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Abstract
The NCI-60 cell line set is likely the most molecularly profiled set of human tumor cell lines in the world.

However, a critical missing component of previous analyses has been the inability to place the massive amounts of
"-omic" data in the context of functional protein signaling networks, which often contain many of the drug targets
for new targeted therapeutics. We used reverse-phase protein array (RPPA) analysis to measure the activation/
phosphorylation state of 135 proteins, with a total analysis of nearly 200 key protein isoforms involved in cell
proliferation, survival, migration, adhesion, etc., in all 60 cell lines. We aggregated the signaling data into
biochemical modules of interconnected kinase substrates for 6 key cancer signaling pathways: AKT, mTOR, EGF
receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), integrin, and apoptosis signaling. The net
activation state of these protein network modules was correlated to available individual protein, phosphoprotein,
mutational, metabolomic, miRNA, transcriptional, and drug sensitivity data. Pathway activation mapping
identified reproducible and distinct signaling cohorts that transcended organ-type distinctions. Direct correlations
with the protein network modules involved largely protein phosphorylation data but we also identified direct
correlations of signaling networks with metabolites, miRNA, and DNA data. The integration of protein activation
measurements into biochemically interconnected modules provided a novel means to align the functional protein
architecture with multiple "-omic" data sets and therapeutic response correlations. This approach may provide a
deeper understanding of how cellular biochemistry defines therapeutic response. Such "-omic" portraits could
inform rational anticancer agent screenings and drive personalized therapeutic approaches.Mol Cancer Res; 11(6);
676–85. �2013 AACR.

Introduction
The NCI-60 cell lines are a set of human tumor cell lines

collected by the National Cancer Institute (NCI) over the
last 20 years to accomplish drug screening tests of more
than 100,000 chemical compounds and natural extracts (1).
This panel represents the most common solid and soft
tumors derived from 9 different tissues such as blood, lung,
colon, kidney, breast, skin, prostate, ovary, and central
nervous system. The NCI-60 cell line set is used in labo-

ratories throughout the world as in vitro tumor models,
thanks to their advantages of reproducibility, availability,
and representation of tumor site lineages. Most recently, the
NCI-60 cell lines have been characterized by a number of
high-throughput molecular profiling efforts through DNA
mutations (2), RNA (3), single-nucleotide polymorphisms
(4), miRNAs (5), metabolomic, proteomic (6), and karyo-
typing (7) screens, which have led to a better understanding
of the biology of these cell lines, and an increased under-
standing concerning the relationships between therapeutic
resistance/sensitivity and the underpinning biology. Many
scientists are now focusing on protein-based analysis for
these types of studies because of the proximity of the
proteome to the mechanism of action of most therapeutics
and their primary relationship to cellular biochemistry. Past
efforts used techniques such as 2-dimensional PAGE, mass
spectrometry-based profiling, and both antibody and pro-
tein microarrays (8).
Reverse-phase protein microarray (RPPA) technology (9),

in particular, has been used to gain better insights into the
expression profiles of the NCI-60 set due to its ability to
quantitatively measure a large number of protein analytes at
once with extremely high sensitivity, and was used to
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measure a subscribed set of proteins and phosphoproteins
from the NCI-60 cell lines (6, 10). However, these past
efforts have failed to systematically interrogate the signaling
architecture of this important set using broad-scale, func-
tional phosphoproteomic mapping within the context of a
focused network-oriented approach. In our work described
herein, we used RPPA to measure the activation/phosphor-
ylation state of 135 key signaling proteins, and a total of
nearly 200 protein endpoints (i.e., cleaved, phosphorylated,
and/or total protein isoforms) involved in many aspects of
tumorigenesis and metastatic progression and representing
drug targets for a number of current and experimental
therapeutics across the entire 60 lines that comprise the
NCI-60 set. We aggregated these individual protein mea-
surements in a system-based, pathway-oriented manner that
was then used to interrogate these pathway activity profiles
more deeply within the context of the myriad of "-omic"
measurements and coordinate enormous existing drug sen-
sitivity data sets. This analysis uncovered new biochemical
linkages between drug sensitivities, RNA, DNA, protein,
phosphoprotein, and metabolomic profiles, and could pro-
vide a beginning step to fully link drug sensitivity and
"-omic"-based interconnections to a network-focused view
of tumor biology.

