
CPPN2GAN: Combining Compositional Pattern Producing
Networks and GANs for Large-scale Pattern Generation

Jacob Schrum
Southwestern University
Georgetown, Texas, USA

schrum2@southwestern.edu

Vanessa Volz
modl.ai

Copenhagen, Denmark
vanessa@modl.ai

Sebastian Risi
modl.ai, IT University of Copenhagen

Copenhagen, Denmark
sebastian@modl.ai

ABSTRACT
Generative Adversarial Networks (GANs) are proving to be a pow-
erful indirect genotype-to-phenotype mapping for evolutionary
search, but they have limitations. In particular, GAN output does
not scale to arbitrary dimensions, and there is no obvious way
of combining multiple GAN outputs into a cohesive whole, which
would be useful in many areas, such as the generation of video game
levels. Game levels often consist of several segments, sometimes
repeated directly or with variation, organized into an engaging
pattern. Such patterns can be produced with Compositional Pattern
Producing Networks (CPPNs). Specifically, a CPPN can define latent
vector GAN inputs as a function of geometry, which provides a
way to organize level segments output by a GAN into a complete
level. This new CPPN2GAN approach is validated in both Super
Mario Bros. and The Legend of Zelda. Specifically, divergent search
via MAP-Elites demonstrates that CPPN2GAN can better cover the
space of possible levels. The layouts of the resulting levels are also
more cohesive and aesthetically consistent.

CCS CONCEPTS
•Computingmethodologies→Neural networks;Generative
and developmental approaches; Learning latent representa-
tions; Genetic algorithms;

KEYWORDS
Compositional Pattern Producing Networks, Generative Adversar-
ial Networks, Indirect Encoding, Neuroevolution
ACM Reference Format:
Jacob Schrum, Vanessa Volz, and Sebastian Risi. 2020. CPPN2GAN: Combin-
ing Compositional Pattern Producing Networks and GANs for Large-scale
Pattern Generation. In Genetic and Evolutionary Computation Conference
(GECCO ’20), July 8–12, 2020, Cancún, Mexico. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3377930.3389822

1 INTRODUCTION
Generative Adversarial Networks (GANs [11]), which are a type of
generative neural network that are trained in an unsupervised way,
have been shown capable of reproducing certain aspects of a given

training set. For example, they can generate diverse high-resolution
samples of a variety of different image classes [4].

However, it is an open question how such a GAN-based approach
can scale to generate arbitrarily large artefacts that have a modular
structure, such as complete game levels. Game levels can consist of
many segments repeated many times, often with variation. Several
recent works have shown that it is possible to learn the structure of
video game levels using GANs [12, 18, 25, 29], but these approaches
only generate small level segments.

In particular, Volz et al. [29] trained a GAN on small segments
of Super Mario Bros. levels and searched the induced latent space
with CMA-ES [14] to find segments with different properties. In ef-
fect, the GAN learned a compact and robust genotype-to-phenotype
mapping, in which most generated artefacts resemble valid level
segments. Training such a GAN on complete Mario levels instead
of segments would be challenging due to the drastic reduction in
available samples, and the large variation in scale across different
levels. While some GAN-based approaches exist to generate com-
plete levels for e.g. the game DOOM [10], they only encode the
high-level map structure without low-level details. Instead, this
paper aims to generate complete levels with low-level details, by
generating multiple segments with a GAN, and combining them
into a cohesive global pattern. For example, different segments
might increase smoothly in difficulty, have repeating structures, or
certain motifs might appear in a symmetric fashion.

This paper builds on a method that has proven its ability to
generate patterns with regularities such as symmetry, repetition,
and repetition with variation: Compositional Pattern Producing
Networks (CPPNs [21]). A CPPN is a special type of neural net-
work that compactly describes patterns with regularities and has
succeeded in a variety of domains [5, 7, 15, 16, 19, 20, 26]. The main
contribution of this paper is a way of combining one GAN and
one CPPN: evolve a CPPN that takes Cartesian coordinates of level
segments as input, and produces latent vectors for a GAN that was
pre-trained on existing level content (Fig. 1). This combination of
technologies can generate large-scale and regular video game maps.

