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Eliminating ground-state dipole moments in quantum optics via canonical transformation
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By means of a canonical transformation it is shown how it is possible to recast the equations for molecular
nonlinear optics to completely eliminate ground-state static dipole coupling terms. Such dipoles can certainly
play a highly important role in nonlinear optical response—but equations derived by standard methods, in
which these dipoles emerge only as special cases of transition moments, prove unnecessarily complex. It has
been shown that the elimination of ground-state static dipoles in favor of dipole shifts results in a considerable
simplification in form of the nonlinear optical susceptibilities. In a fully quantum theoretical treatment the
validity of such a procedure has previously been verified using an expedient algorithm, whose defense was
afforded only by a highly intricate proof. In this paper it is shown how a canonical transformation method
entirely circumvents such an approach; it also affords insights into the formulation of quantum field interac-
tions.
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I. INTRODUCTION

In recent years it has become increasingly evident
permanent~static! electric dipoles play a highly importan
role in the nonlinear optical response of molecular syste
@1,2#. Most molecules are intrinsically polar by nature, a
calculation of their optical susceptibilities with regard on
to transition dipole moments can produce results that
significantly in error@3,4#. In particular, many of the ‘‘push-
pull’’ systems favored for their high degree of optical no
linearity are specifically those where permanent dipole
fects are the largest, through their designed juxtaposition
strongly electron-donating and electron-withdrawing fun
tional groups@5–7#.

Whilst a number of groups have developed the theory
elicit permanent dipole contributions to nonlinear optical
sponse, the framework for most of this work has been se
classical@8,9#. In such a context, where the molecular syst
is treated with quantum-mechanical rigour but the radiat
is treated as a classical oscillatory electric field, it has b
demonstrated that a transformed ‘‘fluctuation dipole’’ Ham
tonian properly describes the optical interactions of the
namical system, and affords considerable calculational s
plification @4#. However, the semiclassical treatment fails
take into account the modifications associated with elec
magnetic field interactions—features that only emerge i
quantum electrodynamical treatment. Indeed, it has been
marked that quantum electrodynamics affords the only co
pletely rigorous basis for descriptions of multipolar behav
@10,11#.

When both the material and radiation parts of the sys
are developed in fully quantized form, the transparency
correctness of deploying a transformed interaction Ham
tonian is potentially obscured@12#. Both the conventiona
and transformed operators prove to lead to identical res
even at high orders of optical nonlinearity@13#, yet the
equivalence of their predictions as a general principle
until now been established only through engagement
proofs of considerable intricacy@14#. It is our purpose in this
paper to rectify this anomaly by demonstrating the imp
1050-2947/2003/68~4!/043811~6!/$20.00 68 0438
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mentation of a suitable canonical transformation on the m
tipolar form of the quantum optical Hamiltonian. Elucidatin
the quantum electrodynamical treatment in this way thro
light on a number of issues skirted over in the semiclass
treatment, and it offers clear scope for extension to hig
orders of multipole interaction.

Employment of the canonical transformation effects
considerable simplification of the analysis of nonlinear op
cal processes involving permanent dipole moments. For
stance, in the standard formulation, second-harmonic gen
tion is represented by 3322512 different state sequence
when a two-level molecular model is used. Each of the
entails a product of three ‘‘transition’’ dipoles~one or more
of which may be permanent!, divided by a product of two
energy factors. However, the new Hamiltonian will involv
only three terms of simpler structure containing no expli
contributions due to the ground-state dipole moment, o
dipole shifts ~i.e., differences between excited-state a
ground-state moments!—as we shall see in Sec. IV B.

The paper is organized as follows. In the following se
tion the radiation matter Hamiltonian is introduced—taki
the leading electric dipole terms from the multipolar form
lation of quantum electrodynamics~QED!. In Sec. III A a
canonical transformation is carried out to eliminate the c
pling between the quantized radiation field and perman
dipoles of the molecules in ground electronic states. In S
III B the Hamiltonian is reexpressed in a different represe
tation, followed by an application to the study of nonline
optical processes in Sec. IV. The example of seco
harmonic generation~SHG! studied in detail in Sec. IV B
illustrates how the present formalism facilitates eliminati
of the contributions due to the ground-state dipole in app
priately time-ordered quantum channels for the molecu
radiation processes. Extensions beyond the dipole appr
mation are considered in Sec. V, followed by concludi
remarks in Sec. VI.