Materials and Methods
Protein lysate preparation
Three independent sets of the NCI-60 cell lines were

obtained as frozen, nonviable cell pellets from the Devel-
opmental Therapeutics Program (DTP), NCI (Frederick,
MD; N ¼ 180). The cell pellets were lysed in buffer
containing T-PER reagent (Thermo-Fisher Scientific),
300 mmol/L NaCl, 1 mmol/L orthovanadate, 2 mmol/L
Pefabloc (Roche), 5 mg/mL aprotinin (Sigma), 5 mg/mL
pepstatin A (Sigma), and 5 mg/mL leupeptin (Sigma), and
incubated on ice for 20minutes. Samples were centrifuged at
9,300 � g for 5 minutes, and the supernatant transferred to
fresh tubes. Protein concentrations were measured using
Coomassie protein assay reagent (Thermo Fisher Scientific).
The lysates were then diluted for printing in extraction buffer
containing 50% T-PER (Thermo Fisher Scientific), 47.5%
2� SDS (Invitrogen), and 2.5% b-mercaptoethanol
(Thermo Fisher Scientific) to concentrations of 0.5 mg/mL
and 0.125mg/mL.

Reverse-phase protein array analysis
RPPAs were constructed and analyzed as previously

described (9). Briefly, samples from the replicate sets of the
60 cell lines were printed in triplicate spots on nitrocellulose-
coated glass slides (GRACE Bio-Labs) using an Aushon
2470 arrayer equipped with 185 mm pins (Aushon Biosys-
tems), according to the manufacturer's instructions. Refer-
ence standard lysates, composed of HeLa þ Pervanadate
(BD), Jurkat þ Etoposide (Cell Signaling), and Jurkat þ
Calyculin A (Cell Signaling) cell lysates, were printed in 10-
point dilution curves as procedural controls and as positive
controls for antibody staining. Each reference standard curve

was printed in triplicate at concentrations of 0.5 mg/mL and
0.125 mg/mL. A selected subset of the printed array slides
were stained with Sypro Ruby Protein Blot Stain (Invitro-
gen) to estimate sample total protein concentration, and the
remaining slides were stored desiccated at �20�C. Just
before antibody staining, printed slides were treated with
1� ReBlot Mild Solution (Chemicon) for 15 minutes,
washed 2 times for 5 minutes with PBS (Invitrogen), and
incubated for 1 hour in blocking solution [2% I-Block
(Applied Biosystems), 0.1% Tween-20 in PBS]. Immunos-
taining was completed on an automated slide stainer using a
catalyzed signal amplification kit (DAKO). The arrays were
probed with a library of almost 200 antibodies against total,
cleaved, and phosphoprotein endpoints (Supplementary
Table S1). Primary antibody binding was detected using
a biotinylated goat anti-rabbit immunoglobulin G (IgG)
HþL (1:7500; Vector Laboratories) or rabbit anti-mouse
IgG (1:10; DAKO) followed by streptavidin-conjugated
IRDye680 fluorophore (LI-COR Biosciences). Before use,
primary antibodies were extensively validated for single-band
specificity byWestern immunoblottingwith complex cellular
lysates.Negative control slideswere incubatedwith secondary
antibody only. All Sypro and immunostained slides were
scanned using a Revolution 4550 scanner (Vidar Corp.), and
acquired images were analyzed with MicroVigene v4.0.0.0
(VigeneTech), which conducted spot detection, local back-
ground subtraction, negative control subtraction, replicate
averaging, and total protein normalization, producing a single
value for each sample. Unsupervised hierarchical clustering
was conducted with JMP v5.1 (SAS Institute). Endpoint
relative intensity correlation plots were conducted with
GraphPad Prism v5 (GraphPad Software Inc.,).

Protein pathway activation score determination
Protein signaling pathway activation modules for AKT,

mTOR, EGF receptor (EGFR), insulin-like growth factor-1
receptor (IGF-1R), integrin, and apoptosis signaling were
defined on the basis of known biochemical linkages between
the individual phosphoproteins quantitatively measured by
RPPA. Pathway activation module scores were calculated by
first scaling the relative intensity values within each endpoint
to the sample with the highest value, resulting in values
ranging from 1 to 0 that were designated as the "single
endpoint score". Second, final pathway activation module
scores for each sample were generated by summing the single
individual phosphoprotein score for each endpoint compo-
nent in a given module. These scores, referred to as an
"overall module score" or "pathway activation score," rep-
resent the whole activation status of each of the 6 pathways
under consideration for each cell line.

