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The multipolar Hamiltonian of quantum electrodynamics is extensively employed in chemical and
optical physics to treat rigorously the interaction of electromagnetic fields with matter. It is also widely
used to evaluate intermolecular interactions. The multipolar version of the Hamiltonian is commonly
obtained by carrying out a unitary transformation of the Coulomb gauge Hamiltonian that goes by the
name of Power-Zienau-Woolley (PZW). Not only does the formulation provide excellent agreement
with experiment, and versatility in its predictive ability, but also superior physical insight. Recently, the
foundations and validity of the PZW Hamiltonian have been questioned, raising a concern over issues
of gauge transformation and invariance, and whether observable quantities obtained from unitarily
equivalent Hamiltonians are identical. Here, an in-depth analysis of theoretical foundations clarifies
the issues and enables misconceptions to be identified. Claims of non-physicality are refuted: the
PZW transformation and ensuing Hamiltonian are shown to rest on solid physical principles and
secure theoretical ground. Published by AIP Publishing. https://doi.org/10.1063/1.5018399

I. INTRODUCTION

In the rapidly developing and expanding field of modern
photonics, it is appropriate to revisit periodically key elements
of the underlying theory. Challenging received wisdom and
re-evaluating its validity can reveal fresh insights and poten-
tially expose flaws. When it is necessary to account correctly
for the interaction of electromagnetic radiation with atoms and
molecules on the quantum scale, one advantageous formula-
tion of fundamental theory is the casting of the Hamiltonian
in terms of the purely transverse electromagnetic field vari-
ables E⊥, B associated with radiation. This is possible both in
classical electrodynamics in Hamiltonian form and in quan-
tum electrodynamics (QED). The quantum case has long been
known in the literature as the Power-Zienau-Woolley (PZW)
Hamiltonian.1–10 It arises from a particular transformation of
the familiar Coulomb gauge Hamiltonian, generated by the
unitary operator

U = exp(iS/~), (1)

where

S =
∫

P · A dτ. (2)

Here, S signifies a coupling of electromagnetic and material
variables: A is the Coulomb gauge vector potential operator
and P is an operator solution of the equation,

∇ · P = − ρ, (3)

where ρ is the molecular charge density operator. The mul-
tipolar Hamiltonian is the special case obtained when P is
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represented as an expansion in multipole moment operators;2

in practical applications, it is usually only the leading terms of
the multipole series that need to be retained.

In this perspective, we address several misconceptions
recently raised in the literature regarding this multipolar form
of the QED Hamiltonian, widely used in atomic, molecular,
and optical physics, and theoretical chemistry. These issues
have resurfaced as the focus of a recent paper by Rousseau and
Felbacq11 (hereafter referred to as RF). Their article aimed to
show that a quantum formulation of electrodynamics that is
based on the PZW Hamiltonian is fundamentally flawed and
therefore unsuited to its many applications. This is a surpris-
ing claim since over its close to sixty year history there has
been a host of applications to which the PZW Hamiltonian
has been applied, which have agreed with or led to predic-
tions borne out by experiment. There are many hundreds of
papers in the established literature citing the original work,
bearing testimony to its efficacy and success; numerous sig-
nificant applications and advances have built upon it, even over
the last decade.12–37 Indeed we know of no cases where the
theory has been faulted by experimental study—which would
usually be the condition to invite reappraisal of a previously
successful theory.

Specifically, RF claim that the Coulomb gauge and mul-
tipolar Hamiltonians “predict different physical results,” even
though they have given no calculation of a physical observable
to show this. It may be noted at once that the two Hamiltonians
are related by the transformation (1) and that all the standard
results about unitary transformations in quantum mechanics
apply; furthermore, the generator S obviously commutes with
the vector potential operator A and the Coulomb gauge condi-
tion,∇ ·A = 0, which appears as a constraint in the Hamiltonian
theory. These remarks will be elaborated upon in Secs. II
and III.
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We also note that the applicability of a PZW-like trans-
formation has been demonstrated in high-energy physics (in
non-Abelian gauge theory)38,39 and in the proof of the stability
of ordinary matter in the presence of quantized radiation, i.e., in
the real world, through rigorous functional analysis.40 In these
cases, the intention is to be able to pass between the Coulomb
and PZW formulations as convenient, for example, the PZW-
transformed version has smoother mathematical behaviour at
low photon frequencies—since it involves the electromagnetic
fields rather than the vector potential—as compared to the
Coulomb gauge form, and this facilitates certain important
estimates in the proof of stability. It has been used in its mul-
tipolar form to describe QED in a cavity41—see also Refs.
42 and 43. It has also been applied to the Coulomb gauge
Hamiltonian describing a medium that is linear, absorbing and
dispersing to generate a multipolar formulation of macroscopic
QED, successfully employed in the calculation of Casimir-van
der Waals forces.44,45

In this work, we focus on the challenge, demonstrating
that any assertion that “the PZW Hamiltonian has inconsis-
tencies” is simply wrong; we identify serious inaccuracies in
the analysis offered in support of this recent claim.11 Further-
more, we clarify several points regarding important physical
notions relating to near-field, multipolar quantum electrody-
namics, which may have led to these erroneous conclusions.
Our examination reaffirms the rigour, internal consistency and
validity of the PZW transformation and the ensuing Hamil-
tonian. At a time, when the span of application for photonic
interactions is developing apace, we believe it is crucial for
theorists, computational modellers, and experimentalists alike
to have confidence in the rigour and correctness of core theory.

One of the less recognized problems when working within
the framework of semiclassical radiation theory is the tempta-
tion to cultivate a view of “gauge transformations” exactly
as in Maxwell’s theory, failing to appreciate that through
the construction of a quantum Hamiltonian from a classi-
cal Lagrangian, using the general method from the work of
Dirac:46 (1) the scalar potential is dispensed with completely,
and (2) there are no time-dependent gauge transformations.
Temporal evolution depends on a vector potential with no
explicit time-dependence, and its conjugate momentum, sim-
ply through modified Poisson-brackets (known as Dirac brack-
ets) which become commutators after quantization. This will
be described in Sec. II, which presents the fundamental theory
related to quantum optical Hamiltonians. Then in Sec. III, we
describe some specifics of the PZW transformation. Once this
has been developed, we will be in a position to clarify mis-
conceptions about the applicability of the PZW Hamiltonian,
as well as certain subtleties when working in near-field QED
applications: this will be carried out in Sec. IV. Where we can,
we will also attempt to give insight into how we think some
of these common misunderstandings may have arisen. Finally,
in Sec. V, we give some indications of the present scope and
future prospects for application of the multipolar Hamiltonian.

