812 research outputs found

    Can the unresolved X-ray background be explained by emission from the optically-detected faint galaxies of the GOODS project?

    Full text link
    The emission from individual X-ray sources in the Chandra Deep Fields and XMM-Newton Lockman Hole shows that almost half of the hard X-ray background above 6 keV is unresolved and implies the existence of a missing population of heavily obscured active galactic nuclei (AGN). We have stacked the 0.5-8 keV X-ray emission from optical sources in the Great Observatories Origins Deep Survey (GOODS; which covers the Chandra Deep Fields) to determine whether these galaxies, which are individually undetected in X-rays, are hosting the hypothesised missing AGN. In the 0.5-6 keV energy range the stacked-source emission corresponds to the remaining 10-20 per cent of the total background -- the fraction that has not been resolved by Chandra. The spectrum of the stacked emission is consistent with starburst activity or weak AGN emission. In the 6-8 keV band, we find that upper limits to the stacked X-ray intensity from the GOODS galaxies are consistent with the ~40 per cent of the total background that remains unresolved, but further selection refinement is required to identify the X-ray sources and confirm their contribution.Comment: 7 pages, 1 figure, accepted for publication in MNRA

    Bayesian Blocks, A New Method to Analyze Structure in Photon Counting Data

    Get PDF
    I describe a new time-domain algorithm for detecting localized structures (bursts), revealing pulse shapes, and generally characterizing intensity variations. The input is raw counting data, in any of three forms: time-tagged photon events (TTE), binned counts, or time-to-spill (TTS) data. The output is the most likely segmentation of the observation into time intervals during which the photon arrival rate is perceptibly constant -- i.e. has a fixed intensity without statistically significant variations. Since the analysis is based on Bayesian statistics, I call the resulting structures Bayesian Blocks. Unlike most, this method does not stipulate time bins -- instead the data themselves determine a piecewise constant representation. Therefore the analysis procedure itself does not impose a lower limit to the time scale on which variability can be detected. Locations, amplitudes, and rise and decay times of pulses within a time series can be estimated, independent of any pulse-shape model -- but only if they do not overlap too much, as deconvolution is not incorporated. The Bayesian Blocks method is demonstrated by analyzing pulse structure in BATSE Îł\gamma-ray data. The MatLab scripts and sample data can be found on the WWW at: http://george.arc.nasa.gov/~scargle/papers.htmlComment: 42 pages, 2 figures; revision correcting mathematical errors; clarifications; removed Cyg X-1 sectio

    The HELLAS2XMM survey: XI. Unveiling the nature of X-ray Bright Optically Normal Galaxies

    Full text link
    X-ray Bright Optically Normal Galaxies (XBONGs) constitute a small but not negligible fraction of hard X-ray selected sources in recent Chandra and XMM-Newton surveys. Even though several possibilities were proposed to explain why a relatively luminous hard X-ray source does not leave any significant signature of its presence in terms of optical emission lines, the nature of XBONGs is still subject of debate. We aim to a better understanding of their nature by means of a multiwavelength and morphological analysis of a small sample of these sources. Good-quality photometric near-infrared data (ISAAC/VLT) of four low-redshift (z=0.1-0.3) XBONGs, selected from the HELLAS2XMM survey, have been used to search for the presence of the putative nucleus, applying the surface-brightness decomposition technique through the least-squares fitting program GALFIT. The surface brightness decomposition allows us to reveal a nuclear point-like source, likely to be responsible of the X-ray emission, in two out of the four sources. The results indicate that moderate amounts of gas and dust, covering a large solid angle (possibly 4pi) at the nuclear source, combined with the low nuclear activity, may explain the lack of optical emission lines. The third XBONG is associated with an X-ray extended source and no nuclear excess is detected in the near infrared at the limits of our observations. The last source is associated to a close (d< 1 arcsec) double system and the fitting procedure cannot achieve a firm conclusion.Comment: 20 pages, 12 figures, A&A in pres

    Limits on the high redshift growth of massive black holes

    Get PDF
    We place firm upper limits on the global accretion history of massive black holes at z>5 from the recently measured unresolved fraction of the cosmic X-ray background. The maximum allowed unresolved intensity observed at 1.5 keV implies a maximum accreted-mass density onto massive black holes of rho_acc < 1.4E4 M_sun Mpc^{-3} for z>5. Considering the contribution of lower-z AGNs, the value reduces to rho_acc < 0.66E4 M_sun Mpc^{-3}. The tension between the need for the efficient and rapid accretion required by the observation of massive black holes already in place at z>7 and the strict upper limit on the accreted mass derived from the X-ray background may indicate that black holes are rare in high redshift galaxies, or that accretion is efficient only for black holes hosted by rare galaxies.Comment: 5 pages, 1 figure, published in A&A Letter

    Graphene oxide nanosheets modulate spinal glutamatergic transmission and modify locomotor behaviour in an in vivo zebrafish model

    Get PDF
    Graphene oxide (GO), an oxidised form of graphene, is widely used for biomedical applications, due to its dispersibility in water and simple surface chemistry tunability. In particular, small (less than 500 nm in lateral dimension) and thin (1-3 carbon monolayers) graphene oxide nanosheets (s-GO) have been shown to selectively inhibit glutamatergic transmission in neuronal cultures in vitro and in brain explants obtained from animals injected with the nanomaterial. This raises the exciting prospect that s-GO can be developed as a platform for novel nervous system therapeutics. It has not yet been investigated whether the interference of the nanomaterial with neurotransmission may have a downstream outcome in modulation of behaviour depending specifically on the activation of those synapses. To address this problem we use early stage zebrafish as an in vivo model to study the impact of s-GO on nervous system function. Microinjection of s-GO into the embryonic zebrafish spinal cord selectively reduces the excitatory synaptic transmission of the spinal network, monitored in vivo through patch clamp recordings, without affecting spinal cell survival. This effect is accompanied by a perturbation in the swimming activity of larvae, which is the locomotor behaviour generated by the neuronal network of the spinal cord. Such results indicate that the impact of s-GO on glutamate based neuronal transmission is preserved in vivo and can induce changes in animal behaviour. These findings pave the way for use of s-GO as a modulator of nervous system function

    JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.

    Get PDF
    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release

    Prospects in space-based Gamma-Ray Astronomy

    Full text link
    With the unequalled INTEGRAL observatory, ESA has provided a unique tool to the astronomical community that has made Europe the world leader in the field of gamma-ray astronomy. INTEGRAL provides an unprecedented survey of the soft gamma-ray sky, revealing hundreds of sources of different kinds, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the longly awaited global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources, comparable to the step that has been taken in X-rays by going from the ROSAT survey satellite to the more focused XMM-Newton observatory. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction techniques have paved the way towards a future European gamma-ray mission, that will outreach past missions by large factors in sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented depth, providing essential clues on the intimate nature of the most violent and most energetic processes in the Universe.Comment: 8 pages, 7 figures, to be published in the Proceedings of the 39th ESLAB Symposiu
    • …
    corecore