"-Omic" network analysis
We downloaded the following normalized datasets for the

NCI-60 cell lines from CellMiner (11): mRNA expression
measured using Affymetrix HG-U133, miRNA expression
measured using Agilent Human miRNA microarray and
OSU V3 chip, DNA copy number measured with Onco-
BACDNAmicroarrays, and DNAmutation data. From the
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same source, we also downloaded drug responses measured
as �log(GI50) for datasets A118. From NCI DTP (12), we
downloaded the Metabolon metabolomic dataset, Seque-
nom DNA methylation dataset, and drug responses for 97
U.S. Food and Drug Administration-approved anticancer
drugs.
From the mRNA expression data, we inferred coexpres-

sion networks using ARACNe (13), CLR (14), MIRNET
(15), C3NET (16), and GENIE3 (17). In the first 3
methods, we constructed 2 networks for each method, using
Spearman rank coefficient and mutual information as a
relationship measure. From the 8 resulting gene coexpres-
sion networks, we constructed a single consensus network,
by taking edges that were present in all 8 networks, and also
edges that were present in at least 6 networks if the 2 genes for
the edge were significantly positively or negatively correlated
at 2-tailed P� 0.05 after Bonferroni correction.We repeated
the same procedure with phosphoprotein data, arriving with
a consensus protein coexpression network.
From the inferred cell-wide protein and gene consensus

coexpression networks, we narrowed our focus to networks
centered around individual pathway activation scores. Each
such network consists of proteins, genes, and other entities
that were directly correlated with the score. We calculated
Pearson correlation coefficients, with Bonferroni-adjusted 2-
tailed P ¼ 0.05 cutoff, to detect genes (mRNA expression),
DNA mutation, methylation and copy number, metabo-
lites, and drug sensitivities that are directly correlated with
each pathway activation score. ForDNAmutation, a dichot-
omous variable, we measured the point–biserial correlation
coefficient. We also detected correlations between the scores
and all individual total, phospho, and cleaved proteins, using
amore strict Bonferroni-adjusted P¼ 0.01 cutoff. On top of
proteins and genes directly correlated with the score, we also
included their immediate neighbors in the inferred consen-
sus coexpression networks, and any edges between them that
existed in those networks.

Results
Pathway activation profiling of the NCI-60 tumor cell
lines
To understand the basal signaling network architecture of

the NCI-60 panel, we conducted an initial broad-
scale protein pathway activation mapping analysis of 194
proteins and phosphoproteins, the largest number measured
for the set to date. The full RPPA dataset can be accessed at:
http://dtpsearch.ncifcrf.gov/WEBDATA_PETRICOIN_
PROTEIN.zip. The results of this mapping effort are
shown in Fig. 1 and revealed that clustering, composed of
3 major groups, was largely independent of the cell line
origin classification (see also Supplementary Fig. S1) but was
defined by the underpinning pathway activation. Other sub-
groups were readily apparent, composed of multiple tumor
origin types and characterized by activation of several mem-
bers of the EGFR superfamily as well as the downstream
mTOR signaling (see also Supplementary Fig. S1).

Network module construction and analysis
On the basis of the pathway-centric nature of the signal-

ing architecture revealed, and to more fully interrogate
the relationships between phosphorylation-driven signaling
at the pathway level and other "-omic" and drug sensitivity
relationships, we took advantage of the fact that we
measured the activation/phosphorylation of a number of
key signaling proteins that spanned specific signaling path-
ways and developed biochemically linked signaling "mod-
ules" for systems-level analysis. We focused our "pathway
module" analyses on 6 important signal transduction path-
ways that are central both to tumorigenicmechanisms as well
as to therapeutics being evaluated in many ongoing cancer
clinical trials as well as predictive marker analysis: EGFR,
integrin, IGF-1R, mTOR, AKT, and apoptosis signaling
(Table 1; Fig. 2 and Supplementary Fig. S2), and for which
we were able to measure a large number of biochemically

Figure 1. Two-way, unsupervised hierarchical clustering representing the 60 tumor cell lines (vertical axis) and the analyzed total, phospho- and cleaved
proteins (horizontal axis). The clustering reveals the formation of 3 major groups (A, B, and C) that are largely independent upon the cell line origin
classification but are defined by the underpinning pathway activation. Within the heatmap, red color represents higher levels of relative activity/expression;
black represents intermediate levels, and green represents lower levels of relative activity/expression. The 60 tumor cell lines have been highlighted by
colors indicating the tissue origin: orange – kidney, blue – lung, pink – breast, red – blood, green – colon, brown – prostate, purple – ovary, black – skin, and
gray – central nervous system.
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linked kinase substrate signaling proteins. Pathway activa-
tion scores were determined for each module such that every
cell line had a continuous variable integer determinant for
each pathway module. The individual proteins/phosopho-
proteins that were used to underpin each pathway module
are shown in Table 1. In each case, we considered only the
most directly involved first-order kinase–substrate relation-
ships to minimize interactions with other signaling or
pathway feedback loops. The images in Fig. 2, with the
integrin pathway shown as an example, show the correlation