II. THE MULTIPOLAR QED HAMILTONIAN

We begin with the Hamiltonian in multipolar form, for
system of molecules labeledX, interacting with a quantized
radiation field@15#
©2003 The American Physical Society11-1
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H5H rad1(
X

Hmol~X!1H int , ~1!

where H rad is the Hamiltonian for the free radiation field
eachHmol(X) is a Schro¨dinger operator for an isolated mo
ecule, andH int is a term representing a fully retarded co
pling between the quantized radiation field and the molec
subsystem.

The first of these operators,H rad, is expressed as follow
in terms of the transverse electric displacement field oper
d'(r ) and magnetic-field operatorb~r !:

H rad5
1

2 E $«0
21@d'~r !#21m0

21@b'~r !#2%d3r ~2!

with

d'~r !5«0e'~r !1p'~r !. ~3!

In Eq. ~3!, e'(r ) is the transverse part of the electric field,
the electric-dipole approximation, andp~r ! is the polariza-
tion field of molecular origin, given by

p~r !5(
X

m~X!d~r2RX!, ~4!

p'(r ) being its transverse part@15#. Again, m(X) is the di-
pole operator of the moleculeX positioned atRX , and the
summations are taken over all the molecules of the syst
Next, the Hamiltonian for moleculeX is explicitly given by

Hmol~X!5
1

2m(
a

pX,a
2 1

e2

4p«0
(
a,b

1

uqX,a2qX,bu
, ~5!

wherepX,a andqX,a are, respectively, operators for the m
mentum and position of electrona. We note that in the stan
dard notation used here, care must be taken not to con
the momentum of the electrona, pX,a , with the polarization
field p~r ! defined above. Finally the operatorH int , which
describes the coupling between the molecular subsystem
the quantized radiation field, is expressible as

H int52E «0
21d'~r !•p~r !d3r52(

X
«0

21d'~RX!•m~X!.

~6!

Although the field interaction is here cast in terms of t
electric dipole approximation, our analysis can be exten
quite straightforwardly to incorporate higher multipo
terms—this will be discussed in Sec. V. Lastly, the dipo
operatorm(X) can be cast in matrix form in terms of mo
lecular dipole moments;

m~X!5(
j ,l

u j ~X!&mj l
~X!^ l ~X!u, ~7!

where u j (X)& are the eigenvectors of the molecular Ham
tonian Hmol(X). In the multipolar QED formulation em
ployed@15–17#, the Hamiltonian of the system does not co
tain any instantaneous dipole-dipole type interactions,
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intermolecular coupling being mediated via the transve
radiation field. Specifically, each molecule is coupled to
displacement field at the molecular site, as is evident
Eq. ~6!.

III. TRANSFORMATION TO ANOTHER
REPRESENTATION

A. Canonical transformation

To eliminate the permanent ground-state dipolemgg
(X) , we

shall apply the following canonical transformation, whic
recasts operators but effects no change in any system ob
ables:

u5exp~ iS!, S52~1/\!E a'~r !•pg~r !d3r ~8!

with

pg~r !5(
X

mgg
~X!d~r2RX!; ~9!

the latter signifies the polarization field produced by an
sembly of ground-state molecules containing static dipo
mgg

(X) . The transformation does not alter the vector poten

a'(r ), since the generatorS commutes with it. Furthermore
since the dipole momentmgg

(X) is ac-number characterized b
a real value~i.e., it is not an operator!, the transformation
does not modify either the electron momentapX,a or coordi-
natesqX,a featured in the molecular HamiltonianHmol(X).

The only canonical variable affected by the transform
tion is the electric displacement operator. From the comm
tator relation

@ai
'~r !,dj

'~r 8!#52 i\d i j
'~r2r 8! ~10!

we have~see the Appendix!

d̃'~r ![eiSd'~r !e2 iS5d'~r !2pg
'~r !, ~11!

i.e., the transformation effects a subtraction from the f
displacement fieldd'(r ) of the transverse part of the pola
ization field due to the ground-state dipoles,mgg

(X) . Alterna-
tively, one can write

d̃'~r !5«0e'~r !1p̃'~r !, ~12!

where

p̃~r ![p~r !2pg~r !5(
X

m̃~X!d~r2RX! ~13!

is the polarization fieldexcludingthe ground-state dipoles
and

m̃~X![m~X!2mgg
~X!5(

j ,l
u j ~X!&m̃i j

~X!^ l ~X!u ~14!

