147 research outputs found

    New aerodynamic lens injector for single particle diffractive imaging

    Get PDF
    An aerodynamic lens injector was developed specifically for the needs of single-particle diffractive imaging experiments at free-electron lasers. Its design allows for quick changes of injector geometries and focusing properties in order to optimize injection for specific individual samples. Here, we present results of its first use at the FLASH free-electron-laser facility. Recorded diffraction patterns of polystyrene spheres are modeled using Mie scattering, which allowed for the characterization of the particle beam under diffractive-imaging conditions and yield good agreement with particle-trajectory simulations

    Time-resolved single-particle x-ray scattering reveals electron-density as coherent plasmonic-nanoparticle-oscillation source

    Full text link
    Dynamics of optically-excited plasmonic nanoparticles are presently understood as a series of sequential scattering events, involving thermalization processes after pulsed optical excitation. One important step is the initiation of nanoparticle breathing oscillations. According to established experiments and models, these are caused by the statistical heat transfer from thermalized electrons to the lattice. An additional contribution by hot electron pressure has to be included to account for phase mismatches that arise from the lack of experimental data on the breathing onset. We used optical transient-absorption spectroscopy and time-resolved single-particle x-ray-diffractive imaging to access the excited electron system and lattice. The time-resolved single-particle imaging data provided structural information directly on the onset of the breathing oscillation and confirmed the need for an additional excitation mechanism to thermal expansion, while the observed phase-dependence of the combined structural and optical data contrasted previous studies. Therefore, we developed a new model that reproduces all our experimental observations without using fit parameters. We identified optically-induced electron density gradients as the main driving source.Comment: 32 pages, 5 figures, 1 supporting information document include

    Observation of a single protein by ultrafast X-ray diffraction

    Get PDF
    The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory1, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes2. This was first demonstrated on biological samples a decade ago on the giant mimivirus3. Since then a large collaboration4 has been pushing the limit of the smallest sample that can be imaged5,6. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter7 is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research

    3D diffractive imaging of nanoparticle ensembles using an X-ray laser

    Get PDF
    We report the 3D structure determination of gold nanoparticles (AuNPs) by X-ray single particle imaging (SPI). Around 10 million diffraction patterns from gold nanoparticles were measured in less than 100 hours of beam time, more than 100 times the amount of data in any single prior SPI experiment, using the new capabilities of the European X-ray free electron laser which allow measurements of 1500 frames per second. A classification and structural sorting method was developed to disentangle the heterogeneity of the particles and to obtain a resolution of better than 3 nm. With these new experimental and analytical developments, we have entered a new era for the SPI method and the path towards close-to-atomic resolution imaging of biomolecules is apparent

    Combinatorial Guidance by CCR7 Ligands for T Lymphocytes Migration in Co-Existing Chemokine Fields

    Get PDF
    Chemokines mediate the trafficking and positioning of lymphocytes in lymphoid tissues that is crucial for immune surveillance and immune responses. In particular, a CCR7 ligand, CCL21, plays important roles in recruiting T cells to secondary lymphoid tissues (SLT). Furthermore, CCL21 together with another CCR7 ligand, CCL19, direct the navigation and compartmentation of T cells within SLT. However, the distinct roles of these two chemokines for regulating cell trafficking and positioning are not clear. In this study, we explore the effect of co-existing CCL19 and CCL21 concentration fields on guiding T cell migration. Using microfluidic devices that can configure single and superimposed chemokine fields we show that under physiological gradient conditions, human peripheral blood T cells chemotax to CCL21 but not CCL19. Furthermore, T cells migrate away from the CCL19 gradient in a uniform background of CCL21. This repulsive migratory response is predicted by mathematical modeling based on the competition of CCL19 and CCL21 for CCR7 signaling and the differential ability of the two chemokines for desensitizing CCR7. These results suggest a new combinatorial guiding mechanism by CCL19 and CCL21 for the migration and trafficking of CCR7 expressing leukocytes

    Compartment-specific immunity in the human gut: Properties and functions of dendritic cells in the colon versus the ileum