between this ranking and the hierarchical clustering and
clearly indicate which cell lines had high overall pathway
activation scores and those that did not, and that these scores
were driven by systemic activation of most of the biochem-
icallylinked individual signaling proteins. This pattern was
also revealed in the other modules constructed (Supplemen-
tary Fig. S2). Interestingly, when comparing the signaling
architecture derived from the pathway activation modules
(Supplementary Fig. S3), a number of the lung-derived cell
lines clustered together, characterized by relatively low-level

Table 1. Signaling proteins included in signaling module scores

Integrin IGF-1R Apoptosis mTOR AKT EGFR

Src family (Y416) IGF-1R (Y1135/1136)/Insulin
Receptor (Y1150/1151)

BAD mTOR (S2448) PDK1 (S241) EGFR (Y1148)

FAK (Y576/577) IGF-1R (Y1131)/Insulin
Receptor (Y1146)

BAX mTOR (S2481) AKT (S473) EGFR (Y845)

FAK (Y397) IRS-1 (S612) Smac/diablo 4E-BP1 (S65) AKT (T308) EGFR (Y1173)
Paxillin (Y118) SHC (Y317) XIAP 4E-BP1 (T70) GSK3a/b (S21/9) Ras-GRF1 (S916)
Cofilin (S3) GAB1 (Y627) Cleaved

Caspase-9 (D315)
eIF4E (S209) PRAS40 (T246) AKT (S473)

CrkII (Y221) SHP2 (Y580) Cleaved
Caspase-9 (D330)

eIF4G (S1108) Tuberin/TSC2
(Y1571)

AKT (T308)

Cleaved
Caspase-3 (D175)

p70S6K (T389) SHC (Y317)

p70S6K (T412) C-Raf (S338)
p70S6K (S371) C-Raf (S259)
S6 Ribosomal
Protein (S240/244)

B-Raf (S445)

A-Raf (S299)
MEK1/2 (S217/221)
ERK1/2 (T202/Y204)
p90RSK (S380)

Figure 2. Identification and
characterization of activated integrin
pathway module by signal
transduction representation (A) and
unsupervised hierarchical clustering
(B). For the pathway representation,
the inhibitory phosphorylations
considered in the analysis are shown
in red and the activating
phosphorylations in green. For the
unsupervised hierarchical
clustering, the complete panel of
NCI-60 is shown (vertical axis).
Specific endpoint relative intensity
values have been used to create the
heatmap. After overall score
calculation, we highlighted the cell
lines with the top 10 pathway scores
(red), and the cell lines with the
lowest 10 pathway activation scores
(green).
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signaling activation of the analyzed phosphoproteins that
comprised the modules (Table 1).

Systems level "-omic" analysis
Aswe defined themodule-driven pathway activation states

for the NCI-60 cell lines, we sought to understand all the
possible relationships between our pathway module activa-
tion results and the very large and full complement of
publicly available molecular data for the NCI-60 set as well
as the individual RPPA-driven phosphoproteomic data we
derived. In particular, the DTP serves as a vital resource for
preclinical information and research materials, including
web-accessible data and tools and the molecular analysis
and drug sensitivity screening of the NCI-60 tumor cell line,
among other information. Thus, we were able to correlate
the individual RPPA phosphoprotein and protein data we
generated, as well as the pathway activation scores for our 6
signal transduction networks, to DNA copy number and
mutation data, methylation status, mRNA and miRNA
expression, along with drug and metabolite responses. From
the cell-wide protein and gene consensus coexpression net-
works, we selected as network nodes all of the genes and
proteins that were identified as statistically correlated with
the pathway activation score and linked them to the pathway
score node (Fig. 3A and B and Supplementary Fig. S4). In
the figures, we also included these nodes' direct neighbors in
the inferred consensus networks, that is, for each node
directly correlated with pathway score, we included all genes
or proteins linked to that node in the inferred protein and
gene coexpression networks, even if they were not signifi-
cantly correlated with the pathway score. We included all
edges between the selected nodes in the inferred consensus
networks. For all the gene nodes in the resulting score-
centered network, we searched for genes that had signifi-
cantly correlated DNA mutation, methylation, and copy
number, as well as for miRNAs with correlated expression,
metabolites with correlated levels, and drugs with correlated
growth inhibition profiles, and included them in the net-
work. In Fig. 3 and Supplementary Fig. S4, we used different
colors to denote different types of analytes (e.g., protein,
gene, metabolite, etc.), and used solid or dashed lines to
indicate positive or negative correlations, respectively. For
the phosphoprotein nodes, we repeated the same search for
correlations using the expression of genes encoding these
proteins. Also, we looked for direct correlations between
phosphoprotein levels and DNA mutation, metabolite
levels, and drug responses. We did not observe any RPPA
endpoints that correlated negatively with pathway score,
although some other types of variables (e.g., microRNA
expression) with negative correlations were observed. How-
ever, the possibility of negative correlations between path-
way scores and RPPA endpoints outside the pathway mod-
ules technically exists. To account for this possibility, we
considered both positive and negative correlations in our
analyses, and used 2-tailed statistical tests.
We also constructed a unifying joint network (Fig. 3C),