II. THE GENERAL HAMILTONIAN

The cornerstone of modern theories of the interactions
of atoms and molecules with electromagnetic radiation is a

classical Lagrangian that has been known for more than a hun-
dred years. For particles with charge and mass parameters {en,
mn, n = 1, . . ., N} and positions {xn, n = 1, . . ., N} interacting
with an electromagnetic field (E, B), this is4,47,48

L =
1
2

∑
n

mn |ẋn |
2 −

∫
ρφ dτ +

∫
j · a dτ

+
1
2
ε0

∫ (
E · E − c2B · B

)
dτ, (4)

where φ, a are field potentials satisfying

E = −∇φ −
∂a
∂t

, B = ∇ ∧ a, (5)

but not otherwise restricted (that is, no gauge condition is
implied). The variables ρ and j are the usual charge and current
densities for point particles, defined as the distributions

ρ(x) =
∑

n

enδ
3(xn − x), j(x) =

∑
n

enẋnδ
3(xn − x). (6)

Taking {xn, ẋn, n = 1. . . N} and the field potentials, φ and
a, as the independent dynamical variables in the Lagrangian
function for the interaction of charged particles with a radia-
tion field, and substituting L in the Euler-Lagrange equations
yields the Maxwell equations and Lorentz force law as the
equations of motion. This Lagrangian describes a closed sys-
tem and ∂L/∂t = 0; hence the classical Hamiltonian H derived
from it by the usual arguments is the constant energy of the
whole system. Any Lagrangian that does not contain deriva-
tives of the field strengths (E, B) is said to show minimal cou-
pling between the charges and the fields, independently of any
gauge condition that might be invoked. While it is possible to
develop a quantum theory in this Lagrangian framework using
Feynman’s path integral formalism,49 it is customary in non-
relativistic QED to work with the Schrödinger equation for
a Hamiltonian operator. Usually this Hamiltonian is obtained
by following the canonical quantization prescription, from the
work of Dirac, of first obtaining a classical Hamiltonian the-
ory and then reinterpreting the Poisson-bracket algebra of the
variables as quantum commutators. We follow this traditional
route.

There is an immediate technical difficulty, however, for
the formulation of electrodynamics in an appropriate Hamil-
tonian framework starting from (4). The canonical momenta
for the electromagnetic field described by arbitrary potentials
φ, a consistent with (5) are defined as π = δL/δȧ, π0 = δL/δφ̇.
Since L has no terms in φ̇, π0 = 0; this implies that the Legen-
dre transformation from Lagrangian to Hamiltonian variables
is singular. The traditional solution to this problem, from
the work of Fermi,50 involved the modification of L by the
introduction of a gauge condition which does not affect the
equations of motion. This is now viewed as a historical proce-
dure, and the modern Hamiltonian theory51–53 derives from the
general solution to this problem first proposed by Dirac;46,54–56

it involves the elimination of the scalar potential from the for-
malism and the recognition of the existence of “constraints”
(relations between the canonical variables). The application
of his method to the electrodynamics of atoms and molecules
provided for subsequent development in the chemical physics
literature.2,3,57–59 In Dirac’s original work, the Hamiltonian is
built out of only manifestly gauge-invariant quantities.60
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In the non-relativistic electrodynamics of charged parti-
cles, the gauge-invariant classical Hamiltonian that follows
from Dirac’s method applied to L, Eq. (4), is59

H =
∑

n

1
2mn
|pn |

2 +
1
2
ε0

∫ (
|E|2 + c2 |B|2

)
dτ, (7)

where, for each of the particles labeled n, pn = pn − ena(xn),
and ε0E = �π in terms of the canonical variables {xn, pn,
a, π}. Superficially this appears to be the Hamiltonian for
“free” charges and the electromagnetic field. However, the
charge-field coupling parameter en appears in the non-zero
Poisson brackets of the {pn} variables which are not canonical
variables,

{pαn , pβn } = enεβαµB(xn)µ,

{pαn , E(x)µ} = enε
−1
0 δαµδ

3(xn − x).
(8)

To these must be conjoined the conditions

{xαn , pβm} = δnmδαβ ,

{B(x)β , E(x′)µ} = −ε−1
0 εβαµ∇

α
x δ

3(x − x′),
(9)

where εαβµ is the usual Levi-Civita symbol and the Greek let-
ters label the components of the 3-dimensional vectors. The
inter-charge Coulomb interaction becomes explicit when the
electric field is split into longitudinal (E‖) and transverse (E⊥)
components—a gauge-invariant separation. The space inte-
gral of |E‖ |2 gives the Coulomb energies, and the integral over
|E⊥|2 is associated with radiation. Equations (7)–(9) consti-
tute a complete statement of the classical electrodynamics of
charged particles in Hamiltonian form.

The appropriate representation of atoms and photons
becomes possible only after quantization of the particle and
field variables. Canonical quantization postulates a direct cor-
respondence between classical Poisson brackets and quantum
commutators, applied to all observables

{A, B} = C ⇒ [A, B] = i~ C, (10)

which yields the corresponding gauge invariant quantum elec-
trodynamics. Such a formalism does not yield a tractable
scheme for atoms and molecules, not least because of the dif-
ficulty of giving the algebra (8) and (9) a concrete realization.
It is therefore customary to work instead with the canoni-
cal variables which have the usual canonical Poisson-brackets
since in the original Lagrangian formulation the particle and
field variables were assumed to be independent of each other.
One then has to take account of the following equation of
constraint:

∇ · π + ρ ≈ 0, (11)

which must be written as a “weak” equation in Dirac’s termi-
nology46 if one uses the canonical variables (a, π) because (11)
interpreted as an ordinary equation is not consistent53 with the
canonical commutation relation for a and π.

Now consider the general linear superposition of (11) with
a suitably smooth function f,

G =
∫

f (∇ · π + ρ) dτ, (12)

which may be used as the generator of an infinitesimal canon-
ical transformation of a dynamical variableΩ according to the
usual rule

δΩ = ε {G,Ω}, (13)

where ε is infinitesimal. Then we find

π → π ′ = π, (14)

a→ a′ = a + ε∇f , (15)

xn → x′n = xn, (16)

pn → p′n = pn − εen∇f (xn), (17)

H → H ′ ≡ H. (18)

Evidently G is a non-trivial constant of the motion and so
describes an invariance of the system; it induces a gauge trans-
formation in the vector potential and a corresponding change
in the particle momenta such that the {pn} are unchanged. It
is this invariance of the physical dynamics that is referred to
as gauge invariance.

