12 research outputs found

    A mechanochemical synthesis of submicron-sized Li2S and a mesoporous Li2S/C hybrid for high performance lithium/sulfur battery cathodes

    Get PDF
    Lithium sulfide, Li2S, is a promising cathode material for lithium–sulfur batteries (LSBs), with a high theoretical capacity of 1166 mA h g−1. However, it suffers from low cycling stability, low-rate capability and high initial activation potential. In addition, commercially available Li2S is of high cost and of large size, over ten microns, which further exacerbate its shortcomings as a sulfur cathode. Exploring new approaches to fabricate small-sized Li2S of low cost and to achieve Li2S cathodes of high electrochemical performance is highly desired. This work reports a novel mechanochemical method for synthesizing Li2S of high purity and submicron size by ball-milling LiH with sulfur in an Ar atmosphere at room temperature. By further milling the as-synthesized Li2S with polyacrylonitrile (PAN) followed by carbonization of PAN at 1000 °C, a Li2S/C hybrid with nano-sized Li2S embedded in a mesoporous carbon matrix is achieved. The hybrid with Li2S as high as 74 wt% shows a high initial capacity of 971 mA h g−1 at 0.1C and retains a capacity of 570 mA h g−1 after 200 cycles as a cathode material for LSBs. A capacity of 610 mA h g−1 is obtained at 1C. The synthesis method of Li2S is facile, environmentally benign, and of high output and low cost. The present work opens a new route for the scalable fabrication of submicron-sized Li2S and for the development of high performance Li2S-based cathodes

    Identification of Gene–Allele System Conferring Alkali-Tolerance at Seedling Stage in Northeast China Soybean Germplasm

    No full text
    Salinization of cultivated soils may result in either high salt levels or alkaline conditions, both of which stress crops and reduce performance. We sampled genotypes included in the Northeast China soybean germplasm population (NECSGP) to identify possible genes that affect tolerance to alkaline soil conditions. In this study, 361 soybean accessions collected in Northeast China were tested under 220 mM NaHCO3:Na2CO3 = 9:1 (pH = 9.8) to evaluate the alkali-tolerance (ATI) at the seedling stage in Mudanjiang, Heilongjiang, China. The restricted two-stage multi-locus model genome-wide association study (RTM-GWAS) with gene–allele sequences as markers (6503 GASMs) based on simplified genome resequencing (RAD-sequencing) was accomplished. From this analysis, 132 main effect candidate genes with 359 alleles and 35 Gene × Environment genes with 103 alleles were identified, explaining 90.93% and 2.80% of the seedling alkali-tolerance phenotypic variation, respectively. Genetic variability of ATI in NECSGP was observed primarily within subpopulations, especially in ecoregion B, from which 80% of ATI-tolerant accessions were screened out. The biological functions of 132 candidate genes were classified into eight functional categories (defense response, substance transport, regulation, metabolism-related, substance synthesis, biological process, plant development, and unknown function). From the ATI gene–allele system, six key genes–alleles were identified as starting points for further study on understanding the ATI gene network

    Experimentally validated design principles of heteroatom-doped-graphene-supported calcium single-atom materials for non-dissociative chemisorption solid-state hydrogen storage

    No full text
    Abstract Non-dissociative chemisorption solid-state storage of hydrogen molecules in host materials is promising to achieve both high hydrogen capacity and uptake rate, but there is the lack of non-dissociative hydrogen storage theories that can guide the rational design of the materials. Herein, we establish generalized design principle to design such materials via the first-principles calculations, theoretical analysis and focused experimental verifications of a series of heteroatom-doped-graphene-supported Ca single-atom carbon nanomaterials as efficient non-dissociative solid-state hydrogen storage materials. An intrinsic descriptor has been proposed to correlate the inherent properties of dopants with the hydrogen storage capability of the carbon-based host materials. The generalized design principle and the intrinsic descriptor have the predictive ability to screen out the best dual-doped-graphene-supported Ca single-atom hydrogen storage materials. The dual-doped materials have much higher hydrogen storage capability than the sole-doped ones, and exceed the current best carbon-based hydrogen storage materials

    The duck genome and transcriptome provide insight into an avian influenza virus reservoir species

    Get PDF
    The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken and zebra finch, and this repertoire has been shaped through lineage-specific duplications. We identify genes that are responsive to influenza A viruses using the lung transcriptomes of control ducks and ones that were infected with either a highly pathogenic (A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/Hubei/65/05) H5N1 virus. Further, we show how the duck's defense mechanisms against influenza infection have been optimized through the diversification of its ?-defensin and butyrophilin-like repertoires. These analyses, in combination with the genomic and transcriptomic data, provide a resource for characterizing the interaction between host and influenza viruses
    corecore