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1. Introduction 

1.1 Inflammatory breast cancer as a distinct clinicopathologic entity 
There are several clinically distinct types of breast cancer, which include early stage breast 
cancer, locally advanced breast cancer (LABC) and metastatic breast cancer. The most rare 
but lethal form of LABC is inflammatory breast cancer (IBC) (reviewed in 1). This type of 
breast cancer accounts for an estimated 2- 5% of all breast cancers in the United States and 
up to 20% of all breast cancers globally (2-4). Although primary IBC is less commonly 
diagnosed than other types of breast cancer, IBC is responsible for a disproportionate 
number of breast cancer-related deaths that occur each year world-wide due to its 
propensity to rapidly metastasize. (2-4). Women diagnosed with IBC have a significantly 
shorter median survival time (~ 2.9 years) than women with either LABC (~ 6.4 years) or 
non-LABC breast cancer (>10 years). The clinical diagnosis of IBC is based on the 
combination of the physical appearance of the affected breast, a careful medical history, 
physical examination, and pathological findings from a skin biopsy and/or needle or core 
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biopsy to confirm the diagnosis of carcinoma. The symptoms of IBC include a rapid onset of 
changes in the skin overlying the involved breast, including edema, redness and swelling 
involving over one half to two thirds of the breast, which may include a wrinkled, orange 
peel appearance in the skin, defined as “peau d’orange” (5,6). IBC is diagnosed in women at 
a younger age and since it does not present as a lump but rather occurs as sheets or nests of 
cells defined as tumor emboli, IBC is difficult to detect using mammography and requires 
more sophisticated imaging modalities such as magnetic resonance imaging (MRI) and 
positron emission tomography (PET) (1, 7). Since IBC occurs more rarely than other variants 
of breast cancer, neither the general public nor primary care physicians are aware of the 
signs and symptoms of IBC. It is commonly misdiagnosed as an infection, such as mastitis, 
resulting in delays in initiation of appropriate treatment. Disease progression is very rapid 
in IBC patients, with symptoms appearing often within days or weeks, and IBC patients 
commonly have lymph node metastasis at the time of first accurate diagnosis (6).  
The skin changes observed in the involved breast of IBC patients are the first clinical signs of 
IBC and are believed to be associated with the presence of tumor cells that tightly aggregate 
to form multi-cellular nests of cells, defined as tumor emboli, that invade into the dermis. 
These tumor emboli are one of the classical histopathological findings in IBC (8, 9). 
Although the presence of dermal tumor emboli is not a requirement for a diagnosis of IBC, 
approximately 75% of IBC patients have tumor emboli that are observed in skin punch 
biopsy tissue and they serve as one of most distinctive characteristic signatures of IBC.  

1.2 Models of inflammatory breast cancer 
Historically, one of the barriers in research into the mechanisms underlying the aggressive 
metastasis of IBC has been the lack of sufficient numbers of cell lines and pre-clinical animal 
models derived from IBC patients with diverse breast cancer subtypes. Although there are 
in vitro and in vivo models available for a number of IBC cell lines including SUM149 (10-13), 
SUM190 (10-13), KPL-4 (14) and MDA-IBC-3 (15) with the associated animal xenograft 
models, the majority of IBC research has primarily used the SUM149 cell system as a model 
of IBC. Studies described in this chapter use all available IBC cell lines and animal models, 
including the only animal model of IBC that recapitulates formation of tumor emboli, Mary-
X (16, 17).  
When Mary-X tumor cells are propagated in vitro, they exhibit the unique characteristic of 
only existing as tightly adhered cell aggregates that we have defined as tumor spheroids 
(Figure 1 A). As such, Mary-X tumor spheroids provide a convenient in vitro surrogate for 
IBC tumor emboli that form in vivo. When Mary-X tumor spheroids are serially transplanted 
by subcutaneous injection into female immunocompromised mice, primary Mary-X tumors 
develop (Figure 1 B). In addition, aggregates of cells bud off from the primary tumor and 
form local metastatic lesions that appear as tumor emboli that invade into the dermal tissue 
(Figure 1 C). Mary-X also forms distant metastasis at multiple sites, including the lung 
(Figure 1 D). Triple color immunofluorescence studies demonstrate the highly proliferative 
characteristic of Mary-X tumor emboli, as defined by Ki-67 staining (Figure 1 E). These 
tumor emboli invade into and are encircled by lymphatic endothelium within the dermis, 
defined by their selective expression of podoplanin, a marker specific for lymphatic 
endothelial cells (Figure 1 E) (16,17). This is visual evidence of the propensity of IBC tumor 
emboli to exhibit cohesive invasion and to metastasize locally into the dermal lymphatic 
vessels, which may be one of the mechanisms underlying the common lymph node 
metastasis that occurs in IBC patients at the time of first diagnosis.  
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Fig. 1. A. Mary-X tumor spheroids can be propagated in vitro only as tightly adhered cell 