A gauge condition is any linear functional of the vector
potential,

l(a) = 0, (19)

which can be viewed as another constraint on the dynamical
variables. If l is chosen such that its Poisson-bracket with G,
Eq. (12), is non-zero,

{G(π, ρ), l(a)} , 0, (20)

it may be shown that it is possible to redefine the Poisson brack-
ets of the dynamical variables (to give the so-called “Dirac
brackets”) so that the modified brackets of the constraints with
all dynamical variables vanish identically, and the equations
of motion are preserved.46 The constraints can then be taken
as ordinary equations, and (11) written as an ordinary equality
instead of a “weak” equality. In this form, it simply repre-
sents Gauss’s law relating the electric field, E, to the charge
density, ρ,

ε0∇ · E = ρ. (21)

The Dirac brackets are used in exactly the same way as the
usual Poisson form. After standard canonical quantization,
they provide the commutation relations. Thus the Hamiltonian
has a fixed form, and every distinct gauge condition has its own
set of Dirac brackets arrived at through Dirac’s construction.

While there are infinitely many possible gauge condi-
tions, Eq. (19), only two have found practical utility in atomic
and molecular physics, the “Coulomb” or “radiation” gauge
defined by

∇ · A(x) = 0, Coulomb gauge condition, (22)

and the “multipolar” gauge defined by

x · a(x) = 0, multipolar gauge condition. (23)

There is a long history for the use of the gauge condition
(23) and a clear connection with the PZW transformation.61–63

Having said that, it is important to recognize that the PZW
Hamiltonian (Sec. III) makes no use of the vector potential.

The “multipolar” gauge vector potential aM is defined
by64

aM (x′, t) = A(x′, t) − ∇x′

∫ 1

0
du x′ · A(ux′, t), (24)
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and we use A specifically to represent the Coulomb gauge
vector potential. The substitution

z = x′ u, dz = x′ du (25)

leads to

aM (x′, t) = A(x′, t) − ∇x′

∫ x′

0
dz · A(z, t). (26)

This representation of the vector potential can be related to the
PZW formalism in the following way:59 let∫ x′

0
dz · A(z, t) =

∫
g(x, x′) · A(x) d3x, (27)

where

g(x, x′) =
∫ x′

0
dz δ3(x − z) (28)

is Green’s function for the divergence equation,

∇x · g(x, x′) = − δ3(x − x′). (29)

Clearly only the longitudinal component of g is well defined
by (29),

g(x, x′)‖ = ∇x
1

4π |x − x′ |
. (30)

The “electric polarization field” introduced by Power and
Zienau1,4 is a solution of the equation

∇ · P(x) = −ρ(x), (31)

where ρ is the charge density (6). It is easily seen that the
polarization field can be written with the aid of the solution of
(29) in the form,

P(x) =
∫

g(x, x′) ρ(x′) d3x′. (32)

Although a quantity P defined by (31) is understood as a contri-
bution to the “displacement field” in classical dielectric theory,
here it is best not to make a physical interpretation since from
the foregoing its transverse component is not determined.

The “multipolar” gauge vector potential arises when the
specific choice of a straight path of finite length from an (arbi-
trary) origin to the field point x, Eq. (25), is made for the
integration path in (28), and this choice defines a gauge for the
vector potential. On the other hand, the Coulomb gauge vector
potential can be defined by choosing g in (27) as the purely
longitudinal form (30); an integration by parts in the RHS of
(27) shows that this is equivalent to the conventional formula-
tion, (22). Equation (28) implies that (27) is path-dependent,
and (26) can be given a more general interpretation as a rep-
resentation of an arbitrary vector potential characterized by a
specified path P. It is evident that no gauge condition is any
more significant than any other; to suppose otherwise would
be like saying a particular direction is physically significant in
a system that is rotationally invariant. Of course some choice
has to be made in order to have practical calculation, and some
choice may be more convenient than others. But in the end, one
has to demonstrate that the calculation satisfies gauge invari-
ance. We do not go into the details of the calculation of the
commutation relations for different gauges, which are given
in the original literature,46,54–56 except to note specifically that
those for the Coulomb gauge and multipolar gauge conditions
were given in Refs. 3, 61–63, and 65.

Now consider the Poisson brackets (8) and (9) which
provide the rules for differentiation of a function of the phase-
space variables. According to the first Poisson bracket in
Eq. (9), we may identify the gauge invariant variable p as
the generator of an infinitesimal translation of the particle

x → x + dx, (33)

through an infinitesimal canonical transformation with the
relation

dx = {x, p · dx}. (34)

An infinitesimal translation dx of a general phase-space
function Γ is given by

Γ(x + dx) = Γ(x) + {Γ, p · dx}. (35)

If one transports Γ around an infinitesimal rectangle with sides
dx, dx′, the result after one complete circuit is a change in Γ
of

δΓ = {Γ, {pr , ps
}} dxr dx′s. (36)

With the aid of (8), this becomes

δΓ = e{Γ, B(x) · dσ}, (37)

where the area dσ is

dσ = dx ∧ dx′. (38)

A non-zero value for (37) implies that translation of Γ by dx
followed by a translation of dx′ is not the same as transla-
tion first by dx′ followed by dx; basic geometry dictates that
successive translations on curved surfaces do not commute,
so we conclude that classical electrodynamics in Hamiltonian
form has a curved phase-space characterized by the magnetic
field.

Corresponding to the infinitesimal version (37), there is a
finite integrated form involving the integral

e
∫
S

B · dS = e
∮
P

a · dx, (39)

where the first integral is taken over a surface S bounded by
a closed curve P, and we used the Stokes theorem and (5). In
terms of differential geometry, the infinitesimal 1-form a · dx
is the “connection” that specifies how to make infinitesimal
displacements in the phase-space, and the magnetic field B is
the associated “curvature” of the phase-space.

These geometrical facts about the phase-space of charged
particles in the presence of an electromagnetic field reviewed
above have no direct consequences in classical electrody-
namics. However they are inherited in QED after canonical
quantization and play a fundamental role in the quantum
theory.