Experiments in this paper apply the new technique, CPPN2GAN,
to the games SuperMario Bros. and The Legend of Zelda1. Data from
the Video Game Level Corpus [24] is used to train GAN models for
each game, and CPPNs are evolved using these GANs. CPPN2GAN
is compared to the state-of-the-art for GAN-based level generation,
which is the evolution of real-valued genomes consisting of multiple
GAN latent vectors, one per segment. This control method is called
Direct2GAN. Both approaches use the Quality Diversity algorithm
MAP-Elites [17] to cover the space of possible level designs. Results
below show that Direct2GAN is significantly inferior to the new
1Code available at https://github.com/schrum2/GameGAN

ar
X

iv
:2

00
4.

01
70

3v
1 

 [
cs

.N
E

] 
 3

 A
pr

 2
02

0

https://doi.org/10.1145/3377930.3389822
https://github.com/schrum2/GameGAN


GECCO ’20, July 8–12, 2020, Cancún, Mexico Jacob Schrum, Vanessa Volz, and Sebastian Risi

x

y

x

GAN GeneratorGenerator 

32 z 

4 x 4 x 256 8 x 8 x 128 
16 x 16 x 64 

32 x 32 x 10 

conv 
conv 

conv 

Discriminator 

1 

10 z

ry Presence?

CPPN evolved by 
NEAT

-1 0 1

-1

0

1

32 x 32 x 3

Figure 1: CPPN2GAN approach applied to Zelda. The CPPN takes as input the Cartesian coordinates of a segment in a level (x and y)
together with its distance from the center r , and for each segment produces a different latent vector z that is then fed into the generator of a
GAN pre-trained on existing level content. The CPPN also outputs additional information determining whether the room should be placed,
how its doors connect to other rooms, and other miscellaneous information. The approach is able to capture the patterns in the individual
level segments, but also create complete maps with global structures such as imperfect radial symmetry in the example here.

CPPN2GAN approach in terms of coverage of level design space,
and also does not scale to arbitrary level sizes like CPPN2GAN.

Ultimately, the new CPPN2GAN approach could be relevant not
only for game levels, but for other domains requiring large-scale pat-
tern generators, such as texture generation, building architecture,
neural architecture search, or computer-aided design in general.

2 RELATEDWORK
This paper combines Generative Adversarial Networks (GANs) and
Compositional Pattern Producing Networks (CPPNs) into a new
form of Latent Variable Evolution (LVE).

2.1 CPPNs
Compositional Pattern Producing Networks (CPPNs [21]) are artifi-
cial neural networks (ANNs) with varying activation functions per
node. Unlike standard ANNs, they are repeatedly queried across
a geometric space of possible inputs. For example, a CPPN can
generate a 2D image by taking Cartesian pixel coordinates (x ,y) as
input and outputting intensity values for each corresponding pixel.

CPPNs typically include a large array of different activation
functions that are biased towards specific patterns and regularities.
For example, a Gaussian function allows a CPPN output pattern
to be symmetric, and including a periodic function such as sine
can lead to repeating patterns. Other patterns, such as repetition
with variation (e.g. the fingers of the human hand) can be created
by combining functions (e.g. sine and Gaussian). CPPNs have been
adapted to produce a variety of patterns in domains such as 2D im-
ages [20], musical accompaniments [16], 3D objects [7], animations
[26], and physical robots [5]. In games, CPPNs have been used to
create particle effects for weapons [15] and flowers [19].

CPPNs are traditionally optimized through NeuroEvolution of
Augmenting Topologies (NEAT [22]). NEAT starts with a population
of simple neural networks: inputs are directly connected to outputs.
Throughout evolution, mutations add nodes and connections. NEAT

also allows for efficient crossover between structural components
with a shared origin. The benefit of NEAT is that it optimizes both
the neural architecture and weights of the network at the same
time. More recently, CPPN-inspired neural networks have also been
optimized through gradient descent-based approaches [9, 13].

