61 research outputs found

    Supervillin (p205): A Novel Membrane-associated, F-Actin–binding Protein in the Villin/Gelsolin Superfamily

    Get PDF
    Actin-binding membrane proteins are involved in both adhesive interactions and motile processes. We report here the purification and initial characterization of p205, a 205-kD protein from bovine neutrophil plasma membranes that binds to the sides of actin filaments in blot overlays. p205 is a tightly bound peripheral membrane protein that cosediments with endogenous actin in sucrose gradients and immunoprecipitates. Amino acid sequences were obtained from SDS-PAGE–purified p205 and used to generate antipeptide antibodies, immunolocalization data, and cDNA sequence information. The intracellular localization of p205 in MDBK cells is a function of cell density and adherence state. In subconfluent cells, p205 is found in punctate spots along the plasma membrane and in the cytoplasm and nucleus; in adherent cells, p205 concentrates with E-cadherin at sites of lateral cell–cell contact. Upon EGTA-mediated cell dissociation, p205 is internalized with E-cadherin and F-actin as a component of adherens junctions “rings.” At later times, p205 is observed in cytoplasmic punctae. The high abundance of p205 in neutrophils and suspension-grown HeLa cells, which lack adherens junctions, further suggests that this protein may play multiple roles during cell growth, adhesion, and motility. Molecular cloning of p205 cDNA reveals a bipartite structure. The COOH terminus exhibits a striking similarity to villin and gelsolin, particularly in regions known to bind F-actin. The NH2 terminus is novel, but contains four potential nuclear targeting signals. Because p205 is now the largest known member of the villin/gelsolin superfamily, we propose the name, “supervillin.” We suggest that supervillin may be involved in actin filament assembly at adherens junctions and that it may play additional roles in other cellular compartments

    Functional Mapping of AKT Signaling and Biomarkers of Response from the FAIRLANE Trial of Neoadjuvant Ipatasertib plus Paclitaxel for Triple-Negative Breast Cancer

    Get PDF
    Biomarkers; Triple-negative breast cancerBiomarcadors; Càncer de mama triple negatiuBiomarcadores; Cáncer de mama triple negativoPurpose: Despite extensive genomic and transcriptomic profiling, it remains unknown how signaling pathways are differentially activated and how tumors are differentially sensitized to certain perturbations. Here, we aim to characterize AKT signaling activity and its association with other genomic or IHC-based PI3K/AKT pathway biomarkers as well as the clinical activity of ipatasertib (AKT inhibitor) in the FAIRLANE trial. Experimental Design: In FAIRLANE, 151 patients with early triple-negative breast cancer (TNBC) were randomized 1:1 to receive paclitaxel with ipatasertib or placebo for 12 weeks prior to surgery. Adding ipatasertib did not increase pathologic complete response rate and numerically improved overall response rate by MRI. We used reverse-phase protein microarrays (RPPA) to examine the total level and/or phosphorylation states of over 100 proteins in various signaling or cell processes including PI3K/AKT and mTOR signaling. One hundred and twenty-five baseline and 127 on-treatment samples were evaluable by RPPA, with 110 paired samples at both time points. Results: Tumors with genomic/protein alterations in PIK3CA/AKT1/PTEN were associated with higher levels of AKT phosphorylation. In addition, phosphorylated AKT (pAKT) levels exhibited a significant association with enriched clinical benefit of ipatasertib, and identified patients who received benefit in the absence of PIK3CA/AKT1/PTEN alterations. Ipatasertib treatment led to a downregulation of AKT/mTORC1 signaling, which was more pronounced among the tumors with PIK3CA/AKT1/PTEN alterations or among the responders to the treatment. Conclusions: We showed that the high baseline pAKT levels are associated with the alterations of PI3K/AKT pathway components and enriched benefit of ipatasertib in TNBC.This study was sponsored by F. Hoffmann-La Roche Ltd

    DNA repair deficiency biomarkers and the 70-gene ultra-high risk signature as predictors of veliparib/carboplatin response in the I-SPY 2 breast cancer trial.

    Get PDF
    Veliparib combined with carboplatin (VC) was an experimental regimen evaluated in the biomarker-rich neoadjuvant I-SPY 2 trial for breast cancer. VC showed improved efficacy in the triple negative signature. However, not all triple negative patients achieved pathologic complete response and some HR+HER2- patients responded. Pre-specified analysis of five DNA repair deficiency biomarkers (BRCA1/2 germline mutation; PARPi-7, BRCA1ness, and CIN70 expression signatures; and PARP1 protein) was performed on 116 HER2- patients (VC: 72 and concurrent controls: 44). We also evaluated the 70-gene ultra-high risk signature (MP1/2), one of the biomarkers used to define subtype in the trial. We used logistic modeling to assess biomarker performance. Successful biomarkers were combined using a simple voting scheme to refine the 'predicted sensitive' group and Bayesian modeling used to estimate the pathologic complete response rates. BRCA1/2 germline mutation status associated with VC response, but its low prevalence precluded further evaluation. PARPi-7, BRCA1ness, and MP1/2 specifically associated with response in the VC arm but not the control arm. Neither CIN70 nor PARP1 protein specifically predicted VC response. When we combined the PARPi-7 and MP1/2 classifications, the 42% of triple negative patients who were PARPi7-high and MP2 had an estimated pCR rate of 75% in the VC arm. Only 11% of HR+/HER2- patients were PARPi7-high and MP2; but these patients were also more responsive to VC with estimated pathologic complete response rates of 41%. PARPi-7, BRCA1ness and MP1/2 signatures may help refine predictions of VC response, thereby improving patient care