aggregates.  B. Light micrograph image of a primary Mary-X tumor visible as a tumor with 

redness of the skin following subcutaneous injection of Mary-X spheroids into 

immunocompromised mice.C. Light micrograph of tissue section isolated from a mouse 

bearing a Mary X primary tumor that has formed local metastases that are visible in dermal 

tissue as tumor emboli. D. Light micrograph of Mary-X tumor emboli that have formed 

Figure 1 A-E 
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metastastic lesion in the lung. E. Image of Mary-X tumor tissue with highly proliferative 

Mary-X tumor emboli, as determined by staining with Ki-67 (green fluorescence), that are 

encircled by lymphovascular endothelium, defined by their selective staining with anti-

podoplanin antibodies (red fluorescence), demonstrating their propensity to invade as a 

cohesive unit of aggregated cells into the dermal lymphatic vessels.  

The most recent study that examined the predominant subtypes of inflammatory breast 
cancers reported that there are approximately equal percentages of basal-like, Her2 
amplified and normal like subtypes among IBC patients, with a slightly higher percentage 
of IBC tumors that are of the luminal B subtype (18). Interestingly, the models of IBC 
developed thus far are either triple negative basal like, such as the Mary-X and SUM149 IBC 
cells or are of the luminal B subtypes, such as SUM190 and MDA-IBC-3 cell lines. Based on 
transcriptional analysis and hierarchical clustering, SUM190, MDA-IBC-3 and KPL-4 cells 
have characteristics most closely associated with the luminal B subtype and are positive for 
at least one of the hormone receptors and the Her2 oncogene.  
For studies described in this chapter, we examined the SUM149, SUM190, KPL-4, MDA-IBC-
3 cell lines and Mary-X tumor spheroids as in vitro models of IBC and we also evaluated 
xenograft tissues generated from animals bearing each of these cell lines/cell systems. This 
represents the most comprehensive analysis of all available IBC cell lines and animal 
systems to date.  

1.3 E-cadherin as a signature of inflammatory breast cancer  
One of the only well characterized histological markers of IBC tumor emboli is their robust 
expression of the E-cadherin (19-22). In general, the classic cadherins, including E-cadherin, 
N-cadherin and P-cadherin are transmembrane glycoproteins that are linked to actin 
cytoskeletal networks and other cytoplasmic and transmembrane proteins by forming 

complexes with the catenins including -catenin/vinculin, -catenin, junction plakoglobin 

(JUP)/catenin, and p120/ catenin (23, 24). E-cadherin is considered to be a predominant 
regulator of what has been defined as “collective cell interactions” (25). Therefore, E-
cadherin mediates tight cell:cell homophilic interactions exhibited by epithelial cells 
(reviewed in 26). Using the Mary-X model of IBC, E-cadherin antibodies were found to 
induce the loss of integrity of Mary-X spheroids and when injected via the intravenous route 
into mice bearing Mary-X tumors with known pulmonary metastasis, the metastatic lesions 
were diminished (16, 17). Additional evidence for the critical role of E-cadherin to survival 
to tumor emboli came from studies in which Mary-X spheroids containing a dominant-
negative E-cadherin mutant (H-2K(d)-E-cad) which lacked the extracellular binding domain 
but retained the β-catenin binding domain exhibited loss of integrity of the Mary-X tumor 
spheroids due to inhibition of the tight cell:cell interactions. When injected into mice, these 
Mary-X tumor spheroids containing dominant-negative mutant constructs were only 
weakly tumorigenic and inhibited the ability of Mary-X cells to form tumor emboli (16, 17). 
Using the SUM149 IBC cell line, other studies demonstrated that the presence of dominant 
negative E-cadherin (H-2kd-E-cad) cDNA blocked SUM149 invasion in vitro, which was 
associated with a decreased expression of the matrix metalloprotease enzymes (27). Recent 