The formally unitary operator

U = exp

(
ie
~

∫
P
a · dx

)
, (40)

in which the vector potential operator is integrated along
some path P occurs throughout QED. It is, for example, the
basis of the description of the magnetic field Bohm-Aharonov
effect.66–68 Feynman in his Lectures on Physics69 uses the
infinitesimal form of U (the differential 1-form a · dx) to state
the fundamental quantum law for a charged particle moving
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in an electromagnetic field as a change of phase of its wave-
function. If P is taken to be a closed path, U is essentially the
gauge-invariant Wilson loop operator [cf (39)] in both Abelian
(QED) and non-Abelian (Yang-Mills) gauge theories (see, for
example, Ref. 39). In his gauge-invariant QED, Dirac60,70,71

introduced a quantity that is essentially Green’s function g in
(28) and showed that a gauge-invariant electron field operator,
Φ, could be obtained from the usual gauge dependent opera-
tor φ by writing Φ = Uφ. Finally, the specific choices, (i) a
is the Coulomb gauge vector potential, A, and (ii) the path P
is the straight line path of finite length from some (arbitrary)
origin to the position of a charge e, identify U as the unitary
operator that affects the PZW transformation1,3,5–7,9,10 of the
Coulomb gauge-fixed Hamiltonian for the charge e. Thus the
PZW transformation is rigorously rooted in the mainstream of
modern quantum electrodynamics.

III. THE POWER-ZIENAU-WOOLLEY
TRANSFORMATION

Taking g with the straight line path in the polarization field
(32), and the Coulomb gauge vector potential, A, one can form
the PZW transformation operator (1) with3

S =
∫

P · A dτ =
∑

n

enxn ·

∫ 1

0
A(uxn) du, (41)

which has a multipole expansion with leading terms that
coincide with the form given by Power and Zienau1–3 (see
also the work of Fiutak72). S commutes with the canonical
“position” field and particle operators, so the transformation
yields

A→ A′ = A, (42)

π → π ′ = π + P, (43)

xn → x′n = xn, (44)

pn → p′n = pn + ∇xnS, (45)

H→ H′ = HPZW. (46)

Obviously it is not a gauge transformation since S commutes
with the Coulomb gauge vector potential, A; since it is unitary,
the commutation relation between A and its conjugate π is
unchanged. S also commutes with Gauss’s Law (21); the form
of the Hamiltonian is modified however. It may be written
as

HPZW =
∑

n

|pn |
2

2mn
−

∫
P · E⊥ dτ −

∫
M · B dτ

+
∫ ∫

X : BB dτ dτ′ +
1

2ε0

∫
P · P dτ

+
1
2
ε0

∫ (
|E⊥ |2 + c2 |B|2

)
dτ (47)

in the usual notation. Equation (47) displays a remark-
able feature of the transformation, namely, that, unlike the
Coulomb gauge theory, there are no explicit Coulombic ener-
gies between the charges. This will be discussed below. If one
takes the polarization field in its general path-dependent form,
one has a family of unitary transformations that lead to the
same form for the transformed Hamiltonian.

There are other routes73,74 to this result which should be
mentioned; the transformation can be carried out at the clas-
sical level followed by standard canonical quantization. If the
operator S is expressed in terms of the classical polarization
field P and the Coulomb gauge vector potential, A, it can be
considered as the generator of a classical canonical transfor-
mation of the (classical) Coulomb gauge Hamiltonian which
results in the form (47) expressed in classical variables. Alter-
natively, one can take the total time derivative of this classical
generator and subtract it from the Lagrangian function (4)
(in an arbitrary gauge) to give a new classical Lagrangian
function

LPZW = L −
d
dt

∫
P · a dτ (48)

which yields the same equations of motion. The application of
the general Hamiltonian method summarized in Sec. II to the
new Lagrangian leads directly to the classical form of (47);57

the constraint (11) is replaced by the modified form

∇ · π ≈ 0 (49)

which has the same content as the original one, by virtue of
(31) and (43). Canonical quantization of the particle and field
variables leads directly to (47).

In (47), the first term is a sum of kinetic energy opera-
tors for the charges, and the last term is the usual Hamiltonian
operator for free radiation: M is a magnetization density which,
like P, is linear in the charge e, and X is a generalized dia-
magnetic susceptibility tensor that is proportional to e2. Their
particular forms depend on the choice made for the electric
polarization operator P through the evaluation of the gradient
term in (45).3,75–77 It remains to discuss the terms involving
P. If we combine (28), in its generalized form for an arbi-
trary path P, and (32), the classical polarization field appears
as

P(x) =
∑

n

en

∫ xn

P
δ3(x − z) dz. (50)

The transformation operator S then reduces to line integrals
on arbitrary paths of the differential 1-form A · dz. The famil-
iar multipolar formalism arises if the path P for each term
in the sum is the straight line from some origin O fixed in
the charge distribution to the position of particle n. For sys-
tems that are overall electrically neutral, P is independent of
O, and if required can be written59,71 purely in terms of the
particle coordinates, and the paths P. This simply expresses
the fact that the origin O has no physical significance, and
cannot appear in observables. In consequence, for molecules
that have significant symmetry elements, it is always possi-
ble to choose a multipolar expansion taken about a position
that naturally exploits the corresponding spatial symmetry
relations.

As a simple example, consider the hydrogen atom with an
electron, �e, at x1 and a proton, +e, at x2; the direct calculation
shows that the line integral

P(x) = e
∫ x2

x1

dz δ3(z − x) (51)

is a solution of (3) in this case.71 No restriction to the straight
line path between the two charges is implied here; the only
points in space at which the polarization field is non-zero are
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those that lie on the chosen path. More generally, in the multi-
particle neutral system, the polarization field is only non-zero
along the paths joining pairs of oppositely charged particles.
The interaction term linear in P in (47) then evidently describes
an interaction between the individual charges mediated by the
transverse component of the electric field evaluated purely
on the path P; thus between the electron and the proton, we
have

VE⊥ = − e
∫ x2

x1

dz · E(z)⊥. (52)

The elementary properties of line integrals show that the inter-
action energy (52) depends on the path specified between the
electron and proton. If the transverse electric field is constant
along the path and the path is of finite length, (52) reduces to
the familiar electric dipole interaction

VE⊥ → − d · E⊥. (53)

For the quadratic term in Eq. (47), we can make an
orthogonal decomposition into parts that, respectively, have
vanishing divergence (P⊥) and vanishing curl (P ‖); then we
can write∫

P · P dτ =
∫

P‖ · P‖ dτ +
∫

P⊥ · P⊥ dτ, (54)

and it is usual to regard the two contributions in (54) quite
differently. Consider the example of the hydrogen atom again;
we have similarly to (52)∫

P · P dτ =
e

2ε0

∫ x2

x1

dz · P(z). (55)

Since ∇ ∧ P only vanishes if P is the gradient of a single-
valued field (purely longitudinal), we see that the quadratic
term in general is path dependent, and this carries over to the
many-particle case. From (30) and (32), we have the classical
formula for the longitudinal component

P(x)‖ =
∑

n

en∇xn

(
1

4π |x − xn |

)
, (56)

which if combined with (41) implies S = 0. So, after quantiza-
tion, (1) is the identity transformation that leaves the Coulomb
gauge Hamiltonian unchanged; then the terms in M and X
reduce to the usual p ·A and |A|2 terms, the term linear in E⊥
vanishes, and2,3

1
2ε0

∫
|P‖ |2 dτ =

∑
n,m

enem
1

4πε0 |xn − xm |
(57)

independently of the paths; (57) contains the usual infi-
nite self-energy of each of the N point charges which is
discarded.