    Systems analysis of the NCI-60 cancer cell lines by alignment of protein pathway activation modules with "-OMIC" data fields and therapeutic response signatures

    Get PDF
    The NCI-60 cell line set is likely the most molecularly profiled set of human tumor cell lines in the world. However, a critical missing component of previous analyses has been the inability to place the massive amounts of "-omic" data in the context of functional protein signaling networks, which often contain many of the drug targets for new targeted therapeutics. We used reverse-phase protein array (RPPA) analysis to measure the activation/phosphorylation state of 135 proteins, with a total analysis of nearly 200 key protein isoforms involved in cell proliferation, survival, migration, adhesion, etc., in all 60 cell lines. We aggregated the signaling data into biochemical modules of interconnected kinase substrates for 6 key cancer signaling pathways: AKT, mTOR, EGF receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), integrin, and apoptosis signaling. The net activation state of these protein network modules was correlated to available individual protein, phosphoprotein, mutational, metabolomic, miRNA, transcriptional, and drug sensitivity data. Pathway activation mapping identified reproducible and distinct signaling cohorts that transcended organ-type distinctions. Direct correlations with the protein network modules involved largely protein phosphorylation data but we also identified direct correlations of signaling networks with metabolites, miRNA, and DNA data. The integration of protein activation measurements into biochemically interconnected modules provided a novel means to align the functional protein architecture with multiple "-omic" data sets and therapeutic response correlations. This approach may provide a deeper understanding of how cellular biochemistry defines therapeutic response. Such "-omic" portraits could inform rational anticancer agent screenings and drive personalized therapeutic approaches. © 2013 American Association for Cancer Research

    BCAR4 induces antioestrogen resistance but sensitises breast cancer to lapatinib

    Get PDF
    Background: High BCAR4 and ERBB2 mRNA levels in primary breast cancer associate with tamoxifen resistance and poor patient outcome. We determined whether BCAR4 expression sensitises breast cancer cells to lapatinib, and identifies a subgroup of patients who possibly may benefit from ERBB2-targeted therapies despite having tumours with low ERBB2 expression. Methods :Proliferation assays were applied to determine the effect of BCAR4 expression on lapatinib treatment. Changes in cell signalling were quantified with reverse-phase protein microarrays. Quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) of ERBB2 and BCAR4 was performed in 1418 primary breast cancers. Combined BCAR4 and ERBB2 mRNA levels were evaluated for association with progression-free survival (PFS) in 293 oestrogen receptor-α (ER)-positive patients receiving tamoxifen as first-line monotherapy for recurrent disease.Results:BCAR4 expression strongly sensitised ZR-75-1 and MCF7 breast cancer cells to the combination of lapatinib and antioestrogens. Lapatinib interfered with phosphorylation of ERBB2 and its downstream mediators AKT, FAK, SHC, STAT5, and STAT6. Reverse transcriptase-PCR analysis showed that 27.6% of the breast cancers were positive for BCAR4 and 22% expressed also low levels of ERBB2. The clinical significance of combining BCAR4 and ERBB2 mRNA status was underscored by the finding that the group of patients having BCAR4-positive/ERBB2-low-expressing cancers had a shorter PFS on tamoxifen treatment than the BCAR4-negative group. Conclusion :This study shows that BCAR4 expression identifies a subgroup of ER-positive breast cancer patients without overexpression of ERBB2 who have a poor outcome and might benefit from combined ERBB2-targeted and antioestrogen therapy

    Pathway Biomarker Profiling of Localized and Metastatic Human Prostate Cancer Reveal Metastatic and Prognostic Signatures †