studies demonstrating that blockade of p120/ catenin, which anchors E-cadherin within 
the plasma membrane or inhibition of the translation initiation factor eIF4GI, which 

regulates translation of specific mRNAs such as p120/ catenin, resulted in loss of integrity 
of SUM149 tumor spheroids (28). Taken together, these studies suggest that E-cadherin is 
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critical to the invasive and metastatic phenotype of IBC tumor emboli, and also indicate that 

E-cadherin and p120/ catenin may act in concert to maintain the integrity of the tightly 
aggregated tumor cells that comprise the IBC tumor emboli. These studies suggest that E-
cadherin may function not only as part of the signature of IBC but may also serve as a 
therapeutic target which, when effectively blocked, results in inhibition of the tight cell:cell 
aggregation of IBC tumor spheroids in vitro and abrogates the metastatic potential of IBC 
tumor emboli in vivo.  

1.4 Linking E-cadherin as a signature of inflammatory breast cancer and the process 
of the epithelial mesenchymal transition (EMT) in metastasis 
While IBC is a variant of breast cancer that exhibits a program of accelerated metastasis, the 

robust expression of E-cadherin by aggregates of cells within IBC tumor emboli in patients’ 

tissues and in pre-clinical models of IBC is, at least on first examination, paradoxical to the 

current hypothesis that the initiation of metastasis occurs through a specific process defined 

as the epithelial mesenchymal transition (EMT). EMT and the reverse process of 

mesenchymal epithelial transition (MET) are interlinked programs that are essential to 

normal embryonic development, as well as to appropriate wound healing and tissue 

regeneration following injury (29, 30). In these settings, the reversible processes of EMT and 

MET confer the ability of cells to exhibit plasticity in both their morphology and function 

(29). In the setting of embryonic development, EMT and MET are highly organized and 

precisely regulated programs that are critical to appropriate formation of the epithelial, 

mesoderm and endodermal layers required for organ formation (29). The process of EMT is 

reactivated as a developmental program in response to injury; as an example, an EMT 

process is induced in epithelial keratinocytes of surface epithelium at the leading edge of a 

wound. In this case, the epithelial cells have an intermediate “metastable” phenotype, and 

acquire an elongated mesenchymal morphology, increase their migratory activity while 

remaining attached to each other until closure of the wounded area is accomplished (29, 30). 

In a tumor setting, the process of EMT includes a number of functional changes in tumor 

cells which include activation of transcription factors including ZEB1 and ZEB2, TWIST1, 

SNAIL, SLUG, with the associated loss of expression of specific cell-surface proteins that 

regulate the epithelial phenotype including E-cadherin and zona occludins-1. In addition, 

there is a concomitant gain of other genes that regulate the mesenchymal phenotype such as 

N-cadherin, and reorganization and expression of cytoskeletal proteins such as vimentin 

and alpha smooth muscle actin, production of enzymes that degrade extracellular matrix 

such as matrix metalloproteinase 2 (MMP-2), also known as gelatinase, and expression or 

suppression of specific miR families (31). There are several other changes in function of 

tumor cells undergoing the process of EMT including the acquisition of characteristics that 

are similar to stem cells including expression of surface markers CD44+/CD24-/low (31, 32).  

