56 research outputs found
Home Range Use and Movement Patterns of Non-Native Feral Goats in a Tropical Island Montane Dry Landscape
Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world’s most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS) collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI). Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities
Spatiotemporal scaling of North American continental interior wetlands: implications for shorebird conservation
Within interior North America, erratic weather patterns and heterogeneous wetland complexes cause wide spatio-temporal variation in the resources available to migrating shorebirds. Identifying the pattern-generating components of landscape-level resources and the scales at which shorebirds respond to these patterns will better facilitate conservation efforts for these species. We constructed descriptive models that identified weather variables associated with creating the spatio-temporal patterns of shorebird habitat in ten landscapes in north-central Oklahoma. We developed a metric capable of measuring the dynamic composition and configuration of shorebird habitat in the region and used field data to empirically estimate the spatial scale at which shorebirds respond to the amount and configuration of habitat. Precipitation, temperature, solar radiation and wind speed best explained the incidence of wetland habitat, but relationships varied among wetland types. Shorebird occurrence patterns were best explained by habitat density estimates at a 1.5 km scale. This model correctly classified 86 % of shorebird observations. At this scale, when habitat density was low, shorebirds occurred in 5 % of surveyed habitat patches but occurrence reached 60 % when habitat density was high. Our results suggest scale dependence in the habitat-use patterns of migratory shorebirds. We discuss potential implications of our results and how integrating this information into conservation efforts may improve conservation strategies and management practices
Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns
Increased availability of high-resolution movement data has led to the development of numerous methods for studying changes in animal movement behavior. Path segmentation methods provide basics for detecting movement changes and the behavioral mechanisms driving them. However, available path segmentation methods differ vastly with respect to underlying statistical assumptions and output produced. Consequently, it is currently difficult for researchers new to path segmentation to gain an overview of the different methods, and choose one that is appropriate for their data and research questions. Here, we provide an overview of different methods for segmenting movement paths according to potential changes in underlying behavior. To structure our overview, we outline three broad types of research questions that are commonly addressed through path segmentation: 1) the quantitative description of movement patterns, 2) the detection of significant change-points, and 3) the identification of underlying processes or ‘hidden states’. We discuss advantages and limitations of different approaches for addressing these research questions using path-level movement data, and present general guidelines for choosing methods based on data characteristics and questions. Our overview illustrates the large diversity of available path segmentation approaches, highlights the need for studies that compare the utility of different methods, and identifies opportunities for future developments in path-level data analysis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40462-016-0086-5) contains supplementary material, which is available to authorized users
Renewed and emerging concerns over the production and emission of ozone-depleting substances
Stratospheric ozone depletion, first observed in the 1980s, has been caused by the increased production and use of substances such as chlorofluorocarbons (CFCs), halons and other chlorine-containing and bromine-containing compounds, collectively termed ozone-depleting substances (ODSs). Following controls on the production of major, long-lived ODSs by the Montreal Protocol, the ozone layer is now showing initial signs of recovery and is anticipated to return to pre-depletion levels in the mid-to-late twenty-first century, likely 2050–2060. These return dates assume widespread compliance with the Montreal Protocol and, thereby, continued reductions in ODS emissions. However, recent observations reveal increasing emissions of some controlled (for example, CFC-11, as in eastern China) and uncontrolled substances (for example, very short-lived substances (VSLSs)). Indeed, the emissions of a number of uncontrolled VSLSs are adding significant amounts of ozone-depleting chlorine to the atmosphere. In this Review, we discuss recent emissions of both long-lived ODSs and halogenated VSLSs, and how these might lead to a delay in ozone recovery. Continued improvements in observational tools and modelling approaches are needed to assess these emerging challenges to a timely recovery of the ozone layer
Gas chromatography negative ion chemical ionization mass spectrometry: Application to the detection of alkyl nitrates and halocarbons in the atmosphere
Alkyl nitrates and very short-lived halocarbon species are important atmospheric trace gas species that are present in the low to sub parts per trillion concentration range. This presents an analytical challenge for their detection and quantification that requires instrumentation with high sensitivity and selectivity. In this paper, we present a new in situ gas chromatograph negative ion chemical ionization mass spectrometer (GC/NICI-MS) coupled to a non-cryogen sample pre-concentration system. This instrument, with detection limits o
20th Century trends and budget implications of trihalomethanes and dihalomethanes inferred from North GRIP firn air
International audienceFour trihalomethane (THM; CHCl3, CHBrCl2, CHBr2Cl and CHBr3) and two dihalomethane (DHM; CH2BrCl and CH2Br2) trace gases have been measured in air extracted from polar firn collected at the North Greenland Icecore Project (NGRIP) site. CHCl3 was also measured in firn air from Devon Island (DI), Canada, Dronning Maud Land (DML), Antarctica and Dome Concordia (Dome C), Antarctica. All of these species are believed to be almost entirely of natural origin except for CHCl3 where anthropogenic sources have been reported to contribute ~10% to the global burden. A 2-D atmospheric model was run for CHCl3 using reported emission estimates to produce historical atmospheric trends at the three firn sites, which were then input into a firn diffusion model to produce concentration depth profiles that were compared against the measurements. The anthropogenic emissions were modified in order to give the best model fit to the firn data at NGRIP, Dome C and DML. As a result, the contribution of CHCl3 from anthropogenic sources, mainly from pulp and paper manufacture, to the total chloroform budget appears to have been considerably underestimated and was likely to have been close to ~40% at the maximum in atmospheric CHCl3 concentrations around 1990, declining to ~19% at the beginning of the 21st Century. We also show that the atmospheric burden of the brominated THM's in the northern hemisphere have increased over the 20th Century while CH2Br2 has remained constant over time implying that it is entirely of natural origin
- …