66 research outputs found

    Improved diagnostic accuracy in differentiating malignant and benign lesions using single-voxel proton MRS of the breast at 3 T MRI

    Get PDF
    AIM: To investigate the diagnostic accuracy of single-voxel proton magnetic resonance spectroscopy (SV (1)H MRS) by quantifying total choline-containing compounds (tCho) in differentiating malignant from benign lesions, and subsequently, to analyse the relationship of tCho levels in malignant breast lesions with their histopathological subtypes. MATERIALS AND METHODS: A prospective study of SV 1H MRS was performed following dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in 61 women using a 3 T MR system. All lesions (n = 57) were analysed for characteristics of morphology, contrast-enhancement kinetics, and tCho peak heights at SV (1)H MRS that were two-times above baseline. Subsequently, the tCho in selected lesions (n = 32) was quantified by calculating the area under the curve, and a tCho concentration equal to or greater than the cut-off value was considered to represent malignancy. The relationship between tCho in invasive ductal carcinomas (IDCs) and their Bloom & Richardson grading of malignancy was assessed. RESULTS: Fifty-two patients (57 lesions; 42 malignant and 15 benign) were analysed. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), of predicting malignancy were 100, 73.3, 91.3, and 100%, respectively, using DCE-MRI and 95.2, 93.3, 97.6, and 87.5%, respectively, using SV (1)H MRS. The tCho cut-off for receiver operating characteristic (ROC) curve was 0.33 mmol/l. The relationship between tCho levels in malignant breast lesions with their histopathological subtypes was not statistically significant (p = 0.3). CONCLUSION: Good correlation between tCho peaks and malignancy, enables SV (1)H MRS to be used as a clinically applicable, simple, yet non-invasive tool for improved specificity and diagnostic accuracy in detecting breast cancer

    Dynamic control of neurochemical release with ultrasonically-sensitive nanoshell-tethered liposomes

    Get PDF
    The unique surface plasmon resonance of hollow gold nanoshells can be used to achieve drug release from liposomes upon laser stimulation, and adapted to mimic the intricate dynamics of neurotransmission ex vivo in brain preparations. However, to induce a physiological response in vivo requires the degree of temporal precision afforded by laser stimulation, but with a greater depth of penetration through tissue. Here we report that the attachment of hollow gold nanoshells to the surface of robust liposomes results in a construct that is highly sensitive to ultrasonic stimulation. The resulting construct can be remotely triggered by low intensity, therapeutic ultrasound. To our knowledge, this is the first example of nanoparticle-liposome system that can be activated by both laser and acoustic stimulation. The system is capable of encapsulating the neurochemical dopamine, and repeatedly releasing small amounts on-demand in a circulating environment, allowing for precise spatiotemporal control over the release profile

    Input-specific control of reward and aversion in the ventral tegmental area

    Get PDF
    Ventral tegmental area (VTA) dopamine neurons have important roles in adaptive and pathological brain functions related to reward and motivation. However, it is unknown whether subpopulations of VTA dopamine neurons participate in distinct circuits that encode different motivational signatures, and whether inputs to the VTA differentially modulate such circuits. Here we show that, because of differences in synaptic connectivity, activation of inputs to the VTA from the laterodorsal tegmentum and the lateral habenula elicit reward and aversion in mice, respectively. Laterodorsal tegmentum neurons preferentially synapse on dopamine neurons projecting to the nucleus accumbens lateral shell, whereas lateral habenula neurons synapse primarily on dopamine neurons projecting to the medial prefrontal cortex as well as on GABAergic (γ-aminobutyric-acid-containing) neurons in the rostromedial tegmental nucleus. These results establish that distinct VTA circuits generate reward and aversion, and thereby provide a new framework for understanding the circuit basis of adaptive and pathological motivated behaviours.National Institutes of Health (U.S.) (Grant NIH NS069375)JPB FoundationNational Institute of Mental Health (U.S.

    Networked T Cell Death following Macrophage Infection by Mycobacterium tuberculosis

    Get PDF
    <div><h3>Background</h3><p>Depletion of T cells following infection by <em>Mycobacterium tuberculosis</em> (Mtb) impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised.</p> <h3>Methodology/Principal Findings</h3><p>We found that lymphopenia (<1.5×10<sup>9</sup> cells/l) was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb) or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s) were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from <em>Mycobacterium bovis</em> Bacille de Calmette et Guerin (BCG)- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system.</p> <h3>Conclusions</h3><p>Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as interfere with microbial eradication in the granuloma.</p> </div

    Caveolin-1 Plays a Crucial Role in Inhibiting Neuronal Differentiation of Neural Stem/Progenitor Cells via VEGF Signaling-Dependent Pathway