While IBC is the variant of breast cancer that exhibits the most accelerated metastasis, and 

has been characterized as being enriched for cells expressing markers of tumor initiating 

cells/cancer stem cells, including expressing CD44+/CD24-/low, aldehyde dehydrogenase 1 

(ALDH-1+), and CD133+ (33-35), the robust expression of E-cadherin by IBC tumor emboli is 

inconsistent with the current hypothesis that initiation of metastatic progression occurs 

through the process of EMT. This chapter will highlight our studies that have used whole 

unbiased transcriptional analysis and broad-scale protein pathway activation mapping to 

define the specific patterns of expression of genes, proteins and miRs, along with functional 
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protein signaling architecture that collectively provide insight into the distinct signature of 

IBC. It is the changes in the molecular machinery that define the extreme plasticity and 

collective tumor cell migration patterns exhibited by IBC tumor cells and tumor emboli that 

are the metastatic lesion of this lethal variant of breast cancer.  

2. Defining the signatures of inflammatory breast cancer 

2.1 Whole transcriptome analysis and validation of gene signature in IBC cell lines 
and tumor emboli 
Affymetrix microarrays were used to evaluate 56,000+ probe sets expressed by all currently 
available IBC cell lines and cell systems including SUM149 and Mary-X tumor spheroids 
which are of the triple negative subtype and the SUM190, MDA-IBC-3, KPL-4, which are of 
the luminal B molecular subtype. The non-IBC cell lines included in the analysis were MDA-
MB-231, SUM159, and MCF-7 human breast cancer cell lines. The MDA-MB-231 and 
SUM159 cells are both classified as triple negative breast cancer cell lines and MCF-7 cells 
are of the luminal A molecular subtype.  
Whole unbiased transcriptome analysis revealed that, regardless of molecular subtype, the 
IBC cell lines expressed CDH1, which encodes for E-cadherin, compared to non-IBC breast 
cancer cell lines, with the exception of MCF-7 cells (Figure 2). There was heterogeneity in 
CDH1 expression by the different IBC cell lines, with KPL-4 cells having the lowest level of 
CDH1 expression. In addition to CDH1, IBC cell lines expressed other genes that have 
previously been shown to be involved with regulating tight cell:cell adhesion of epithelial 
cells through formation of the adherens junctions including DSC2, which encodes for 

desmocollin 2, and JUP/ catenin and the expression of these two genes by the individual 
IBC cell lines mirrored that of CDH1. Although gene expression of CTNNA1 and CTNNB1, 

which encode for  catenin and  catenin, respectively, was detectable in IBC cell lines, these 
genes were not differentially expressed at higher levels by IBC cell lines compared to non-
IBC cell lines. One significant difference in the whole transcriptome analysis of IBC cell lines 
compared to non-IBC cell lines was the striking lack of expression of the zinc finger E-box 
binding homeobox 1 (ZEB1) transcription factor, also previously defined as transcription 
factor 8 (TCF8) and ZFHX1A (Figure 2). Analysis of other transcription factors related to the 
process of EMT revealed that SNAI2, which encodes for Slug protein, was expressed by all 
of the basal like breast cancer cells including SUM149, Mary-X, SUM159 and MDA-MB-231 
but was not expressed by SUM190, which are luminal B, suggesting that gene expression of 
this transcription factor may be subtype dependent. Expression of other transcription factors 
including ZEB2 was detectable however the pattern of expression did not appear to be 
related to molecular subtype or whether cells were IBC or non-IBC. 
To validate the results of these transcriptome studies, tissues isolated from mice bearing 
Mary-X xenografts were assessed for the presence of emboli in tissue sections stained with 
hematoxylin and eosin (H&E) and the presence of tumor emboli in the dermis was noted 
(Figure 3 A). Serial sections of this same tissue isolated from Mary-X xenograft were stained 
with specific antibodies that identified E-cadherin expressed by tumor emboli in the dermis 
(Figure 3 B). A higher magnification light micrographic image demonstrates the presence of 
abundant E-cadherin protein on the surface of cells within the Mary-X tumor emboli in the 
dermis of the skin (Figure 3 C). Figure 3 D shows a micrometastastic lesion of Mary-X within 
lung tissue stained with E-cadherin antibodies, demonstrating that metastatic lesions of 
Mary-X have persistant expression of E-cadherin. Triple color immunofluorescence and  
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microscopy defined the specific patterns of co-localization of E-cadherin and JUP/ catenin 
(Figure 3 E) in tissue sections of skin isolated from mice bearing Mary-X xenografts 

