2 phosphorylation, Bax total protein and Bcl-2 phosphorylation while phosphorylation of all three members of the MAPK family, ERK, p38 and SAP/JNK, were reduced significantly in metastatic lesions compared to primary cancers. This study, the most comprehensive pathway analysis ever performed for human prostate cancer, presents evidence of specific pathway biomarkers that may be useful for assessment of prognosis and stratification for therapy if validated in larger clinical study sets

    Niagara, County of and Niagara County White Collar Employee Unit, CSEA Local 1000, AFSCME, AFL-CIO, Local 832 (2012) (MOA)

    Get PDF
    Liquid chromatography–tandem mass spectrometry (LC–MS/MS) and multiple reaction monitoring mass spectrometry (MRM-MS) proteomics analyses were performed on eccrine sweat of healthy controls, and the results were compared with those from individuals diagnosed with schizophrenia (SZ). This is the first large scale study of the sweat proteome. First, we performed LC–MS/MS on pooled SZ samples and pooled control samples for global proteomics analysis. Results revealed a high abundance of diverse proteins and peptides in eccrine sweat. Most of the proteins identified from sweat samples were found to be different than the most abundant proteins from serum, which indicates that eccrine sweat is not simply a plasma transudate and may thereby be a source of unique disease-associated biomolecules. A second independent set of patient and control sweat samples were analyzed by LC–MS/MS and spectral counting to determine qualitative protein differential abundances between the control and disease groups. Differential abundances of selected proteins, initially determined by spectral counting, were verified by MRM-MS analyses. Seventeen proteins showed a differential abundance of approximately 2-fold or greater between the SZ pooled sample and the control pooled sample. This study demonstrates the utility of LC–MS/MS and MRM-MS as a viable strategy for the discovery and verification of potential sweat protein disease biomarkers

    Discovery of New Molecular Subtypes in Oesophageal Adenocarcinoma

    Get PDF
    A large number of patients suffering from oesophageal adenocarcinomas do not respond to conventional chemotherapy; therefore, it is necessary to identify new predictive biomarkers and patient signatures to improve patient outcomes and therapy selections. We analysed 87 formalin-fixed and paraffin-embedded (FFPE) oesophageal adenocarcinoma tissue samples with a reverse phase protein array (RPPA) to examine the expression of 17 cancer-related signalling molecules. Protein expression levels were analysed by unsupervised hierarchical clustering and correlated with clinicopathological parameters and overall patient survival. Proteomic analyses revealed a new, very promising molecular subtype of oesophageal adenocarcinoma patients characterised by low levels of the HSP27 family proteins and high expression of those of the HER family with positive lymph nodes, distant metastases and short overall survival. After confirmation in other independent studies, our results could be the foundation for the development of a Her2-targeted treatment option for this new patient subgroup of oesophageal adenocarcinoma

    Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology

    Get PDF
    Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations
    corecore