227 research outputs found

    Importance of Conserved N-domain Residues Thr 441 , Glu 442 , Lys 515 , Arg 560 , and Leu 562 of Sarcoplasmic Reticulum Ca 2+ -ATPase for MgATP Binding and Subsequent Catalytic Steps: PLASTICITY OF THE NUCLEOTIDE-BINDING SITE

    Get PDF
    Nine single mutations were introduced to amino acid residues Thr441, Glu442, Lys515, Arg560, Cys561, and Leu562 located in the nucleotide-binding domain of sarcoplasmic reticulum Ca2+-ATPase, and the functional consequences were studied in a direct nucleotide binding assay, as well as by steady-state and transient kinetic measurements of the overall and partial reactions of the transport cycle. Some partial reaction steps were also examined in mutants with alterations to Phe487, Arg489, and Lys492. The results implicate all these residues, except Cys561, in high affinity nucleotide binding at the substrate site. Mutations Thr441 --> Ala, Glu442 --> Ala, and Leu562 --> Phe were more detrimental to MgATP binding than to ATP binding, thus pointing to a role for these residues in the binding of Mg2+ or to a difference between the interactions with MgATP and ATP. Subsequent catalytic steps were also selectively affected by the mutations, showing the involvement of the nucleotide-binding domain in these reactions. Mutation of Arg560 inhibited phosphoryl transfer but enhanced the E1PCa2 --> E2P conformational transition, whereas mutations Thr441 --> Ala, Glu442 --> Ala, Lys492 --> Leu, and Lys515 --> Ala inhibited the E1PCa2 --> E2P transition. Hydrolysis of the E2P phosphoenzyme intermediate was enhanced in Glu442 --> Ala, Lys492 --> Leu, Lys515 --> Ala, and Arg560 --> Glu. None of the mutations affected the low affinity activation by nucleotide of the phosphoenzyme-processing steps, indicating that modulatory nucleotide interacts differently from substrate nucleotide. Mutation Glu442 --> Ala greatly enhanced reaction of Lys515 with fluorescein isothiocyanate, indicating that the two residues form a salt link in the native protein

    Disorder predispositions and protections of Labrador Retrievers in the UK

    Get PDF
    Abstract The Labrador Retriever is one of the most popular dog breeds worldwide, therefore it is important to have reliable evidence on the general health issues of the breed. Using anonymised veterinary clinical data from the VetCompass Programme, this study aimed to explore the relative risk to common disorders in the Labrador Retriever. The clinical records of a random sample of dogs were reviewed to extract the most definitive diagnoses for all disorders recorded during 2016. A list of disorders was generated, including the 30 most common disorders in Labrador Retrievers and the 30 most common disorders in non-Labrador Retrievers. Multivariable logistic regression was used to report the odds of each of these disorders in 1462 (6.6%) Labrador Retrievers compared with 20,786 (93.4%) non-Labrador Retrievers. At a specific-level of diagnostic precision, after accounting for confounding, Labrador Retrievers had significantly increased odds of 12/35 (34.3%) disorders compared to non-Labrador Retrievers; osteoarthritis (OR 2.83) had the highest odds. Conversely, Labrador Retrievers had reduced odds of 7/35 (20.0%) disorders; patellar luxation (OR 0.18) had the lowest odds. This study provides useful information about breed-specific disorder predispositions and protections, which future research could evaluate further to produce definitive guidance for Labrador Retriever breeders and owners

    Physical function limitation among gay and bisexual men aged ≥55years with and without HIV: findings from the Australian Positive and Peers Longevity Evaluation Study (APPLES)

    Get PDF
    Background. As people living with HIV now have a life expectancy approaching that of the general population, clinical care focuses increasingly on the management and prevention of comorbidities and conditions associated with aging. We aimed to assess the prevalence of physical function (PF) limitation among gay and bisexual men (GBM) and determine whether HIV is associated with severe PF limitation in this population. Methods. We analysed cross-sectional data from GBM aged ≥55 years in the Australian Positive and Peers Longevity Evaluation Study who completed a self-administered survey on health and lifestyle factors. PF was measured using the Medical Outcomes Study–Physical Functioning scale. Factors associated with severe PF limitation were assessed using logistic regression. Results. The survey was completed by 381 men: 186 without HIV and 195 with HIV. Median age was 64.3 years for GBM without HIV and 62.1 years for GBM with HIV. Compared with men without HIV, those with HIV had higher proportions of severe (13.3% vs 8.1%) and moderate-to-severe (26.7% vs 24.2%) PF limitation. Severe PF limitation commonly involved difficulty with vigorous activity (95% with severe PF limitation described being limited a lot), climbing several flights of stairs (68.4% limited a lot), bending, kneeling or stooping (60.5% limited a lot), and walking 1 km (55.0% limited a lot). In a model adjusted for age, body mass index, typical duration of physical activity, psychological distress, and number of comorbidities, we found a significant association between HIV and severe PF limitation (adjusted odds ratio 3.3 vs not having HIV, 95% confidence interval 1.3–8.7). Conclusions. The biological mechanisms underlying this association require further investigation, particularly given the growing age of the HIV population and inevitable increase in the burden of PF limitation

    CPPN2GAN: Combining Compositional Pattern Producing Networks and GANs for Large-Scale Pattern Generation