containing IBC tumor emboli within the dermis. E-cadherin and JUP/ catenin both co-
localized primarily to the plasma membrane of tumor cells within Mary-X tumor emboli 
(Figure 3 E). These results are the first to associate the expression of CDH1, which encodes 
for the transmembrane glycoprotein E-cadherin, by Mary-X tumor emboli, with increased 

expression of other genes, including JUP/ catenin, that collectively regulate tight cell:cell  
homotypic aggregation by IBC tumor emboli. These results suggest that the upregulation of 
this specific cassette of genes is part of the distinct signature of IBC tumor emboli that are 
the local metastatic lesions of IBC.  
 

 

Fig. 2. Heatmap showing results whole unbiased transcriptome analysis of gene signatures 
of IBC cell lines compared to non-IBC cell lines revealed that IBC cell lines expressed high 

levels of CDH1, JUP/, and DCS2, with a lack of expression of ZEB1 compared to non-IBC 
breast cancer cell lines.  
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Fig. 3. A. H&E stained tissue section isolated from Mary-X xenograft demonstrating the 
presence of numerous tumor emboli within the dermis of the skin (4x magnification). B and C. 
Light micrographs of a serial section of tissue isolated from Mary-X xenograft as shown in 
Figure 3 A, stained with E-cadherin antibodies demonstrating that Mary-X primary tumor as 
well as numerous tumor emboli throughout the dermis express E-cadherin protein (Figure B. 4 
x magnification and Figure C. 20X magnification). D. Light micrograph of section of lung 
tissue stained with E-cadherin antibodies demonstrating the presence of E-cadherin in 
pulmonary micrometastasis lesion (20x magnification). E. Triple color immunofluorescence 
and fluorescence microscopy defined the specific patterns of co-localization of E-cadherin and 
JUP/ catenin at the surface of the plasma membrane of Mary-X tumor emboli. 
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2.2 MicroRNA signatures of inflammatory breast cancer cells 
Differential expression of specific microRNAs (miRs) expressed by IBC cell lines compared 
to non-IBC cell lines was evaluated using a Human Cancer focused PCR array based 
miRNA analysis (SA Biosciences/Qiagen, Frederick, MD) and were validated by real time 
PCR. The specific miR identified as being differentially expressed by IBC cell lines was 
miR200c (Figure 4). The significance of the high expression of miR 200c lies in its reported 
function as an indirect transcriptional regulator of CDH1 by ZEB1/2. Recent studies report 
that the reciprocal relationship between ZEB1/2 and members of the miR 200 family is 
responsible for the switch between epithelial and mesenchymal states and is driven, in part, 
by an active autocrine TGF beta signaling network (36). The identification of miR200c as the 
primary miR expressed by IBC cell lines is consistent with previous studies demonstrating 
the reciprocal repression of E-cadherin by ZEB1 through downregulation of miR 200c (37-
41). Interestingly, the expression of miR 200c as the primary miRs in IBC cell lines provides 
independent validation of the observations that IBC cell lines are characterized by a specific 
gene signature that includes expression of CDH1 and other genes associated with 
homotypic aggregation and tight cell:cell adhesion, with a lack of expression of ZEB1 
identified using whole transcriptome analysis.  
 

 

Fig. 4. Heatmap of miRs in SUM149 and SUM190 cells compared to non-IBC cell lines. 
Analysis of abundantly expressed miRs revealed that IBC cell lines express high levels of 
miR 200c.  