attempting to link all 6 of the pathwaymodules together, but
in this instance, we only included phosphoproteins that were

significantly correlated with at least 2 different pathway
scores to focus on the strongest linkages. Then, we looked
for significant correlations of those phosphoproteins, or of
genes encoding them, to DNA mutation, methylation, and
copy number data, as well as tometabolite and drug data. For
all pathway activationmodules analyzed, we found that 83%
(109/131) of the direct linkages to the central pathway
activation score were established by individually RPPA-
generated phosphoprotein measurements (brown edges),
even though we found correlations with all the other types
of data. Moreover, specific statistically significant linkages
were identified between RPPA-generated phosphoproteins
and proteins and the other "-omic" datameasured (Fig. 3 and
Supplementary Fig. S4).
To assess drug sensitivity–network correlations, we con-

sidered 2 publicly available drug sensitivity databases: the
A118 database and a database composed of a panel of 97
FDA-approved targeted drugs. The A118 database is com-
posed of 118 of the most common chemotherapeutic drugs
in use, and along with the 97 FDA-approved targeted drugs
have been tested by DTP on the NCI-60 to evaluate their
sensitivity and resistance as defined by LC50 and GI50
determinants. Considering all the networks together, we
were able to define both positive (solid line) and negative
(dash line) correlations between drug �log (GI50)s and
several proteins/genes. Focusing on targeted therapies, we
found significant correlations with 5 drugs specifically:
imatinib, vemurafenib, sunitinib, nilotinib, and crizotinib.
Interestingly, when the correlation between a drug sensitiv-
ity and a phosphoprotein was positive, the same phospho-
protein was directly and positively correlating as well with
the mutation of the gene (and only with that one gene)
against which the drug is specific. For example, each and
every time imatinib correlated with phospho-PYK2 (or
phospho-eNOS or phospho-STAT5), these endpoints cor-
related with the mutation of platelet-derived growth factor
receptor a (PDGFRa), the known target of imatinib. This
seemed to be true for every positive correlation between
phosphoproteins and targeted drugs. For vemurafenib, an
inhibitor of the V600E-mutated form of B-RAF, which is a
component of our apoptosis, IGF-1R, mTOR, and EGFR
pathway modules, we found positive correlations with phos-
pho-p90RSK and/or phospho-PKCd (vemurafenib and
phospho-PKCd correlate only in the EGFR network). These
2 phosphoproteins in turn correlated with the mutated B-
RAF in the same 4 networks (10/11 NCI-60 cell lines carry
the V600E B-RAF mutation; Fig. 3A and B and Supple-
mentary Fig. S4). These results indicate that phosphoprotein
levels provide a significant degree of linkage to both thera-
peutic sensitivity and gene mutation attributes. More exten-
sive experimentationwill be needed, using both chemical and
genomic knockin/knockout, to determine the ordering and
linkage of the molecular data with and between each other.

Discussion
Because the mechanism of action of nearly all oncology-

based therapeutics, especially the new classes of targeted
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therapeutics, is based largely on the modulation of protein
activity/protein expression as the principal drug target, and it
is known that cancer is largely driven by disregulated and

hyperactivated signaling networks (9, 18), as proteomic
technologies have matured, their use in these molecular
characterization efforts has become increasingly important.