is the corresponding dipole operator, withm̃i j
(X)5mi j

(X)

2m gg
(X)d i j .
1-2
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B. Hamiltonian in the present representation

Substitutingd'(r )5d̃'(r )1pg
'(r ) into Eqs. ~2! and ~6!

the Hamiltonian of the system, Eq.~1!, can be reexpressed a

H5H̃ rad1(
X

H̃mol~X!1H̃ int , ~15!

where

H̃ rad5221E $«0
21@d'~r !#21m0

21@b'~r !#2%d3r ~16!

and

H̃ int52E «0
21d'~r !•p̃~r !d3r52(

X
«0

21d̃'~RX!•m̃~X!

~17!

are the radiative and the interaction Hamiltonian in t
present representation. In this way, the radiation-molec
coupling is now represented in terms of the dipole mom
operatorm̃(X)5m(X)2mgg

(X) which excludes a contribution as
sociated with the permanent ground-state dipole mom
The new molecular Hamiltonian can be written as

H̃mol~X!5Hmol~X!1Vmol~X!, ~18!

where the extra term reads

Vmol~X!52
1

2 (
X8ÞX

3
mgg

~X8!
•mgg

~X!23~mgg
~X!

•R̂XX8!~R̂XX8•mgg
~X!!

4p«0RXX8
3

2 (
X8ÞX

mgg
~X8!

•m̃~X!23~mgg
~X8!

•R̂XX8!~R̂XX8•m̃~X!!

4p«0RXX8
3

~19!

with RXX85RX2RX8 . The conditionX8ÞX ensures omis-
sion of molecular self-interaction terms~otherwise known as
contact interactionterms!.

The first term in Eq.~19! can be identified as the direc
~Coulomb! interaction between the ground-state dipole o
particular moleculeX and those of all other speciesX8, the
factor of 1

2 preventing double counting when we sum over
X centers—see Eqs.~15! and ~18!. Such a term leads to a
overall shift in the molecular energy origin and hence do
not contribute to linear or nonlinear optical processes. T
second term in Eq.~19! can be identified as a contributio
due to Coulomb coupling between the transition dipoles o
selected moleculeX and the ground-state dipoles of su
rounding speciesX8. This term introduces an off-diagona
coupling in the molecular Hamiltonian, effecting a modific
tion of the molecular energies in the second order of per
bation. Both types of molecule-molecule coupling are inst
taneous, because they are associated with at least
permanent dipole. The emergence of the instantaneous i
04381
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molecular coupling is a direct consequence of eliminat
the permanent ground-state dipoles from the field-media
molecule-molecule coupling in the reformulated multipo
QED representation.

IV. NONLINEAR OPTICAL PROCESSES

A. Introduction

With the Hamiltonian now reexpressed in a different re
resentation, it is possible to apply it to the study of nonline
optical processes. The example of SHG to be studied in
tail illustrates how this facilitates the elimination of groun
state dipole terms in a rigorous QED treatment. This circu
vents the highly intricate proof that previously afforded
only justification in QED—and even then, only for two-lev
systems@13#. It is important to emphasize that the tran
formed displacement field operator and the radiation Ham
tonian can be cast in the usual form@15#:

d̃'~R!5 i(
k,l

S \ck«0

2V D 1/2

e~l!~k!$a~l!~k!eik•R

2a~l!†~k!e2 ik•R% ~20!

and

H̃ rad5(
k,l

$a~l!†~k!a~l!~k!11/2%\ck, ~21!

where, in each expression, a sum is taken over radia
modes characterized by wave vectork and unit polarization
vector e(l)(k) ~with l denoting one of two polarization
states!; a(l)†(k) anda(l)(k) are the corresponding operato
for creation and annihilation of a photon, andV is an arbi-
trarily large quantization volume. Note that the photon sta
are somewhat different from those emerging in the origi
multipolar QED, because the canonical operatord̃'(R) dif-
fers from the original displacement operatord'(r ) by the
amount2pg

'(r ). For simplicity and clarity we dispense wit
refractive effects in the mode expansion of the displacem
field operator~20!. Nonetheless, our method is amenable
the incorporation of such effects, the displacement field
erator is then expanded in terms of photons fully dressed
the molecular medium~i.e., polaritons! @18–21# rather than
the ‘‘bare’’ photons.