While CPPNs can create patternswith complex regularities, train-
ing CPPNs to recreate particular images is difficult [30]. GANs do
not share this weakness, which is why we suggest combining them.

2.2 Generative Adversarial Networks
The training process of Generative Adversarial Networks (GANs
[11]) can be seen as a two-player adversarial game in which a
generator G and a discriminator D are trained at the same time by
playing against each other. The discriminator D’s job is to classify
samples as being generated (by G) or real. The discriminator aims
to minimize classification error, but the generator tries to maximize
it. Thus, the generator is trained to deceive the discriminator by
generating samples that are good enough to be classified as genuine.
Training ideally reaches a steady state whereG reliably generates
realistic examples and D is no more accurate than a coin flip.

At the end of training, the discriminator D is discarded, and the
generator G is used to produce new, novel outputs that capture
the fundamental properties present in the training examples. The
input to G is some fixed-length vector from a latent space. For a
properly trained GAN, randomly sampling vectors from this space
should produce outputs that could pass as real images or levels.
However, to find content with certain properties (such as a specific
game difficulty, number of enemies), the latent space needs to be
searched, as described next.

2.3 Latent Variable Evolution
The first latent variable evolution (LVE) approach was introduced
by Bontrager et al. [3]. In their work a GAN is trained on a set of
real fingerprint images and then evolutionary search is used to find



CPPN2GAN: Combining CPPNs and GANs for Large-scale Pattern Generation GECCO ’20, July 8–12, 2020, Cancún, Mexico

Table 1: Tile types used in generated Mario levels. Symbol
characters (sym) come from the modified VGLC encoding, and the
numeric identity values (num) are then mapped to the correspond-
ing values employed by the Mario AI framework for visualization
(vis). The numeric identity values are expanded into one-hot vectors
when input into the discriminator network during GAN training.

Tile type sym num vis
Stone X 0
Breakable x 1
Empty (passable) - 2
Question Block with coin q 3
Question Block with power up Q 4
Coin o 5
Pipe t 6

Piranha Plant Pipe p 7

Bullet Bill b 8

Goomba g 9

Green Koopa k 10

Red Koopa r 11
Spiny s 12

latent vectors that match with subjects in the dataset. In another
paper, Bontrager et al. [2] present an interactive evolutionary sys-
tem, in which users can evolve the latent vectors for a GAN trained
on different classes of objects (e.g. faces or shoes). Because the
GAN is trained on a specific target domain, it becomes a compact
and robust genotype-to-phenotype mapping (i.e. most phenotypes
resemble valid domain artifacts) and users were able to guide evo-
lution towards images that closely resembled given target images.
This paper introduces the first indirectly encoded LVE approach. In-
stead of searching directly for latent vectors, parameters for CPPNs
are sought. These CPPNs can generate a variety of different latent
vectors, conditioned on the locations of level segments.

3 VIDEO GAME DOMAINS
The games explored in this paper rely on data from the Video Game
Level Corpus (VGLC [24]). Specifically, GAN models for Super
Mario Bros. and The Legend of Zelda are trained, though in each
case some specialized processing of the data is required.

3.1 Super Mario Bros.
Super Mario Bros. (1985) is a platform game that involves moving
left to right while running and jumping. Levels are visualized with
the Mario AI framework2.

The tile-based level representation comes from VGLC, which
uses a particular character symbols to represent each possible tile
type. The encoding is extended to more accurately reflect the data in
the original game (Table 1). For example, VGLC does not distinguish
between different enemy types. Besides adding symbols for more
enemy types, the representation of pipes is adjusted to avoid the
broken pipes seen in previous work [29]. Instead of using four
2http://marioai.org/

Table 2: Tile types used in generated Zelda rooms. The sym-
bol characters (sym) come from the VGLC encoding, and the cor-
responding tile images from the original Legend of Zelda are also
shown (game). The diversity of VGLC tile types is mapped down
to a smaller set of tiles. The numeric values for GAN training are
shown (num), and the final tiles depict how they appear in the
Rogue-like game engine used for visualization (rogue).