Although the expression of miR 200c in tandem with the robust expression of a cassette of 

genes associated with homotypic aggregation including CDH1, DSC2, and JUP appears to 

be paradoxical to the current understanding of the process of metastatic progression 

associated with the alternations that occur during EMT, previous studies reported that 

multi-cellular tumor cell clusters are more efficient at formation of metastasis compared to 
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single cells (42). Moreover, studies that examined primary breast tumors and the 

corresponding liver, lung and brain metastasis revealed increased E-cadherin expression in 

the metastatic lesions compared to the primary tumors (43). As an example, the MDA-MB-

231 triple negative breast cancer cells have a mesenchymal phenotype and do not express E-

cadherin, were demonstrated to re-express E-cadherin protein in spontaneous MDA-MB-231 

derived metastatic foci, supporting the hypothesis that the reversion from EMT to exhibit 

characteristics of the process of MET occurs at sites of metastasis distant from a primary 

tumor that may exhibit an EMT phenotype (43). Collectively, these studies suggest that IBC, 

as the most lethal variant of breast cancer, exhibits signatures that point to an ongoing 

process of MET, which is consistent with the ability of tumor emboli to survive, to undergo 

what has been defined as “cohesive invasion” and to rapidly colonize organs and tissues 

distant from the primary tumor (42-44). 

2.3 Proteomic pathway mapping of IBC cell lines 
Reverse phase microarray (RPMA) technology was developed by our laboratory to address 
the challenges associated with other types of protein assays, namely the ability to 
quantitatively measure the levels and activation/phosphorylation state of key signaling 
proteins in a multiplexed fashion using microscopic  quantities of tumor tissue and cells (45-
48). We used RPMA in the present studies to identify the specific signal transduction 
pathways and molecules activated in IBC cell lines compared with non-IBC cell lines. The 
results of protein pathway mapping identified significant activation of specific pathways in 
IBC cells including E-cadherin (p>0.001) (Figure 5 A) and phospho-focal adhesion kinase 
(FAK) at Y576/577 (p>0.015) (Figure 5 B). Interestingly, recent studies have demonstrated 
that blocking FAK results in down regulation of the cell:cell adhesion properties of E-
cadherin (49). Additionally, histone deacetylase (HDAC) inhibitors have been reported to 
inhibit FAK protein expression (50). These results provide independent validation of the 
observations from the whole transcriptome analysis identifying E-cadherin expression as a 
primary characteristic of IBC and suggests that specific therapeutic molecules, such as 
HDAC inhibitors that can block the functions of E-cadherin and FAK, may be useful in 
targeting IBC tumor emboli.  

3. Signature based therapeutic targets in inflammatory breast cancer 

The whole transcriptome based analysis identified E-cadherin, DSC2, and JUP/ catenin as 
gene signatures of the tight cell:cell adhesion exhibited by IBC cells and tumor spheroids. 
Taken together with the proteomic-based identification of E-cadherin and FAK, these results 
suggest that these are IBC specific targets appropriate for the activity of HDAC inhibitors. 
We therefore evaluated the effects of this class of agents on IBC tumor spheroids, which 
provide an in vitro surrogate for IBC tumor emboli. Using fluorescence microscopy, wee 
demonstrate that the HDAC inhibitor, Suberoylanilide Hydroxamic Acid 
(SAHA;Vorinostat® Merck, Inc), destroys the integrity of Mary-X tumor spheroids and 
induce apoptosis as determined by TUNEL staining (Figure 6 A). In addition, SAHA 

induced the translocation of E-cadherin and JUP/ catenin from the plasma membrane to  
the cytoplasm of Mary-X tumor spheroids, resulting in a loss of integrity of the tumor 
spheroids (Figure 6 B). Using SUM149 IBC tumor spheroids, we previously reported that 
SAHA induced a loss of integrity and viability of SUM149 tumor spheroids through 
translocation of E-cadherin protein from the plasma membrane to the cytoplasmic 
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compartment, without altering the amount total E-cadherin protein, suggesting a change in 
functional activity of E-cadherin (51). We also found that SAHA induced a loss of the tight  
 

 

