493 research outputs found

    Singular Effects of Spin-Flip Scattering on Gapped Dirac Fermions

    Full text link
    We investigate the effects of spin-flip scattering on the Hall transport and spectral properties of gapped Dirac fermions. We find that in the weak scattering regime, the Berry curvature distribution is dramatically compressed in the electronic energy spectrum, becoming singular at band edges. As a result the Hall conductivity has a sudden jump (or drop) of e2/2he^2/2h when the Fermi energy sweeps across the band edges, and otherwise is a constant quantized in units of e2/2he^2/2h. In parallel, spectral properties such as the density of states and spin polarization are also greatly enhanced at band edges. Possible experimental methods to detect these effects are discussed

    Extending resonant inelastic X-ray scattering to the extreme ultraviolet

    Get PDF
    In resonant inelastic X-ray scattering (RIXS), core hole resonance modes are used to enhance coupling between photons and low energy electronic degrees of freedom. Resonating with shallow core holes accessed in the extreme ultraviolet (EUV) can provide greatly improved energy resolution at standard resolving power, but has been found to often yield qualitatively different spectra than similar measurements performed with higher energy X-rays. This paper uses experimental data and multiplet-based numerical simulations for the M-edges of Co-, Ni-, and Cu-based Mott insulators to review the properties that distinguish EUV RIXS from more commonly performed higher energy measurements. Key factors such as the origin of the strong EUV elastic line and advantages of EUV spectral functions over soft X-ray RIXS for identifying intrinsic excitation line shapes are discussed

    A topological insulator surface under strong Coulomb, magnetic and disorder perturbations

    Full text link
    Three dimensional topological insulators embody a newly discovered state of matter characterized by conducting spin-momentum locked surface states that span the bulk band gap as demonstrated via spin-resolved ARPES measurements . This highly unusual surface environment provides a rich ground for the discovery of novel physical phenomena. Here we present the first controlled study of the topological insulator surfaces under strong Coulomb, magnetic and disorder perturbations. We have used interaction of iron, with a large Coulomb state and significant magnetic moment as a probe to \textit{systematically test the robustness} of the topological surface states of the model topological insulator Bi2_2Se3_3. We observe that strong perturbation leads to the creation of odd multiples of Dirac fermions and that magnetic interactions break time reversal symmetry in the presence of band hybridization. We also present a theoretical model to account for the altered surface of Bi2_2Se3_3. Taken collectively, these results are a critical guide in manipulating topological surfaces for probing fundamental physics or developing device applications.Comment: 14 pages, 4 Figures. arXiv admin note: substantial text overlap with arXiv:1009.621

    Presymptomatic risk assessment for chronic non-communicable diseases

    Get PDF
    The prevalence of common chronic non-communicable diseases (CNCDs) far overshadows the prevalence of both monogenic and infectious diseases combined. All CNCDs, also called complex genetic diseases, have a heritable genetic component that can be used for pre-symptomatic risk assessment. Common single nucleotide polymorphisms (SNPs) that tag risk haplotypes across the genome currently account for a non-trivial portion of the germ-line genetic risk and we will likely continue to identify the remaining missing heritability in the form of rare variants, copy number variants and epigenetic modifications. Here, we describe a novel measure for calculating the lifetime risk of a disease, called the genetic composite index (GCI), and demonstrate its predictive value as a clinical classifier. The GCI only considers summary statistics of the effects of genetic variation and hence does not require the results of large-scale studies simultaneously assessing multiple risk factors. Combining GCI scores with environmental risk information provides an additional tool for clinical decision-making. The GCI can be populated with heritable risk information of any type, and thus represents a framework for CNCD pre-symptomatic risk assessment that can be populated as additional risk information is identified through next-generation technologies.Comment: Plos ONE paper. Previous version was withdrawn to be updated by the journal's pdf versio

    Brain age predicts mortality

    Get PDF
    Age-associated disease and disability are placing a growing burden on society. However, ageing does not affect people uniformly. Hence, markers of the underlying biological ageing process are needed to help identify people at increased risk of age-associated physical and cognitive impairments and ultimately, death. Here, we present such a biomarker, ‘brain-predicted age’, derived using structural neuroimaging. Brain-predicted age was calculated using machine-learning analysis, trained on neuroimaging data from a large healthy reference sample (N=2001), then tested in the Lothian Birth Cohort 1936 (N=669), to determine relationships with age-associated functional measures and mortality. Having a brain-predicted age indicative of an older-appearing brain was associated with: weaker grip strength, poorer lung function, slower walking speed, lower fluid intelligence, higher allostatic load and increased mortality risk. Furthermore, while combining brain-predicted age with grey matter and cerebrospinal fluid volumes (themselves strong predictors) not did improve mortality risk prediction, the combination of brain-predicted age and DNA-methylation-predicted age did. This indicates that neuroimaging and epigenetics measures of ageing can provide complementary data regarding health outcomes. Our study introduces a clinically-relevant neuroimaging ageing biomarker and demonstrates that combining distinct measurements of biological ageing further helps to determine risk of age-related deterioration and death