Tile type sym game num rogue

Floor F 0

Wall W 1

Block B 1

Door D 1

Stair S 1

Monster statue M 1

Water P 2

Walk-able Water O 2

Water Block I 2
different tile types for a pipe, a single tile is used as an indicator for
the presence of a pipe and extended automatically downward as
required. A detailed explanation of all modifications made to the
encoding can be found in work by Volz [27, Chap. 4.3.3.2].

3.2 The Legend of Zelda
The Legend of Zelda (1986) is an action-adventure dungeon crawler.
The main character, Link, explores several dungeons full of enemies,
traps, and puzzles. This game also has a tile-based VGLC description.
In this paper, the game is visualized with an ASCII-based Rogue-like
game engine used in previous work [12]. The mapping between
original game tiles and Rogue-like tiles is in Table 2.

Previous work [12] reduced the large set of tiles inherent to Zelda
to a smaller set based on functional requirements. Some Zelda tiles
differ in purely aesthetic ways, and others rely on complicated
mechanics not implemented in the Rogue-like. The Rogue-like ac-
commodates three tile types: a floor tile which directly corresponds
to the Zelda floor tile, an impassable tile that corresponds to all
impassable tiles in Zelda, and a water tile that corresponds to an
obstacle that enemies can pass, but Link cannot.

Enemies are not represented in the VGLC data because its authors
did not include them3. VGLC does include information about doors
linking rooms, but that information is excluded from the encoding
because door placement is handled not by the GAN, but by CPPNs,
as described in Section 4.2.

4 APPROACH
The novel approach introduced in this paper employs a two-stage
indirect encoding to evolve video game levels. Individual level seg-
ments are created by sending latent vectors to a Generative Adver-
sarial Network (GAN) trained on data for a target game. To create
whole levels, locations of individual segments are used as input to

3VGLC erroneously refers to statues that occupy some rooms as enemies, but they are
simply impassable objects. Other enemies are absent from VGLC



GECCO ’20, July 8–12, 2020, Cancún, Mexico Jacob Schrum, Vanessa Volz, and Sebastian Risi

a Compositional Pattern Producing Network (CPPN), which out-
puts latent vectors for each segment. An overview of the complete
CPPN2GAN approach below is shown in Fig. 1. For comparison, the
Direct2GAN control approach that generates levels from a genome
consisting of many separate latent vectors is also described below.

4.1 GAN Training Details
The Mario model used was taken from a publicly available reposi-
tory associated with previous research [28], but details of its train-
ing are repeated here. The Zelda model is new, but is based on
another model from a recent paper [12]. Both models are Wasser-
stein GANs [1] differing only in the size of their latent vector inputs
(10 for Zelda, 30 for Mario), and the depth of the final output layer
(3 for Zelda, 13 for Mario). Their architecture otherwise matches
that shown in Fig. 1. Output depth corresponds to the number of
possible tiles for the game. The other output dimensions are 32×32,
which is larger than the 2D region needed to render a level segment.
During training and generation, the upper left corner of the output
region is treated as a generated level, and the rest is ignored.

To encode the levels for training, each tile type is represented
by a distinct integer, which is converted to a one-hot encoded
vector before being input into the discriminator. The generator
also outputs levels in the one-hot encoded format, which is then
converted back to a collection of integers. Mario or Zelda levels in
this integer-based format can be sent to the Mario AI framework
or Rogue-like engine for rendering. The mapping from VGLC tile
types and symbols, to GAN training number codes, and finally to
Mario AI/Rogue-like tile visualizations is detailed in Tables 1 and 2.

GAN input files for Mario were created by processing all 12
overworld level files from VGLC for Super Mario Bros. Each level is
14 tiles high. The GAN expected to always see a rectangular input
of the same size, so each input was generated by sliding a 28 (wide)
× 14 (high) window over the level from left to right, one tile at a
time. The width of 28 tiles is the width of the screen in Mario.