    Get PDF
    Generative Adversarial Networks (GANs) are proving to be a powerful indirect genotype-to-phenotype mapping for evolutionary search, but they have limitations. In particular, GAN output does not scale to arbitrary dimensions, and there is no obvious way of combining multiple GAN outputs into a cohesive whole, which would be useful in many areas, such as the generation of video game levels. Game levels often consist of several segments, sometimes repeated directly or with variation, organized into an engaging pattern. Such patterns can be produced with Compositional Pattern Producing Networks (CPPNs). Specifically, a CPPN can define latent vector GAN inputs as a function of geometry, which provides a way to organize level segments output by a GAN into a complete level. This new CPPN2GAN approach is validated in both Super Mario Bros. and The Legend of Zelda. Specifically, divergent search via MAP-Elites demonstrates that CPPN2GAN can better cover the space of possible levels. The layouts of the resulting levels are also more cohesive and aesthetically consistent.Comment: GECCO 2020. arXiv admin note: text overlap with arXiv:2004.0015

    Eliminating ground-state dipole moments in quantum optics via canonical transformation

    Get PDF
    By means of a canonical transformation it is shown how it is possible to recast the equations for molecular nonlinear optics to completely eliminate ground-state static dipole coupling terms. Such dipoles can certainly play a highly important role in nonlinear optical response - but equations derived by standard methods, in which these dipoles emerge only as special cases of transition moments, prove unnecessarily complex. It has been shown that the elimination of ground-state static dipoles in favor of dipole shifts results in a considerable simplification in form of the nonlinear optical susceptibilities. In a fully quantum theoretical treatment the validity of such a procedure has previously been verified using an expedient algorithm, whose defense was afforded only by a highly intricate proof. In this paper it is shown how a canonical transformation method entirely circumvents such an approach; it also affords new insights into the formulation of quantum field interactions.Comment: 18 pages including 1 figur

    Perspective: Quantum Hamiltonians for optical interactions

    Get PDF
    The multipolar Hamiltonian of quantum electrodynamics is extensively employed in chemical and optical physics to treat rigorously the interaction of electromagnetic fields with matter. It is also widely used to evaluate intermolecular interactions. The multipolar version of the Hamiltonian is commonly obtained by carrying out a unitary transformation of the Coulomb gauge Hamiltonian that goes by the name of Power-Zienau-Woolley (PZW). Not only does the formulation provide excellent agreement with experiment, and versatility in its predictive ability, but also superior physical insight. Recently, the foundations and validity of the PZW Hamiltonian have been questioned, raising a concern over issues of gauge transformation and invariance, and whether observable quantities obtained from unitarily equivalent Hamiltonians are identical. Here, an in-depth analysis of theoretical foundations clarifies the issues and enables misconceptions to be identified. Claims of non-physicality are refuted: the PZW transformation and ensuing Hamiltonian are shown to rest on solid physical principles and secure theoretical ground

    A universal preconditioner for simulating condensed phase materials.

    Get PDF
    We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle point search tasks that are common in the atomic scale simulation of materials. Our preconditioner is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in a wide range of materials that include metals, insulators, and molecular solids. The simple structure of the preconditioner means that the gains can be realised in practice not only when using expensive electronic structure models but also for fast empirical potentials. Even for relatively small systems of a few hundred atoms, we observe speedups of a factor of two or more, and the gain grows with system size. An open source Python implementation within the Atomic Simulation Environment is available, offering interfaces to a wide range of atomistic codes

    Interparticle interactions:Energy potentials, energy transfer, and nanoscale mechanical motion in response to optical radiation

    Get PDF
    In the interactions between particles of material with slightly different electronic levels, unusually large shifts in the pair potential can result from photoexcitation, and on subsequent electronic excitation transfer. To elicit these phenomena, it is necessary to understand the fundamental differences between a variety of optical properties deriving from dispersion interactions, and processes such as resonance energy transfer that occur under laser irradiance. This helps dispel some confusion in the recent literature. By developing and interpreting the theory at a deeper level, one can anticipate that in suitable systems, light absorption and energy transfer will be accompanied by significant displacements in interparticle separation, leading to nanoscale mechanical motion

    Trends in detectable viral load by calendar year in the Australian HIV observational database

    Get PDF
    Background Recent papers have suggested that expanded combination antiretroviral treatment (cART) through lower viral load may be a strategy to reduce HIV transmission at a population level. We assessed calendar trends in detectable viral load in patients recruited to the Australian HIV Observational Database who were receiving cART. Methods Patients were included in analyses if they had started cART (defined as three or more antiretrovirals) and had at least one viral load assessment after 1 January 1997. We analyzed detectable viral load (>400 copies/ml) in the first and second six months of each calendar year while receiving cART. Repeated measures logistic regression methods were used to account for within and between patient variability. Rates of detectable viral load were predicted allowing for patients lost to follow up. Results Analyses were based on 2439 patients and 31,339 viral load assessments between 1 January 1997 and 31 March 2009. Observed detectable viral load in patients receiving cART declined to 5.3% in the first half of 2009. Predicted detectable viral load based on multivariate models, allowing for patient loss to follow up, also declined over time, but at higher levels, to 13.8% in 2009. Conclusions Predicted detectable viral load in Australian HIV Observational Database patients receiving cART declined over calendar time, albeit at higher levels than observed. However, over this period, HIV diagnoses and estimated HIV incidence increased in Australia
    • …
    corecore