1,403 research outputs found

    On kinetic energy stabilized superconductivity in cuprates

    Full text link
    The possibility of kinetic energy driven superconductivity in cuprates as was recently found in the tJtJ model is discussed. We argue that the violation of the virial theorem implied by this result is serious and means that the description of superconductivity within the tJtJ model is pathological.Comment: 3 pages, v2 includes additional reference

    On the evidence derived from the anatomical analysis of wooden remains from archaeological excavation

    Get PDF

    Multi-focal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles

    Full text link
    Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counter-propagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone - up to a factor of 1.54.Comment: 16 pages, 8 figures. Paper is accepted for publication in Physical Review

    X-ray Properties of Radio-Selected Dual Active Galactic Nuclei

    Get PDF
    Merger simulations predict that tidally induced gas inflows can trigger kpc-scale dual active galactic nuclei (dAGN) in heavily obscured environments. Previously with the Very Large Array, we have confirmed four dAGN with redshifts between 0.04<z<0.220.04 < z < 0.22 and projected separations between 4.3 and 9.2 kpc in the SDSS Stripe 82 field. Here, we present ChandraChandra X-ray observations that spatially resolve these dAGN and compare their multi-wavelength properties to those of single AGN from the literature. We detect X-ray emission from six of the individual merger components and obtain upper limits for the remaining two. Combined with previous radio and optical observations, we find that our dAGN have properties similar to nearby low-luminosity AGN, and they agree well with the black hole fundamental plane relation. There are three AGN-dominated X-ray sources, whose X-ray hardness-ratio derived column densities show that two are unobscured and one is obscured. The low obscured fraction suggests these dAGN are no more obscured than single AGN, in contrast to the predictions from simulations. These three sources show an apparent X-ray deficit compared to their mid-infrared continuum and optical [OIII] line luminosities, suggesting higher levels of obscuration, in tension with the hardness-ratio derived column densities. Enhanced mid-infrared and [OIII] luminosities from star formation may explain this deficit. There is ambiguity in the level of obscuration for the remaining five components since their hardness ratios may be affected by non-nuclear X-ray emissions, or are undetected altogether. They require further observations to be fully characterized.Comment: 11 pages, 5 figures, Accepted for publication in the Astrophysical Journa

    Electrostatics of Gapped and Finite Surface Electrodes

    Full text link
    We present approximate methods for calculating the three-dimensional electric potentials of finite surface electrodes including gaps between electrodes, and estimate the effects of finite electrode thickness and an underlying dielectric substrate. As an example we optimize a radio-frequency surface-electrode ring ion trap, and find that each of these factors reduces the trapping secular frequencies by less than 5% in realistic situations. This small magnitude validates the usual assumption of neglecting the influences of gaps between electrodes and finite electrode extent.Comment: 9 pages, 9 figures (minor changes

    Relation between dust and radio luminosity in optically selected early type galaxies

    Get PDF
    We have surveyed an optical/IR selected sample of nearby E/S0 galaxies with and without nuclear dust structures with the VLA at 3.6 cm to a sensitivity of 100 μ\muJy. We can construct a Radio Luminosity Function (RLF) of these galaxies to ~10^19 W/Hz and find that ~50% of these galaxies have AGNs at this level. The space density of these AGNs equals that of starburst galaxies at this luminosity. Several dust-free galaxies have low luminosity radio cores, and their RLF is not significantly less than that of the dusty galaxies.Comment: 8 pages, 5 figures, accepted for publication in A&

    [Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy]

    Get PDF
    The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described
    corecore