From expression~20!, the application of perturbation
theory for the study of optical processes is straightforw
and follows similar lines to those employed when the mu
polar formalism is used@15#. For a particular optical process
a perturbative expansion of the transition amplitudeSX , for
one centerX, gives@22#

SX}^ f u (
p50

` F H̃ int

1

~Ẽ02H̃0!
G p

H̃ intu i &X , ~22!

where the unperturbed HamiltonianH̃0 is given by H̃ rad
1(XHmol(X) and the interaction HamiltonianH int is given
by Eq. ~17!. Hereui& and uf & are the initial and final states o
1-3
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FIG. 1. The three time-ordered
diagrams for second-harmoni
generation.
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the radiation matter system,Ẽ0 being the corresponding en
ergy of the initial state. This energyẼ0 is modified by the
static dipoles of the surrounding medium via the coupl
term Vmol(X) featured in Eq.~18!.1 For dilute gases such
modification does not play an important role. In Eq.~22! the
leading term for anm-photon process is, as expected,p
5m121, as in the untransformed representation.

Before continuing with an example application, we ma
one observation on utilizing the dilute gas approximatio
The mode expansion of the displacement field operator~20!
is essentially based on such an approximation, since l
field effects associated with transition dipoles of the s
rounding medium are not included. Therefore, although m
lecular energy shifts due to the static dipoles of the surrou
ing species feature in the molecular energies within
formalism, it is inappropriate to engage in detailed consid
ation of the molecular energy shifts due to the surround
static dipoles without recasting the displacement field ope
tor in terms of polaritons@18–21#. The considerable increas
in complexity that results invites detailed consideration in
future piece of work.

B. Second-harmonic generation

Second-harmonic generation serves to illustrate the us
new HamiltonianH, Eq. ~15!. This well-known optical pro-
cess can be described as fundamentally involving the a
hilation of two photons of a certain frequencyv and the
creation of one photon of double the frequency, 2v. The
molecular centers are initially in their ground state:u i (X)&
[ug(X)&. Since SHG is an elastic process, the final molecu
states are identical to the initial ones. The initial state of
radiation field,un(k,l)&, containsn photon in a particular
electromagnetic mode (k,l), while the final radiative state is
un22(k,l); 1(k8,l)&, with uk8u52uku. In summary, the ini-
tial and final states of the system for SHG are

u i X&5un~k,l!;X,i &,

u f X&5u~n22!~k,l!; l ~k8,l!;X,i &. ~23!

1Note that the tilde designation here has the specific connota
of a dipole-induced shift, not to be confused with its use in ot
work by the authors to signify the inclusion of damping.
04381
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The optical process can be represented by three time-ord
diagrams @12,13# ~see also Fig. 1!. Each of these time-
ordered diagrams, in turn, contributes various terms depe
ing on the number of molecular states involved in the opti
process. In the conventional formulation, the number
terms can be fairly large. For example, if the molecules
represented by a two-level model, the transition matrix w
possess 3322512 contributions—each a product of thre
‘‘transition’’ dipoles ~one or more of which may be perma
nent!, divided by a product of two energy factors. Howeve
the new Hamiltonian involves only three simpler terms co
taining only contributions directly associated with dipo
shifts. In the more general case, from Eqs.~22! and~23!, and
lifting the two-level approximation, the transition amplitud
for one center reads in the present representation,

SX;^~n22!~k,l!,1~k8,l!;X,i u

3H H̃ int

1

~Ẽ02H̃0!
H̃ int

1

~Ẽ02H̃0!
H̃ intJ un~k,l!;X,i &,

~24!

whereẼ05Ẽi1n\v is the energy of the initial state of th
radiation matter system.

When Eqs.~16! and ~20! are used the transition matri
~24! can be expressed as

SX52 i S \c

2«0VD 3/2

~k2k8!1/2$n~n21!%1/2eiejekb i jk , ~25!

whereb i jk is the hyperpolarisability tensor given by

b i jk5(
r ,s

F m̃ i
ir m̃ j

rsm̃k
is

~Ẽir 12\v!~Ẽis1\v!
1

m̃ j
ir m̃ i

rsm̃k
is

~Ẽir 2\v!~Ẽis1\v!