Figure 3. Systems networks of EGFR (A) and integrin (B) pathway activation, together with a unified pathway activation network (C). Node color: Violet, node
representing the pathway score; Blue, phosphoproteins (linked to pathway score or to other proteins/genes at the protein level); Yellow, genes (linked to
pathway score or to other proteins/genes at the mRNA level); Orange, miRNA; Dark green, drug; Light green, metabolite; Gray, other. Node shape: Diamond,
pathway scorenode, or phosphoprotein that is used in calculating thepathway score;Circle, other nodes. Edgecolor and label: Brown, relationship inferredon
the basis of phosphoprotein level (either with level other phosphoprotein or with pathway score); Gray, relationship inferred on the basis of gene mRNA
expression (either with mRNA of other gene or with pathway score); Dark green, phosphoprotein level or gene expression (mRNA) is significantly correlated
with drug response measured as �log (GI50); Light green, phosphoprotein level or gene expression (mRNA) is significantly correlated with metabolite
concentration; Red, phosphoprotein level or gene expression (mRNA) is significantly correlatedwithmutation of other gene. Arrow points frommutation gene
to themRNA gene; Pink, gene expression (mRNA) is significantly correlated with methylation of other gene. Arrow points frommethylation gene to themRNA
gene; Dark blue, gene expression (mRNA) is significantly correlatedwith copy number of other gene. Arrow points from copy number gene to themRNAgene;
Orange, gene expression (mRNA) is significantly correlated with expression of microRNA. Edge line style: Solid, positive correlation; Dashed, negative
correlation.
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To date, a central missing component of the NCI-60
profiling efforts has been the lack of broad-scale protein
activation/phosphorylation analysis. Past integrative biology
efforts that incorporated proteomic analysis of the NCI-60
set have either used a more limited number of individual
proteins (N¼ 74; ref. 10), compared with our analysis (N¼
135) for defined drug sensitivity analysis, or evaluated total
protein levels in an attempt to link gene and protein
expression levels together (and found little concordance
between these datasets; ref. 6). Moreover, our own analysis
of the total levels and corresponding phosphorylation levels
of a number of important cytoplasmic signaling proteins
such as extracellular signal-regulated kinase (ERK), AKT,
and receptor proteins such as ERBB3 revealed complete lack
of concordance (Supplementary Fig. S5), which indicated
that direct measurements of the phosphorylation levels of a
given analyte are necessary and cannot be inferred from
measuring the total levels alone. Most importantly, these
past efforts used a one-analyte at-a-time approach for cor-
relation and integrated analysis, and because we now know
that cancer is a pathway-oriented disease (9, 18), we postu-
lated that a more detailed molecular analysis that used a
network-oriented approach would provide new insights into
how different molecular compartments may link together
and better characterize drug sensitivity markers. Here, we
report the integration of individual protein activation/phos-
phorylation measurements into biochemically connected
pathway modules that provide a new means to align func-
tional protein architecture with multiple "-omic" data sets
and therapeutic response correlations.
In this study, we have developed a novel systems biology-

based approach to "multiomic" network analysis through the
implementation of a phosphorylation-driven pathway acti-
vation score to integrate functional signaling data from
RPPA analysis with all other "multiomic" data. Orientation
of systems biology analysis toward pathway/network-
focused function despite individual genes, proteins, or
phosphoproteins will be a critical next step in translational
research. This network-based approach is useful not only as a
new means to integrate genomic, metabolomic, and prote-
omic data together, but also to delve into the molecular basis
through which a drug acts and discover new potential
inhibitory mechanisms for drugs with unknown mechan-
isms of action.
Despite the complex relationships revealed by our analysis

(Fig. 3, Supplementary Fig. S4), our approach provided an
opportunity to interrogate and more fully characterize some
of the specific linkages observed and provided evidence for
biochemical rationale of the correlations uncovered. In
several pathway activation networks (IGF-1R, EGFR, AKT,
mTOR, and apoptosis) we studied, we found a consistent
linkage of MST1/MST2, PAK1/PAK2, LKB1, SGK1, and
ABL phosphoproteins, RUNX1T1 gene methylation status,
and miRNA-211. The MST protein family is known to be
involved in the Hippo pathway, a signaling cascade that
controls organ size through the regulation of cell prolifer-
ation and apoptosis (19, 20). As many cancers are marked by
unchecked cell division, Hippo family signaling has become

increasingly significant in the study of human cancers;
however, how this family integrates within the context of
other biochemical events still remains unclear. It has already
been shown that mir-204/211 are involved in the repression
of TGFbR and SNAIL signaling, and also with other genes
implicated in cancer progression (21).
The transcription factor RUNX1T1 (together with