From the foregoing, we see that the path dependence of
the Hamiltonian derives from the transverse component of the
polarization field which is arbitrary; as far as is known, there
is no theory to fix its form. This means that the second, third,
fourth, and fifth terms in (47) are also arbitrary, a fact that
should be understood as an expression of the gauge symmetry
of the Hamiltonian. Clearly the line integral form (50) has a
transverse component determined by the path P, and given
a path one can hope to evaluate its contribution to (54). It is
also clear that these are formal expressions, just as the current-
density in (6) is; they involve distributions, in the mathematical

sense, expressed as Dirac delta functions. Multiplication of
distributions in general has no meaning and so the integral
over |P|2 cannot be definite. To illustrate this, consider the
original formulation of Power and Zienau1

P(x) ≈ (d + · · · ) δ3(O − x), (58)

where O is the arbitrary origin about which the multipole
expansion is made, and confine attention to just the electric
dipole term. Then∫

P · P dτ = (d · d + · · · ) δ3(0), (59)

and δ3(0) is not defined. If this calculation is done with the
straight-line path (i.e., the multipoles summed to infinite order
expressed as an integral), then various singular terms arise,
but it is not clear that the full integral (54) provides the
Coulomb energy between the charges (the singular terms being
supposed “renormalized” away).39,71 The conventional prac-
tice has always been to put (57) into the atomic/molecular
Hamiltonian which, together with the free-field Hamiltonian,
specify the “unperturbed” part of the problem, and to regard
the second term on the RHS of (54) as part of the (arbitrary)
“perturbation.”

This singular behaviour is traceable to the point charge
model used in the original classical formulation of electro-
dynamics and the associated paths {P} which are infinitely
thin; the theory however is non-relativistic which means that
photon momenta in interactions with a particle of mass m
must be cut off at some kmax � mc/h, or equivalently that
distances less than the Compton wavelength for the parti-
cle h/mc must be excluded. Then all the terms in the trans-
formed Hamiltonian are well behaved (this is also true of
the Coulomb gauge Hamiltonian of course), though arbitrary
because the paths P are arbitrary. So how can a family of
apparently arbitrary Hamiltonians give the same results for
observables? The key is that we are dealing with unitary
transformation.

The circumstances in which the Coulomb gauge and PZW
Hamiltonians lead to equivalent results were comprehensively
described in numerous publications over the years.73,74,78–84

These efforts proved that the two formulations give the same
results for physical observables “on the energy shell,” which
means identical results for any process that conserves energy.
It is simply an aspect of the fact that in quantum theory, a
unitary transformation of a Hamiltonian leaves certain quan-
tities invariant. If the Hamiltonian has any discrete spectrum,
then the eigenvalues are unchanged; if there is a continuous
portion to the spectrum, then it is appropriate to refer to the
Hamiltonian’s S-matrix, which is invariant. In the case of non-
relativistic QED, the only eigenvalue is the ground state energy,
here optionally set to zero, which is invariant. Of course the
S-matrix is on the energy-shell, so that Coulomb-gauged and
PZW-obtained cross sections are the same—see, for example,
explicit demonstrations for a general version of the Kramers-
Heisenberg dispersion formula not restricted to the electric
dipole approximation.78,79

It is clear in these and other references cited relating to the
foundations of the subject that the atomic/molecular Hamilto-
nian and the field Hamiltonian can be taken to be the same
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in both the Coulomb gauge and the PZW transformed repre-
sentation, but that the interaction terms are different. On the
energy shell, both Hamiltonians, as well as the entire class of
equivalent Hamiltonians,73 give identical results—and in per-
turbation theory, that is true to all orders.85 There are many
instances in the literature of the equivalence of, for example,
light scattering cross sections, electromagnetic energy densi-
ties, and the Poynting vector calculated with various unitarily
equivalent Hamiltonians.73,74,78–84

For off-energy-shell processes (typically transient pro-
cesses, within a time scale determined by energy-time uncer-
tainty), one can obtain different answers because unitary
equivalence can no longer be guaranteed. Indeed it should be
recalled that the original motivation of Power and Zienau1 was
the observation that the lineshape measured in the classic Lamb
shift experiments on the hydrogen atom did not agree with that
calculated using Heitler’s time-dependent perturbation theory
with the Coulomb gauge Hamiltonian. They found much bet-
ter agreement with their transformed Hamiltonian using their
approximate multipolar form (58) for the polarization field P in
(41), and noted that the experiment was sufficiently accurate to
discriminate between the two calculations. On that basis, they
claimed that the PZW Hamiltonian gave a better representation
of a neutral collection of charges (atom/molecule) interacting
with the quantized electromagnetic field. Of course, this is not
an entirely satisfactory position because an observable is ought
to be calculated in a gauge-invariant fashion.

IV. DISCUSSION

Our reappraisal of the fundamental theory related to the
PZW Hamiltonian and associated gauge conditions in Secs. II
and III puts us in the position to help demystify some common
misconceptions surrounding the nature of light-matter interac-
tions within the framework of quantum electrodynamics. For
example, the recent RF study11 suggested that the PZW Hamil-
tonian is problematic because the Coulomb gauge (“minimal
coupling”) and PZW Hamiltonians predict physically differ-
ent results, and that the Coulomb gauge Hamiltonian is to
be preferred. Furthermore it was asserted that the PZW and
Coulomb gauge Hamiltonians are related through a unitary
transformation that does not fulfill gauge fixing constraints,
and hence the former gives rise to non-physical states described
as “longitudinal photon states.” It should be observed that their
presentation of the PZW Hamiltonian is highly idiosyncratic,
in that it is expressed in terms of the Coulomb gauge and
multipolar gauge vector potentials, and the scalar potential
reappears. To our knowledge, the originators of the PZW trans-
formation never used such a formulation; examination of the
original literature substantiates this view.1–3