Fig. 5. A. RPMA analysis demonstrates significant increase in E-cadherin protein in IBC 
tumor spheroids including Mary-X, SUM149, SUM190 and MDA-IBC-3 compared to non-
IBC cells MDA-MB-231 and SUM159. B. RPMA analysis revealed first time evidence for 
activation of focal adhesion kinase (FAK) protein at Y576/577. Histograms of total E-
cadherin and phosphorylated FAK at Y397 and Y576/577 and are shown for both IBC cell 
lines and non-IBC cell lines (Standard deviations are shown with p values).  

www.intechopen.com



 
Breast Cancer – Recent Advances in Biology, Imaging and Therapeutics 

 

172 

 

Fig. 6. A. Fluorescence microscopy revealed that Suberoylanilide Hydroxamic Acid 
(SAHA;Vorinostat® Merck, Inc) induced apoptosis in Mary-X tumor spheroids as evaluated 
by analysis of TUNEL staining.  B. Flourescence microscopy demonstrated that SAHA 

induced translocation of E-cadherin (green fluorescence) and JUP/ catenin (red 
fluorescence) from the plasma membrane of Mary-X tumor spheroids to reside primarily 
within the nucleus, resulting in a loss of integrity of the tumor spheroids.  
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cell: cell aggregation mediated by E-cadherin, resulting in the inhibition of self renewal and 

clonogenicity of SUM149 tumor spheroids as well as inhibited the tight aggregation of 

freshly isolated IBC patient tumor cells derived from pleural effusion (51). In non-IBC cell 

lines, SAHA induces apoptosis and in E-cadherin null cells, SAHA can re-induce E-

cadherin, thus reversing EMT. Collectively, these are the first studies to identify the HDAC 

inhibitors as a class of therapeutic agents that abrogate the functional role of E-cadherin in 

formation of adherens junctions in IBC tumor spheroids that leads to destruction of these 3 

dimensional multi-cellular structures which are surrogates for IBC tumor emboli as the 

metastatic lesions of this lethal variant of breast cancer. The present results suggest that 

proteins encoded by the cassette of genes that serve as part of the signature of IBC tumor 

emboli which specifically regulate the tight cell:cell adhesion of cells within IBC tumor 

emboli, including E-cadherin, DSC2 and JUP/ catenin, represent potential therapeutic 

targets for eliminating IBC tumor emboli. In addition, these studies suggest that HDAC 

inhibitors are a class of compounds that effectively target the IBC tumor emboli for 

destruction. Studies are ongoing to determine the potential of HDAC inhibitors for their 

clinical utility.  

4. Summary and conclusions 

This chapter provides an overview of newly described IBC-specific molecular alterations 
expressed in IBC cell lines, tumor spheroids and tumor emboli characterized by a unique 
plasticity of this distinct variant of breast cancer. The concomitant use of gene and miR 
expression profiling as well as functional protein pathway activation mapping provides an 
unprecedented molecular/systems-level view of IBC. While IBC cells, tumor spheroids and 
tumor emboli express abundant levels of E-cadherin that is expressed in concert with other 
genes that collectively mediate tight homotypic aggregation of IBC tumor cells, with a loss 
of ZEB1, and express miR 200c, a repressor of ZEB1, which is consistent with the process of 
MET, IBC cells simultaneously express transcription factors that support invasion and 
metastasis, characteristic of the process of EMT. Proteomic analysis of the signaling 
architecture of IBC reinforces and expands on the genomic findings of activation of 
signaling pathways specific to IBC, validating the central role of E-cadherin to IBC tumor 
emboli. Our observations suggest that, as the most aggressive variant of breast cancer, IBC 
retains an epithelial phenotype characterized by cell:cell aggregation and cohesive invasion 
(32), and exhibit a program of accelerated metastasis by IBC tumor emboli distinguished by 
expression of specific genes, miRs and signaling proteins. The specific function of the genes 
within this distinct signature of IBC plasticity, which include genes involved in the 
processes of both MET, such as E-cadherin and FAK activation that may mediate the 
cohesive invasion of tumor emboli, with lack of ZEB1, while simultaneously expressing 
genes associated with EMT, such as SNAI1, SNAI2 and TWIST1, may play important roles in 
determining the therapeutic agents that will most effectively target IBC tumor emboli for 
destruction 
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