RUNX1) is known to be involved in several cancers, above
all hematopoietic malignancies, due to its repressor activity
that involves histone deacetylases and the ability to undergo
chromosomal translocation, where the t8;21 is the most well
known, and results in expression of a leukemia-specific
chimeric transcription factor (22). On the basis of our
analysis, we propose a model of interactions (Fig. 4) based
on both previous data (18–29) and the interactions we
found. This example provides evidence that our approach
has identified "-omic" linkages that, although new, have
basis in biochemical rationale and are supported, in part, by
past research (18–29).
Another aspect of our analysis we can consider is the

prevalence of miRNA correlations with gene and protein
expression patterns. In particular, it was notable that many
miRNAs correlated within the integrin pathway module. It
is well known that miRNAs have a relevant role in several
cellular mechanisms regulating the expression of genes and
proteins, as well as in tumorigenesis. Within the integrin
signaling network, we found that phosphorylation of cofilin
has direct connections with several miRNAs reported to have
roles in oncologic malignancies. For example, the ectopic
expression of miR-17, -20, -93, and -106 increases prolif-
eration, colony outgrowth, and replating capacity ofmyeloid
progenitors and results in enhanced phospho-ERK levels
(30). Meenhius and colleagues found that these miRNAs are
endogenously and abundantly expressed in myeloid pro-
genitors and downregulated in mature neutrophils and they
identified sequestosome 1 (SQSTM1), a ubiquitin-binding
protein and regulator of autophagy-mediated protein deg-
radation, as a major target for these miRNAs in myeloid
progenitors, showing that these miRNAs promote cell
expansion, replating capacity, and signaling in hematopoi-
etic cells by interference with SQSTM1-regulated pathways.
Nishida and colleagues showed that the 2 miRNA clusters,
miR-17-92a and miR-106b-25, composed of mir-17, -18a,
-19a, -20a, -19b-1, -91a-1, and mir-106b, -93, -25, respec-
tively, were upregulated in colorectal cancer stromal tissues
compared with normal stroma. Gene expression profiles of
the same stromal tissue samples revealed that putative targets
of these miRNA clusters, such as TGFbR2, SMAD2, and
BMP family genes, were significantly downregulated in
cancer stromal tissue. Other downregulated putative targets
were found to be involved in cytokine interaction and
cellular adhesion, strengthening the evidence for involve-
ment of these miRNAs in adhesion, including the integrin
pathway (31).miR-17-92 has been shown to inhibit collagen
synthesis by targeting TGFbR2, in mice (32), as well as it is
known that miR-93 promotes angiogenesis and tumor
growth by targeting integrinb8 (33), and together with
mir-106a, seems to directly target the Cofilin2 gene (34).
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The correlations we found, concerning miRNAs within
both the integrin and other modules, underpin the growing
relevance of these regulatory nucleic acids in governing many
cellular processes. The ability to identify new miRNA targets
could be enhanced by generating a systems-level analysis that
could predict new, possible biologic correlations using "mul-
tiomic" datasets and bioinformatic tools. Because many
investigators are excited by the potential regulatory framework
of miRNA and protein expression, orienting connectivity
analysis with functional protein network activation as the
proximal center could provide a firmbasis of such exploration.
We were also able to use our network analysis to identify

correlations concerning sensitivity to specific chemothera-
peutics and targeted drugs. Of particular interest was the
interconnection between phosphoproteins directly con-
nected to the central score with targeted drugs and the
mutation of the gene encoding the drug target. As stated
previously, we found both positive and negative correlations
with 5 targeted therapeutics: imatinib, vemurafenib, suni-
tinib, nilotinib, and crizotinib. When these drugs had
positive correlations with the gene or the phosphoprotein
encoded by the gene, the same phosphoprotein was also
positively correlated with the mutated gene targeted by that
drug. For example, phospho-PYK2 or phospho-STAT5
correlated with both imatinib and mutated PDGFRa. Also,
phospho-p90RSK correlated with vemurafenib and the
mutation of B-RAF (Fig. 3A and B and Supplementary Fig.
S4). Of course, in vitro experiments are needed to study the

cellular responses to these drugs, and to further confirm the
existence of biologic effects involving our predicted phos-
phoprotein-driven networks. This approach may provide a
deeper understanding of how cellular biochemistry defines
therapeutic response. Such "-omic" portraits could inform
rational anticancer agent screenings and drive personalized
therapeutic approaches.
A significant finding of the overall analysis described herein

is the paucity of first-order connections to the pathway
activation core with DNA genomic or RNA transcriptomic
data. Most of the highly correlated analytes are either the
individual phosphoproteins that comprise the activation score
itself, which would be expected, or other phosphoproteins
that do not underpin the score. These results indicate that
gene expression and DNA mutation profiles may often not
accurately predict functional protein signaling states. This has
important implications in the context of personalized med-
icine where DNAmutation analyses are often currently used
for patient stratification to drugs that target protein activity.
Recent reports (35) have shown a lack of concordance of
tumor mutations such as PTEN with response to inhibitors
that target PI3K/mTOR signaling. Although these effects can
also be underpinned by coordinate activation of compensa-
tory pathways such as mitogen-activated protein kinase, our
data show that the DNA mutation status of PTEN, while
correlated with AKT activation (Supplementary Fig. S4A),
has no direct correlation with mTOR pathway activation
module (Supplementary Fig. S4D) in theNCI-60 cell line set.