The reappearance of a scalar potential is certainly not
in the spirit of Dirac’s generalized Hamiltonian theory for
systems with constraints; in Les transformations de jauge en
Électrodynamique,46 Dirac described the mathematical basis
of the relevant Hamiltonian theory and applied it to three
cases involving the electromagnetic field: the free-field, the
field in interaction with a massive spin-zero field (the Pauli-
Weisskopf model) and with relativistic electrons. In each case,
Dirac arrived at the appropriate Hamiltonian and was moved

to remark86 “Thus we may entirely neglect the dynamical
variables Ao and Bo [φ and π0 respectively in our notation],
and write the Hamiltonian . . . without modifying the equa-
tions of motion. The variables Ao and Bo no longer have any
physical meaning.” Dirac’s insight was basically that singular
Lagrangians occur when there are more dynamical variables
specified than required, and his method is simply a technique
for removing the redundant variables. In the case of electro-
dynamics in Hamiltonian form, the redundant variables are
the scalar potential φ and its formal conjugate, π0. When they
are removed, the Hamiltonian can be used in the usual way,
and all the usual consequences of quantum theory apply. The
discussion in Sec. III surely refutes the claims in RF;11 we
simply refer to the notion of unitary equivalence and point to
the irrelevance of a gauge for the vector potential which does
not appear in (47). There is no sense in which the PZW ver-
sion of electrodynamics based on the unitary transformation
generated by S, Eq. (41) (or more generally, gauge theories)
proves deficient.

A key feature of the PZW Hamiltonian is the absence
of longitudinal components in the electric field. As such, the
quanta of the radiation field are correctly regarded as “trans-
verse” photons. All interactions between material particles are
therefore mediated by the exchange of virtual photons with this
specific transverse character.21,87,88 Indeed, this feature is the
origin of the widespread application of the multipolar PZW
development to intermolecular interactions.10 However it is
important to recognize that the transversality condition relates
to fields that are orthogonally disposed with respect to the
wave-vector. For near-field interactions, i.e., those proximal
to a source, electrodynamic coupling involves a distribution
of wave-vectors with a variance in k expressing momentum-
space uncertainty. Transversality with respect to spatial dis-
placement is therefore not assured. The distinction becomes
most evident in near-zone behaviour and emerges in calcula-
tions that entail a sum over all virtual photon modes. Examples
of such processes include resonance energy transfer,89–92 the
van der Waals dispersion force,9,10,88 and radiation-induced
inter-particle interactions.93–95 In consequence, there are addi-
tional couplings that are longitudinal with respect to the
displacement x from the source.

This distinction between transversality with respect to k
and with respect to x is crucial. It is confusing to suggest
that “longitudinal polarization” is non-physical because it fails
to make clear with which direction the sense of the term is
meant. It does appear that RF confuse “longitudinal” with
respect to position x (at the heart of their representation of the
Poincaré or multipolar gauge) with its meaning with respect
to wave-vector, k. As observed above, the multipolar gauge
vector potential has a non-zero longitudinal part because of
its definition involving the gradient of the PZW transforma-
tion operator. In fact such contributions are annihilated by the
physical magnetic field occurring in (47) and of course only
the transverse component of the electric field is required in the
interaction and free-field terms.

Another apparent misconception arises in the view that
only if one goes to the electric dipole approximation does
the interaction operator reduce to a term linear in the field
variables and proportional to the electric charge e.11 As has
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been seen, expansions of the second and third terms of Eq.
(47) yield the electric and magnetic multipole series, from
which the prominence of the electric dipole coupling term
readily follows on making the long wavelength approxima-
tion. The third interaction term in the PZW Hamiltonian is
proportional to the square of the electronic charge and depends
bilinearly on the magnetic field, giving rise to the diamagnetic
coupling term.1,3,9,10,20,21 Only the interaction terms that are
linear in the Maxwell fields are employed in first-order pro-
cesses such as one-photon absorption. Describing higher-order
effects proportional to nonlinear powers of the electromag-
netic field, as occur in multiphoton phenomena, poses no
problem as they are treated by successive application of field
operators within a desired order of multipole moment approx-
imation. The same is true when performing calculations with
the Coulomb gauge Hamiltonian. For single-photon absorp-
tion and emission (stimulated and spontaneous) of light, there
is no contribution to the matrix element from the interaction
term that is proportional to the square of the vector poten-
tial, with only the coupling term that is dependent upon the
momentum needed to be retained. Both interaction terms, how-
ever, must be kept in calculations of processes that involve
annihilation or creation of two or more photons, or the absorp-
tion of one photon and the emission of another, as occurs
in linear light scattering. Hence both coupling terms depen-
dent on the vector potential must be used when evaluating
higher-order processes, irrespective of whether or not the field
is spatially uniform. This is essential in guaranteeing gauge
invariance.

In this context, it is noteworthy that a special case of the
PZW transformation has recently been applied to the Coulomb
gauge Hamiltonian so as to eliminate the vector potential
squared term and the static dipolar coupling.42,43 This is done
in order to study the onset of ultrastrong coupling of radia-
tion with atoms and molecules in confined geometries. It is
worth pointing out that a general theory of quantum elec-
trodynamics in a cavity has been available for some time;41

a canonical transformation of the Coulomb gauge Hamilto-
nian with the generator Eq. (41) yields a PZW Hamiltonian
with polarisation, magnetisation, and diamagnetisation distri-
butions coupled to Maxwell fields as in the free space case.
Interestingly, performing a PZW transformation results in the
complete elimination of the Coulomb interaction and that there
are no contributions from image charges. It has also been illus-
trated, in work on the linear electro-optic effect, how the effect
of an external static field can be accommodated by formulat-
ing theory for an entire system including a notional dipolar
source. With the usual device of summing over virtual pho-
ton couplings, based on the PZW Hamiltonian the emerging
result duly represents all of the radiation interactions in terms
of real photons, whilst the field dependence exhibits the correct
classical form.89,96

V. OUTLOOK

The increasingly wide sphere of applications in which the
PZW Hamiltonian is now deployed has provided an opportu-
nity to reevaluate, from a position of current understanding, the
origins and development of the underlying theory. The analysis

of its position within a generic framework of unitary trans-
formations establishes its reliability and its relation to other
gauge theories. In addressing optical interactions, the PZW
form offers significant calculational advantages and insights:
the couplings between the optical fields and charges are defined
in terms of physically intuitive electric and magnetic fields.
This in turn enables a clear and direct linkage to the multi-
pole moments and optical response tensors involved in optical
phenomena, in a cast that elucidates their connections with
molecular symmetry. This reassertion of validity provides a
timely and necessary corrective, consolidating the ground to
advance future applications.