    Get PDF
    Reverse phase protein microarray technology was used to study key signaling pathways thought to be involved in the progression of benign epithelium to the lethal phenotype of prostate cancer. Specimens of androgen-stimulated localized prostate cancer (N=21) and androgen-deprivation therapy-recurrent local (N=4) or metastatic (N=11) prostate cancer were laser capture microdissected prior to analysis. The results showed significant increases in protein expression levels in malignant epithelial cells and patient-matched stromal tissue, which included higher levels of the apoptotic proteins Bax and Smac/Diablo and increased phosphorylation of Bcl2 (S70). The mitochondrial protein Smac/Diablo and the transcription regulatory protein STAT3 (Y705) correlated with Gleason sum and differed statistically in high Gleason grade (8-10) prostate cancers. Distinct metastasis-specific pathways were activated by caspase cleavage activation, ErbB2 phosphorylation, Bax total protein and Bcl-2 phosphorylation while phosphorylation of all three members of the MAPK family, ERK, p38 and SAP/JNK, were reduced significantly in metastatic lesions compared to primary cancers. This study, the most comprehensive pathway analysis ever performed for human prostate cancer, presents evidence of specific pathway biomarkers that may be useful for assessment of prognosis and stratification for therapy if validated in larger clinical study sets

    Niagara, County of and Niagara County White Collar Employee Unit, CSEA Local 1000, AFSCME, AFL-CIO, Local 832 (2012) (MOA)

    Get PDF
    Liquid chromatography–tandem mass spectrometry (LC–MS/MS) and multiple reaction monitoring mass spectrometry (MRM-MS) proteomics analyses were performed on eccrine sweat of healthy controls, and the results were compared with those from individuals diagnosed with schizophrenia (SZ). This is the first large scale study of the sweat proteome. First, we performed LC–MS/MS on pooled SZ samples and pooled control samples for global proteomics analysis. Results revealed a high abundance of diverse proteins and peptides in eccrine sweat. Most of the proteins identified from sweat samples were found to be different than the most abundant proteins from serum, which indicates that eccrine sweat is not simply a plasma transudate and may thereby be a source of unique disease-associated biomolecules. A second independent set of patient and control sweat samples were analyzed by LC–MS/MS and spectral counting to determine qualitative protein differential abundances between the control and disease groups. Differential abundances of selected proteins, initially determined by spectral counting, were verified by MRM-MS analyses. Seventeen proteins showed a differential abundance of approximately 2-fold or greater between the SZ pooled sample and the control pooled sample. This study demonstrates the utility of LC–MS/MS and MRM-MS as a viable strategy for the discovery and verification of potential sweat protein disease biomarkers

    Discovery of New Molecular Subtypes in Oesophageal Adenocarcinoma

    Get PDF
    A large number of patients suffering from oesophageal adenocarcinomas do not respond to conventional chemotherapy; therefore, it is necessary to identify new predictive biomarkers and patient signatures to improve patient outcomes and therapy selections. We analysed 87 formalin-fixed and paraffin-embedded (FFPE) oesophageal adenocarcinoma tissue samples with a reverse phase protein array (RPPA) to examine the expression of 17 cancer-related signalling molecules. Protein expression levels were analysed by unsupervised hierarchical clustering and correlated with clinicopathological parameters and overall patient survival. Proteomic analyses revealed a new, very promising molecular subtype of oesophageal adenocarcinoma patients characterised by low levels of the HSP27 family proteins and high expression of those of the HER family with positive lymph nodes, distant metastases and short overall survival. After confirmation in other independent studies, our results could be the foundation for the development of a Her2-targeted treatment option for this new patient subgroup of oesophageal adenocarcinoma

    Presence of anaplastic lymphoma kinase in inflammatory breast cancer

    Get PDF
    Although Inflammatory Breast Cancer (IBC) is recognized as the most metastatic variant of locally advanced breast cancer, the molecular basis for the distinct clinical presentation and accelerated program of metastasis of IBC is unknown. Reverse phase protein arrays revealed activation of the receptor tyrosine kinase, anaplastic lymphoma kinase (ALK) and biochemically-linked downstream signaling molecules including JAK1/STAT3, AKT, mTor, PDK1, and AMPK\uce\ub2 in pre-clinical models of IBC. To evaluate the clinical relevance of ALK in IBC, analysis of 25 IBC patient tumors using the FDA approved diagnostic test for ALK genetic abnormalities was performed. These studies revealed that 20/25 (80%) had either increased ALK copy number, low level ALK gene amplification, or ALK gene expression, with a prevalence of ALK alterations in basal-like IBC. One of 25 patients was identified as having an EML4-ALK translocation. The generality of gains in ALK copy number in basal-like breast tumors with IBC characteristics was demonstrated by analysis of 479 breast tumors using the TGCA data-base and our newly developed 79 IBC-like gene signature. The small molecule dual tyrosine kinase cMET/ALK inhibitor, Crizotinib (PF- 02341066/Xalkori\uc2\uae, Pfizer Inc), induced both cytotoxicity (IC50= 0.89 \uce\ubcM) and apoptosis, with abrogation of pALK signaling in IBC tumor cells and in FC-IBC01 tumor xenograft model, a new IBC model derived from pleural effusion cells isolated from an ALK+IBC patient. Based on these studies, IBC patients are currently being evaluated for the presence of ALK genetic abnormalities and when eligible, are being enrolled into clinical trials evaluating ALK targeted therapeutics. \uc2\ua9 2013 Robertson et al
    • …
    corecore