    Get PDF
    In the present study, we aim to elucidate the roles of caveolin-1(Cav-1), a 22 kDa protein in plasma membrane invaginations, in modulating neuronal differentiation of neural progenitor cells (NPCs). In the hippocampal dentate gyrus, we found that Cav-1 knockout mice revealed remarkably higher levels of vascular endothelial growth factor (VEGF) and the more abundant formation of newborn neurons than wild type mice. We then studied the potential mechanisms of Cav-1 in modulating VEGF signaling and neuronal differentiation in isolated cultured NPCs under normoxic and hypoxic conditions. Hypoxic embryonic rat NPCs were exposed to 1% O2 for 24 h and then switched to 21% O2 for 1, 3, 7 and 14 days whereas normoxic NPCs were continuously cultured with 21% O2. Compared with normoxic NPCs, hypoxic NPCs had down-regulated expression of Cav-1 and up-regulated VEGF expression and p44/42MAPK phosphorylation, and enhanced neuronal differentiation. We further studied the roles of Cav-1 in inhibiting neuronal differentiation by using Cav-1 scaffolding domain peptide and Cav-1-specific small interfering RNA. In both normoxic and hypoxic NPCs, Cav-1 peptide markedly down-regulated the expressions of VEGF and flk1, decreased the phosphorylations of p44/42MAPK, Akt and Stat3, and inhibited neuronal differentiation, whereas the knockdown of Cav-1 promoted the expression of VEGF, phosphorylations of p44/42MAPK, Akt and Stat3, and stimulated neuronal differentiation. Moreover, the enhanced phosphorylations of p44/42MAPK, Akt and Stat3, and neuronal differentiation were abolished by co-treatment of VEGF inhibitor V1. These results provide strong evidence to prove that Cav-1 can inhibit neuronal differentiation via down-regulations of VEGF, p44/42MAPK, Akt and Stat3 signaling pathways, and that VEGF signaling is a crucial target of Cav-1. The hypoxia-induced down-regulation of Cav-1 contributes to enhanced neuronal differentiation in NPCs

    Y-Like Retinal Ganglion Cells Innervate the Dorsal Raphe Nucleus in the Mongolian Gerbil (Meriones unguiculatus)

    Get PDF
    Background: The dorsal raphe nucleus (DRN) of the mesencephalon is a complex multi-functional and multi-transmitter nucleus involved in a wide range of behavioral and physiological processes. The DRN receives a direct input from the retina. However little is known regarding the type of retinal ganglion cell (RGC) that innervates the DRN. We examined morphological characteristics and physiological properties of these DRN projecting ganglion cells. Methodology/Principal Findings: The Mongolian gerbils are highly visual rodents with a diurnal/crepuscular activity rhythm. It has been widely used as experimental animals of various studies including seasonal affective disorders and depression. Young adult gerbils were used in the present study. DRN-projecting RGCs were identified following retrograde tracer injection into the DRN, characterized physiologically by extracellular recording and morphologically after intracellular filling. The result shows that DRN-projecting RGCs exhibit morphological characteristics typical of alpha RGCs and physiological response properties of Y-cells. Melanopsin was not detected in these RGCs and they show no evidence of intrinsic photosensitivity. Conclusions/Significance: These findings suggest that RGCs with alpha-like morphology and Y-like physiology appear to perform a non-imaging forming function and thus may participate in the modulation of DRN activity which includes regulation of sleep and mood

    The Early Clinical Features of Dengue in Adults: Challenges for Early Clinical Diagnosis

    Get PDF
    Dengue infection in adults has become increasingly common throughout the world. As most of the clinical features of dengue have been described in children, we undertook a prospective study to determine the early symptoms and signs of dengue in adults. We show here that, overall, dengue cases presented with high rates of symptoms listed in the WHO 1997 or 2009 classification schemes for probable dengue fever thus resulting in high sensitivities of these schemes when applied for early diagnosis. However, symptoms such as myalgia, arthralgia, retro-orbital pain and mucosal bleeding were less frequently reported in older adults. This trend resulted in reduced sensitivity of the WHO classification schemes in older adults even though they showed increased risks of hospitalization and severe dengue. Instead, we suggest that older adults who present with fever and leukopenia should be tested for dengue, even in the absence of other symptoms. This could be useful for early clinical diagnosis in older adults so that they can be monitored and treated for severe dengue, which is especially important when an antiviral drug becomes available

    Hippocampal Neurogenesis and Dendritic Plasticity Support Running-Improved Spatial Learning and Depression-Like Behaviour in Stressed Rats

    Get PDF
    Exercise promotes hippocampal neurogenesis and dendritic plasticity while stress shows the opposite effects, suggesting a possible mechanism for exercise to counteract stress. Changes in hippocampal neurogenesis and dendritic modification occur simultaneously in rats with stress or exercise; however, it is unclear whether neurogenesis or dendritic remodeling has a greater impact on mediating the effect of exercise on stress since they have been separately examined. Here we examined hippocampal cell proliferation in runners treated with different doses (low: 30 mg/kg; moderate: 40 mg/kg; high: 50 mg/kg) of corticosterone (CORT) for 14 days. Water maze task and forced swim tests were applied to assess hippocampal-dependent learning and depression-like behaviour respectively the day after the treatment. Repeated CORT treatment resulted in a graded increase in depression-like behaviour and impaired spatial learning that is associated with decreased hippocampal cell proliferation and BDNF levels. Running reversed these effects in rats treated with low or moderate, but not high doses of CORT. Using 40 mg/kg CORT-treated rats, we further studied the role of neurogenesis and dendritic remodeling in mediating the effects of exercise on stress. Co-labelling with BrdU (thymidine analog) /doublecortin (immature neuronal marker) showed that running increased neuronal differentiation in vehicle- and CORT-treated rats. Running also increased dendritic length and spine density in CA3 pyramidal neurons in 40 mg/kg CORT-treated rats. Ablation of neurogenesis with Ara-c infusion diminished the effect of running on restoring spatial learning and decreasing depression-like behaviour in 40 mg/kg CORT-treated animals in spite of dendritic and spine enhancement. but not normal runners with enhanced dendritic length. The results indicate that both restored hippocampal neurogenesis and dendritic remodelling within the hippocampus are essential for running to counteract stress
    corecore