As we approach the second quarter of the 21st century,
there are a number of directions that research in quantum opti-
cal interactions can be seen to be heading. Some are centred
around a better understanding of fundamental aspects of light-
matter interactions, such as processes related to cavity QED
physics97 and quantum relaxation and decoherence.98 Others
are focused on intermolecular interactions such as absorp-
tion, excitation energy transfer, Casimir–van der Waals forces,
and nonlinear optics. Recent work has examined the effect
of including one or more additional particles in modifying
these interactions91,99–108 by extending the theory to account
for three- and many-body couplings, thereby going beyond
the pairwise additive approximation and exploring connec-
tions between microscopic and macroscopic manifestations of
these processes.

Especially interesting is the application of results derived
and insight gained from the solution of the problem of reso-
nance energy transfer between a pair of atoms or molecules
to the dispersion interaction between one ground and one
excited state species,109–114 in which fundamental issues sur-
rounding the nature of a potential versus a rate, the functional
form of the resonant term, and whether transfer of excita-
tion energy is reversible or not, have all been addressed. In
both the migration of energy and the van der Waals disper-
sion interaction, the starting point in the calculation is the
PZW Hamiltonian. Expression of the interaction Hamiltonian
in terms of multipole moments coupled to Maxwell fields is
also advantageous when evaluating phenomena involving chi-
ral species,115 often demanding relaxation of the electric dipole
approximation and the inclusion of effects due to magnetic
dipole and electric quadrupole coupling. A more complete
understanding of these processes will lead to design princi-
ples that are expected to give rise to the development of new
nano-materials for light-harvesting technologies and photo-
voltaics. Quantum optical theories offer a complete description
of radiation-induced inter-particle forces,93–95 thereby allow-
ing realization of optical binding,116 a technique currently in
its infancy—although first predicted using PZW theory93—
which promises new applications in materials, biological, and
medical research. Optical chirality,117 twisted light, and exotic
forms of electromagnetic radiation118–121 offer the possibil-
ity of new advances in cutting-edge imaging and information
processing technologies. Recently there has been interest in
the use of quantum light as a way of probing electrodynami-
cal couplings in chemical systems [such as in Fluorescence
Resonance Energy Transfer (FRET) systems].122,123 The
development of such theory, along with its experimental
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realization, could open new windows into understanding
dynamical processes occurring in condensed phase quantum
systems.

All of these areas of research are highly active across
a variety of sub-disciplines within the chemical physics and
optics communities. There is now a strong trend toward syner-
gistic approaches to scientific and technological development,
in which the strategic design of experimental work and the
implementation of computational modelling are both under-
pinned by the application of fundamental theory. To ensure
continued success and innovation in the spheres of quantum
optics, photonics, and molecular physics, it is more important
than ever to deploy theory that firmly stands on solid founda-
tions. The use of quantum electrodynamics based on the PZW
Hamiltonian guarantees accuracy and success.
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https://doi.org/10.1098/rsta.1959.0008
https://doi.org/10.1098/rspa.1970.0192
https://doi.org/10.1098/rspa.1971.0049
https://doi.org/10.1038/s41598-017-11076-5
https://doi.org/10.1103/physreva.96.033835
https://doi.org/10.1364/ol.42.003443
https://doi.org/10.1103/physreva.94.053826
https://doi.org/10.1063/1.4960732
https://doi.org/10.1103/physreva.92.062131
https://doi.org/10.1063/1.4934231
https://doi.org/10.1016/j.aop.2015.05.030
https://doi.org/10.1103/physreva.91.053824
https://doi.org/10.1002/wcms.1211
https://doi.org/10.1063/1.4871373
https://doi.org/10.1103/physreva.89.013420
https://doi.org/10.1088/0953-4075/46/14/145505
https://doi.org/10.1103/physreva.87.033824
https://doi.org/10.1088/0031-8949/87/03/038114
https://doi.org/10.1088/0031-8949/87/03/038114
https://doi.org/10.1088/0031-8949/87/03/038114
https://doi.org/10.1103/physreva.86.029902
https://doi.org/10.1103/physreva.82.062501
https://doi.org/10.1117/1.3332590
https://doi.org/10.1016/b978-0-444-53705-8.00003-5
https://doi.org/10.1016/b978-0-444-53705-8.00003-5
https://doi.org/10.1103/physreva.80.022902
https://doi.org/10.1103/physreva.79.062106
https://doi.org/10.1103/physreva.78.062901
https://doi.org/10.1103/physreva.78.012107
https://doi.org/10.1088/0953-8984/20/17/175202
https://doi.org/10.1088/0953-8984/20/17/175202
https://doi.org/10.1088/0953-8984/20/17/175202
https://doi.org/10.1103/physreva.77.033844
https://doi.org/10.1103/physreva.77.033844
https://doi.org/10.2478/v10155-010-0092-x
http://arxiv.org/abs/hep-th/9702204v1
https://doi.org/10.1103/physrevd.85.025001
https://doi.org/10.4310/atmp.2003.v7.n4.a3
https://doi.org/10.1103/physreva.25.2473
https://doi.org/10.1103/physrevlett.112.073601
https://doi.org/10.1103/physreva.92.043835
https://doi.org/10.1103/physreva.70.052117
http://www.numdam.org/item?id=AIHP_1952__13_1_1_0
http://www.numdam.org/item?id=AIHP_1952__13_1_1_0
https://doi.org/10.1103/revmodphys.67.113
https://doi.org/10.1103/revmodphys.4.87
https://doi.org/10.4153/cjm-1950-012-1
https://doi.org/10.4153/cjm-1951-001-2
http://www.numdam.org/item?id=AIHPA_1975__23_4_365_0
http://www.numdam.org/item?id=AIHPA_1975__23_4_365_0
https://doi.org/10.1002/9780470142523.ch4
https://doi.org/10.1139/p55-081
https://doi.org/10.1088/0022-3700/6/5/001
https://doi.org/10.1088/0022-3700/7/4/023
https://doi.org/10.1016/0301-0104(95)00122-5
https://doi.org/10.1119/1.1491265
https://doi.org/10.1098/rspa.1983.0022
https://doi.org/10.1103/physrev.115.485
https://doi.org/10.1103/physrevlett.99.210401
https://doi.org/10.1038/452298a
https://doi.org/10.1016/0003-4916(62)90232-4
https://doi.org/10.1080/00268977100103331
https://doi.org/10.1139/p63-002
https://doi.org/10.1119/1.11313
https://doi.org/10.1112/s0025579300005490
https://doi.org/10.1098/rspa.1973.0020
https://doi.org/10.1098/rspa.1973.0020
https://doi.org/10.1098/rspa.1974.0084
https://doi.org/10.1098/rspa.1974.0084
https://doi.org/10.1103/physreva.16.1568
https://doi.org/10.1088/0022-3700/11/7/013
https://doi.org/10.1103/physreva.28.2649
https://doi.org/10.1364/josab.1.000116
https://doi.org/10.1364/josab.2.001100
https://doi.org/10.1364/josab.2.001100
https://doi.org/10.1103/physreva.56.2579
https://doi.org/10.1103/physreva.60.4927
https://doi.org/10.1098/rspa.2000.0587


040901-10 Andrews et al. J. Chem. Phys. 148, 040901 (2018)

Les variables Ao et Bo n’ont plus de signification physique.” The . . . refer
to the Hamiltonians of the three models considered, p. 32 (free-field), p.
34 (Pauli-Weisskopf), p. 36 (relativistic electrons).