1
m̃ j

ir m̃k
rsm̃ i

is

~Ẽir 2\v!~Ẽis22\v!
G , ~26!

wherev5ck and Ẽir [Ẽi2Ẽr are the molecular transition
energies. In passing we note that in any application
index-symmetrized form,b i ( jk)[1/2(b i jk1b ik j ), would
necessarily be invoked because of the corresponding sym
try in the radiation tensor—with which it is eventually con
tracted to give a result for the signal. The result given by E

n
r

1-4
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~26! is correct for molecular cases far from resonance
near-resonant terms are considered then phenomenolo
damping factors are introduced. By adopting the conven
of a constant sign for the damping@23#, as recently con-
firmed @24#, the result coincides exactly with earlier wor
and now without any need to assume that the linewidth
small compared to the harmonic frequency.

V. EXTENSION BEYOND THE DIPOLE APPROXIMATION

The above analysis can be extended beyond the di
approximation. For this purpose one needs to add nondi
contributions to the polarization fieldp'(r ) featured in the
displacement field given by Eq.~3!. Furthermore, one need
to include the nondipole terms in the multipolar Hamiltoni
@15#. Subsequently, one can transform such a full multipo
Hamiltonian via the canonical transformation of the form
Eq. ~8! that excludes the polarization field not only due
static dipolesmgg

(X) but also the corresponding higher-ord
electric and magnetic multipoles. This will lead to the Ham
tonian of the same form as Eq.~15!, in which the interaction
HamiltonianH̃ int now accommodates the full multipolar ex
pansion of the radiation matter coupling~as presented explic
itly in Ref. @15#!, subject to replacement not only of th
dipole operatorm(X) by m̃(X), but also with corresponding
modifications to the higher-order moments. Furthermo
there will be an additional contribution in the operat
Vmol(X) due to the coupling between the multipoles of
specific moleculeX and the static multipoles of the remain
ing species. In this way electrostatic interactions due to
permanent multipoles of the ground state are included in
Hamiltonian for the electrostatic intermolecular coupling.
such, the method extends the applicability of the calcu
tional algorithm@13#, previously directed only at electric di
pole interactions, offering further scope for simplifying th
formulation of theory for optical processes involving perm
nent multipoles. This will be the subject of a future study

VI. CONCLUDING REMARKS

A canonical transformation has been introduced to co
pletely eliminate ground-state dipole coupling terms in
multipolar formulation of quantum electrodynamics. T
transformation does not alter the vector potentiala'(r ), yet
it effects a subtraction from the full displacement fieldd'(r )
of the transverse part of the polarization field due to
ground-state dipoles,mgg

(X) . The radiation-molecule coupling
is then represented in terms of the dipole moment oper
m̃(X)5m(X)2mgg

(X) excluding a contribution due to the perm
J
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nent ground-state dipole moment. An additional instan
neous intermolecular interaction appears in the transform
Hamiltonian, representing changes in the molecular eig
states and corresponding energies due to a surrounding
medium. The emergence of instantaneous intermolec
coupling is a direct consequence of eliminating, in the fie
mediated molecule-molecule coupling, the perman
ground-state dipoles in favor of dipole shifts.

The present canonical transformation method concis
circumvents a highly intricate proof that previously afford
the only rigorous justification. Moreover, the quantum ele
trodynamical treatment elucidates a number of issues ski
over in the semiclassical treatment. The QED method is
rectly amenable to the inclusion of higher rank multipo
moments; furthermore it extends previous work in permitti
application to molecules with an arbitrary number of m
lecular states. This allows the proper representation of n
resonant optical processes, and is fully consistent with
constant sign convention for phenomenological dampi
The method leads directly to susceptibility results cast in
simplest possible form, as has been illustrated with the
ample of second-harmonic generation.
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APPENDIX: CALCULATION OF d˜
„r …ÆeiSd„r …eÀ iS

Consider the auxiliary function

f~r !5eiaSd'~r !e2 iaS, ~A1!

wherefa(r )[d̃'(r ) for a51. Differentiating Eq.~A1! with
respect to the parametera, one has

fa8 ~r !5 ieiaS@S,d'~r !#e2 iaS52pg
'~r !, ~A2!

Here the use has been made of the relationship@S,d'(r )#
52 ipg

'(r ), which follows from Eq.~8! combined with the
commutation relationship given in Eq.~10!. Since f0(r )
[d'(r ), the solution to Eq.~2! reads

fa~r !5d'~r !2apg
'~r !, ~A3!

which, with a51, leads to the required result given
Eq. ~11!.
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