    New interpretation of the origin of 2DEG states at the surface of layered topological insulators

    Get PDF
    On the basis of relativistic ab-initio calculations we show that the driving mechanism of simultaneous emergence of parabolic and M-shaped 2D electron gas (2DEG) bands at the surface of layered topological insulators as well as Rashba-splitting of the former states is an expansion of van der Waals (vdW) spacings caused by intercalation of metal atoms or residual gases. The expansion of vdW spacings and emergence of the 2DEG states localized in the (sub)surface region are also accompanied by a relocation of the topological surface state to the lower quintuple layers, that can explain the absence of interband scattering found experimentally.Comment: 5 pages, 4 figure

    Author Correction: Bayesian reassessment of the epigenetic architecture of complex traits

    Get PDF
    The original version of this Article contains an error in Fig. 3 in which panel B was inadvertently duplicated from panel A. This has been corrected in both the PDF and HTML versions of the Article

    The Genetic Interpretation of Area under the ROC Curve in Genomic Profiling

    Get PDF
    Genome-wide association studies in human populations have facilitated the creation of genomic profiles which combine the effects of many associated genetic variants to predict risk of disease. The area under the receiver operator characteristic (ROC) curve is a well established measure for determining the efficacy of tests in correctly classifying diseased and non-diseased individuals. We use quantitative genetics theory to provide insight into the genetic interpretation of the area under the ROC curve (AUC) when the test classifier is a predictor of genetic risk. Even when the proportion of genetic variance explained by the test is 100%, there is a maximum value for AUC that depends on the genetic epidemiology of the disease, i.e. either the sibling recurrence risk or heritability and disease prevalence. We derive an equation relating maximum AUC to heritability and disease prevalence. The expression can be reversed to calculate the proportion of genetic variance explained given AUC, disease prevalence, and heritability. We use published estimates of disease prevalence and sibling recurrence risk for 17 complex genetic diseases to calculate the proportion of genetic variance that a test must explain to achieve AUC = 0.75; this varied from 0.10 to 0.74. We provide a genetic interpretation of AUC for use with predictors of genetic risk based on genomic profiles. We provide a strategy to estimate proportion of genetic variance explained on the liability scale from estimates of AUC, disease prevalence, and heritability (or sibling recurrence risk) available as an online calculator

    A Unifying Framework for Evaluating the Predictive Power of Genetic Variants Based on the Level of Heritability Explained

    Get PDF
    An increasing number of genetic variants have been identified for many complex diseases. However, it is controversial whether risk prediction based on genomic profiles will be useful clinically. Appropriate statistical measures to evaluate the performance of genetic risk prediction models are required. Previous studies have mainly focused on the use of the area under the receiver operating characteristic (ROC) curve, or AUC, to judge the predictive value of genetic tests. However, AUC has its limitations and should be complemented by other measures. In this study, we develop a novel unifying statistical framework that connects a large variety of predictive indices together. We showed that, given the overall disease probability and the level of variance in total liability (or heritability) explained by the genetic variants, we can estimate analytically a large variety of prediction metrics, for example the AUC, the mean risk difference between cases and non-cases, the net reclassification improvement (ability to reclassify people into high- and low-risk categories), the proportion of cases explained by a specific percentile of population at the highest risk, the variance of predicted risks, and the risk at any percentile. We also demonstrate how to construct graphs to visualize the performance of risk models, such as the ROC curve, the density of risks, and the predictiveness curve (disease risk plotted against risk percentile). The results from simulations match very well with our theoretical estimates. Finally we apply the methodology to nine complex diseases, evaluating the predictive power of genetic tests based on known susceptibility variants for each trait

    A computational model of excitation and contraction in uterine myocytes from the pregnant rat

    Get PDF
    Aberrant uterine myometrial activities in humans are major health issues. However, the cellular and tissue mechanism(s) that maintain the uterine myometrium at rest during gestation, and that initiate and maintain long-lasting uterine contractions during delivery are incompletely understood. In this study we construct a computational model for describing the electrical activity (simple and complex action potentials), intracellular calcium dynamics and mechanical contractions of isolated uterine myocytes from the pregnant rat. The model reproduces variant types of action potentials – from spikes with a smooth plateau, to spikes with an oscillatory plateau, to bursts of spikes – that are seen during late gestation under different physiological conditions. The effects of the hormones oestradiol (via reductions in calcium and potassium selective channel conductance), oxytocin (via an increase in intracellular calcium release) and the tocolytic nifedipine (via a block of L-type calcium channels currents) on action potentials and contractions are also reproduced, which quantitatively match to experimental data. All of these results validated the cell model development. In conclusion, the developed model provides a computational platform for further investigations of the ionic mechanism underlying the genesis and control of electrical and mechanical activities in the rat uterine myocytes
    corecore