87A. Salam, Mol. Phys. 113, 3645 (2015).
88A. Salam, Non-Relativistic QED Theory of the van der Waals Dispersion

Interaction (Springer, Cham, 2016).
89D. L. Andrews and D. S. Bradshaw, Eur. J. Phys. 25, 845 (2004).
90A. Salam, J. Chem. Phys. 122, 044112 (2005).
91M. P. E. Lock, D. L. Andrews, and G. A. Jones, J. Chem. Phys. 140, 044103

(2014).
92J. E. Frost and G. A. Jones, New J. Phys. 16, 113067 (2014).
93T. Thirunamachandran, Mol. Phys. 40, 393 (1980).
94D. S. Bradshaw and D. L. Andrews, Phys. Rev. A 72, 033816 (2005).
95A. Salam, J. Chem. Phys. 124, 014302 (2006).
96L. Davila Romero, S. Naguleswaran, G. E. Stedman, and D. L. Andrews,

Nonlinear Opt. 23, 191 (2000).
97L. Garziano, R. Stassi, V. Marci, A. F. Kockum, S. Savasta, and F. Nori,

Phys. Rev. A 92, 063830 (2015).
98S. Putz, D. O. Krimer, R. Amsuss, A. Valookaran, T. Nobauer, J. Schmied-

mayer, S. Rotter, and J. Majer, Nat. Phys. 10, 720 (2014).
99G. J. Daniels and D. L. Andrews, J. Chem. Phys. 116, 6701 (2002).

100M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko,
Advances in the Casimir Effect (Oxford University Press, New York, 2009).

101A. Salam, J. Chem. Phys. 136, 014509 (2012).
102A. Salam, J. Chem. Phys. 139, 244105 (2013).
103D. L. Andrews and J. S. Ford, J. Chem. Phys. 139, 014107 (2013).

104J. S. Ford and D. L. Andrews, Chem. Phys. Lett. 591, 88 (2013).
105A. Salam, J. Chem. Phys. 140, 044111 (2014).
106M. M. Coles, J. M. Leeder, and D. L. Andrews, Chem. Phys. Lett. 595-596,

151 (2014).
107J. M. Leeder and D. L. Andrews, J. Phys. Chem. C 118, 23535

(2014).
108D. Weeraddana, M. Premaratne, and D. L. Andrews, Phys. Rev. B 92,

035128 (2015).
109G. Juzeliunas, Phys. Rev. A 52, 929 (1997).
110H. Safari and M. R. Karimpour, Phys. Rev. Lett. 114, 013201 (2015).
111P. R. Berman, Phys. Rev. A 91, 042127 (2015).
112P. W. Milonni and S. M. H. Rafsanjani, Phys. Rev. A 92, 062711 (2015).
113M. Donaire, Phys. Rev. A 93, 052706 (2016).
114P. Barcellona, R. Passante, L. Rizzuto, and S. Y. Buhmann, Phys. Rev. A

94, 012705 (2016).
115P. Barcellona, H. Safari, A. Salam, and S. Y. Buhmann, Phys. Rev. Lett.

118, 193401 (2017).
116K. Dholakia and P. Zemanek, Rev. Mod. Phys. 82, 1767 (2010).
117Y. Tang and A. E. Cohen, Phys. Rev. Lett. 104, 163901 (2010).
118L. Allen, M. L. Padgett, and M. Babiker, Prog. Opt. 39, 291 (1999).
119M. J. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
120A. M. Yao and M. J. Padgett, Adv. Opt. Photonics 3, 161 (2011).
121K. Y. Bliokh and F. Nori, Phys. Rev. A 83, 021803 (2011).
122K. Bennett and S. Mukamel, J. Chem. Phys. 140, 044313 (2014).
123Z. Zhang, K. Bennett, V. Chernyak, and S. Mukamel, J. Phys. Chem. Lett.

8, 3387 (2017).

https://doi.org/10.1080/00268976.2015.1049573
https://doi.org/10.1088/0143-0807/25/6/017
https://doi.org/10.1063/1.1830430
https://doi.org/10.1063/1.4861695
https://doi.org/10.1088/1367-2630/16/11/113067
https://doi.org/10.1080/00268978000101561
https://doi.org/10.1103/physreva.72.033816
https://doi.org/10.1063/1.2140000
https://doi.org/10.1103/physreva.92.063830
https://doi.org/10.1038/nphys3050
https://doi.org/10.1063/1.1461819
https://doi.org/10.1063/1.3673779
https://doi.org/10.1063/1.4849757
https://doi.org/10.1063/1.4811793
https://doi.org/10.1016/j.cplett.2013.11.002
https://doi.org/10.1063/1.4862233
https://doi.org/10.1016/j.cplett.2014.01.028
https://doi.org/10.1021/jp507262a
https://doi.org/10.1103/physrevb.92.035128
https://doi.org/10.1103/physrevlett.114.013201
https://doi.org/10.1103/physreva.91.042127
https://doi.org/10.1103/physreva.92.062711
https://doi.org/10.1103/physreva.93.052706
https://doi.org/10.1103/physreva.94.012705
https://doi.org/10.1103/physrevlett.118.193401
https://doi.org/10.1103/revmodphys.82.1767
https://doi.org/10.1103/physrevlett.104.163901
https://doi.org/10.1016/s0079-6638(08)70391-3
https://doi.org/10.1016/s0079-6638(08)70391-3
https://doi.org/10.1038/nphoton.2011.81
https://doi.org/10.1364/aop.3.000161
https://doi.org/10.1364/aop.3.000161
https://doi.org/10.1103/physreva.83.021803
https://doi.org/10.1063/1.4862236
https://doi.org/10.1021/acs.jpclett.7b01129