    Get PDF
    © 2015 The Authors. Published by BMJ. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: http://dx.doi.org/10.1136/gutjnl-2014-307916Objective Dendritic cells (DC) mediate intestinal immune tolerance. Despite striking differences between the colon and the ileum both in function and bacterial load, few studies distinguish between properties of immune cells in these compartments. Furthermore, information of gut DC in humans is scarce. We aimed to characterise human colonic versus ileal DC. Design Human DC from paired colonic and ileal samples were characterised by flow cytometry, electron microscopy or used to stimulate T cell responses in a mixed leucocyte reaction. Results A lower proportion of colonic DC produced pro-inflammatory cytokines (tumour necrosis factor-a and interleukin (IL)-1ß) compared with their ileal counterparts and exhibited an enhanced ability to generate CD4+FoxP3+IL-10+ (regulatory) T cells. There were enhanced proportions of CD103+Sirpa- DC in the colon, with increased proportions of CD103+Sirpa+ DC in the ileum. A greater proportion of colonic DC subsets analysed expressed the lymph-node-homing marker CCR7, alongside enhanced endocytic capacity, which was most striking in CD103+Sirpa+ DC. Expression of the inhibitory receptor ILT3 was enhanced on colonic DC. Interestingly, endocytic capacity was associated with CD103+ DC, in particular CD103+Sirpa+ DC. However, expression of ILT3 was associated with CD103- DC. Colonic and ileal DC differentially expressed skin-homing marker CCR4 and small-bowel-homing marker CCR9, respectively, and this corresponded to their ability to imprint these homing markers on T cells. Conclusions The regulatory properties of colonic DC may represent an evolutionary adaptation to the greater bacterial load in the colon. The colon and the ileum should be regarded as separate entities, each comprising DC with distinct roles in mucosal immunity and imprinting.This research was funded by St. Mark's Foundation (Harrow, UK), The Biotechnology and Biological Sciences Research Council (BBSRC; BB/J004529/1) and The National Institutes of Health (NIH; US) including The National Institute of Diabetes and Digestive and Kidney Diseases (NIH/NIDDK; T32-DK07632 and P01-DK072084) and The National Institute of Allergy and Infectious Disease (NIH/NIAID; R21-AI094033). We also gratefully acknowledge funding support from The Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Centre at The Johns Hopkins Hospital, Baltimore, US.Published versio

    TGFβR signalling determines CD103<sup>+</sup>CD11b<sup>+</sup> dendritic cell development in the intestine

    Get PDF
    CD103+CD11b+ dendritic cells (DCs) are unique to the intestine, but the factors governing their differentiation are unclear. Here we show that transforming growth factor receptor 1 (TGFβR1) has an indispensable, cell intrinsic role in the development of these cells. Deletion of Tgfbr1 results in markedly fewer intestinal CD103+CD11b+ DCs and a reciprocal increase in the CD103−CD11b+ dendritic cell subset. Transcriptional profiling identifies markers that define the CD103+CD11b+ DC lineage, including CD101, TREM1 and Siglec-F, and shows that the absence of CD103+CD11b+ DCs in CD11c-Cre.Tgfbr1fl/fl mice reflects defective differentiation from CD103−CD11b+ intermediaries, rather than an isolated loss of CD103 expression. The defect in CD103+CD11b+ DCs is accompanied by reduced generation of antigen-specific, inducible FoxP3+ regulatory T cells in vitro and in vivo, and by reduced numbers of endogenous Th17 cells in the intestinal mucosa. Thus, TGFβR1-mediated signalling may explain the tissue-specific development of these unique DCs

    Migratory Dermal Dendritic Cells Act as Rapid Sensors of Protozoan Parasites

    Get PDF
    Dendritic cells (DC), including those of the skin, act as sentinels for intruding microorganisms. In the epidermis, DC (termed Langerhans cells, LC) are sessile and screen their microenvironment through occasional movements of their dendrites. The spatio-temporal orchestration of antigen encounter by dermal DC (DDC) is not known. Since these cells are thought to be instrumental in the initiation of immune responses during infection, we investigated their behavior directly within their natural microenvironment using intravital two-photon microscopy. Surprisingly, we found that, under homeostatic conditions, DDC were highly motile, continuously crawling through the interstitial space in a Gαi protein-coupled receptor–dependent manner. However, within minutes after intradermal delivery of the protozoan parasite Leishmania major, DDC became immobile and incorporated multiple parasites into cytosolic vacuoles. Parasite uptake occurred through the extension of long, highly dynamic pseudopods capable of tracking and engulfing parasites. This was then followed by rapid dendrite retraction towards the cell body. DDC were proficient at discriminating between parasites and inert particles, and parasite uptake was independent of the presence of neutrophils. Together, our study has visualized the dynamics and microenvironmental context of parasite encounter by an innate immune cell subset during the initiation of the immune response. Our results uncover a unique migratory tissue surveillance program of DDC that ensures the rapid detection of pathogens
    corecore