Figure 4. Hippo-based model.
Arrows point out the direction of
signaling: in orange, the YAP
signaling effects on p73 driven by c-
Abl, in blue the YAP signaling effects
on the transcription factor RUNX1
driven by c-Src. In pink, the
involvement of mir-211 in stress-
activated protein kinase (SAPK)/c-
jun-NH2-kinase (JNK) and SMAD
signaling, as well as in epithelial–
mesenchymal transition (EMT) is
shown. Signaling pathway model
made with PathVisio v2.0 (37).
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These results from our analysis are in keeping with our recent
published data concerning pathway activation mapping of
primary human T-cell acute lymphoblastic leukemia tumor
cells, which showed no statistical linkage of PTEN DNA
mutations with downstream mTOR protein pathway acti-
vation state (36), indicating that a direct measurement of
signaling pathway activation is required for accurate deter-
mination of the state of the drug target.
There are certainly limitations to our current study.

Because of the complexity of cell signaling and the large
volume of data we integrated, we cannot simply assume that
the connections we found are all clinically relevant andmany
likely do not occur in every patient/tumor. A critical problem
for systems-level analysis of large datasets is the overfitting of
the data. By using a network/signaling module-based
approach, which we feel more accurately reflects the signal-
ing architecture, we hope to minimize inaccurate conclu-
sions because our analysis uses this as the central hub of the
network and works outward. Any interconnections, how-
ever, would need to be extensively validated and verified.We
also used statistical approaches thatminimize overfitting, but
these efforts can only dampen chances of random associa-
tions being found and not eliminate them. We could verify
the correctness of these models, such as the consistent
connections of the Hippo family, with in vitro chemical
and genomic knockout analysis, as well as expanding our
phosphoproteomic analysis to include other proteins that
were not considered in the first experimental design but
could be tied to these specific networks. Our approach was
based on a "hub" model philosophy whereby we chose
broad-scale analyses centered on interrogating signaling
proteins known to be integration points within the signaling
architecture, under the postulate that even with incomplete
coverage, we would be measuring the aggregate signaling
inputs and outputs of a larger series of proteins. By aggre-
gating these individual protein nodes with upstream and
downstream directfirst-order kinase–substrate relationships,
we generate more complete data about the true nature of the
signaling activation state rather than just an assortment of
phosphoproteins randomly distributed across the kinase
space. Moreover, our analysis is based solely on data from
a limited number of cell lines, which most certainly neither
recapitulate the heterogeneous state of human cancer in vivo,
nor are representative of all of the cancer cell line sets in the
public domain. Finally, despite the broad-scale pathway
activation mapping conducted, the totality of the kinome
and signaling architecture was not queried and the networks
chosen for exploration, although important to cancer biol-
ogy and therapy, were not comprehensive to include every
known pathway and drug target. Thus, we present these data
as both a guide to future "-omic" analyses as well as first steps

into a protein network-centered journey into future analyses
rather than as a definitive dataset.
In conclusion,we used a novel, functional network-oriented

approach that incorporated the most comprehensive protein
pathway activationmapping analysis conducted to date on the
NCI-60 cell line set to interrogate connectivity with other
"-omic" data previously generated. Inclusion of the phospho-
protein data in the public domain as a growing information
archive and knowledge base will provide an expanding oppor-
tunity for a systems biology view of tumorigenesis and related
drug sensitivity correlations. Despite the known limitations of
cell lines to recapitulate in vivo biology, cell line sets such as the
NCI-60provide aunique opportunity to investigatemolecular
correlations tied to causality within the defined context of the
system used. Coupling extensive molecular architecture sur-
rounding the genome, proteome, phosphoproteome, meta-
bolome, and other molecular archives with drug sensitivity
screens provide a unique "sandbox" to exploit the aggregate
efforts of hundreds of scientists to more fully understand
cancer biology. In the future, we hope that our pathway-
oriented approach can generate new data concerning optimal
therapeutic combinations, identify new predictive markers for
therapeutic efficacy, and uncover new insights about how
intra- and intercellular communications occur.
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