The GAN input for Zelda was created from the 18 dungeon files
in VGLC for The Legend of Zelda, but the actual training samples
are the individual rooms in the dungeons, which are 16 (wide) ×
11 (high) tiles in size. Many rooms are repeated within and across
dungeons, so only unique rooms were included in the training set
(only 38 samples). The training samples are simpler than the raw
VGLC rooms because the various tile types are reduced to a set of
just three as shown in Table 2. Doors were transformed into walls
because door placement is not handled by the GAN, but rather by
the CPPN2GAN approach, described next.

4.2 Level Generation: CPPN2GAN
In order to generate a level using CPPNs and GANs, the CPPN is
given responsibility for generating latent vector inputs for the GAN
as a function of segment position within the larger level.

For Mario, the only input is the x-coordinate of the segment,
scaled to [−1, 1]. So, for a level of three segments, the CPPN inputs
would be −1, 0, and 1. The output of the CPPN is an entire latent
vector (30 variables for Mario). Each latent vector is fed to the GAN
to generate the segment at that position in the level.

Zelda’s 2D arrangement of rooms is more complicated. For the
overall dungeon shape to be interesting, some rooms in the 2D grid

need to be missing. Also, dungeons are typically more interesting if
they are maze-like, so simply connecting all adjacent rooms would
be boring. How maze-like a dungeon is also depends on its start
and end points. These additional issues are global design issues, and
therefore are handled by the CPPN, which defines global patterns,
rather than the GAN, which generates individual rooms.

Thus, CPPNs for Zelda generate latent vector inputs and ad-
ditional values that determine the layout and connectivity of the
rooms. Zelda CPPNs take inputs of x and y coordinates scaled to
[−1, 1]. A radial distance input is also included to encourage radial
patterns, which is common in CPPNs [20]. For each set of CPPN
inputs, the output is a latent vector (size 10 for Zelda) along with six
additional numbers: room presence, right door presence, down door
presence, right door type, down door type, and start/end preference.

Room presence determines the presence/absence of a room based
on whether the number is positive. Similarly, if a room is present
and has a neighboring room in the given direction, then positive
right/down door presence values place a door in the wall heading
right/down. Whenever a door is placed, a door is also placed in
the opposite direction within the connecting room, which is why
top/left door outputs are not needed. For variety, the right/down
door type determines the types of doors, based on different number
ranges for each door type: [−1, 0] for plain, (0, 0.33] for soft-locked,
(0.33, 0.66] for bomb-able passage, and (0.66, 1.0] for locked. Soft-
locked doors only open when all enemies in the room are killed,
bomb-able passages are secret walls that can be bombed to create
a door, and locked doors need a key. Enough keys to pair with
all locked doors are placed at random locations in rooms of the
dungeon. However, to assure that the genotype to phenotype map-
ping is deterministic, the pseudo-random generator responsible
for placing keys is initialized using the bit representation of the
corresponding right or down door type output as a seed.

The final output for start/end preference determineswhich rooms
are the start/end rooms of the dungeon. Across all rooms in the dun-
geon, the one whose start/end preference is smallest is the player’s
starting room, and the one with the largest output is the final goal
room, designated by the presence of a Triforce item (triangle).

This new approach to generating complete levels is compared
with the control approach described next.

4.3 Level Generation: Direct2GAN
To have a meaningful comparison with the CPPN2GAN approach,
an approach that directly evolves genomes consisting of multiple
latent vectors is needed. The Direct2GAN method evolves levels
consisting of S segments for a GAN expecting latent inputs of size
Z by evolving real-valued genome vectors of length S × Z . Each
genome is chopped into individual GAN inputs at level generation.

This approach requires a convention as to how different seg-
ments are combined into one level. For Mario’s linear levels, adja-
cent GAN inputs from the combined vector correspond to adjacent
segments in the generated level. The combined vector is simply
processed from left to right to produce segments from left to right.

To generate 2D Zelda dungeons, individual segments of the linear
genome are mapped to a 2D grid in row-major order: processing
genome from left to right generates top row from left to right,
then moves to next row down and so on. For fair comparison with



CPPN2GAN: Combining CPPNs and GANs for Large-scale Pattern Generation GECCO ’20, July 8–12, 2020, Cancún, Mexico

CPPN2GAN, each portion of a genome corresponding to a single
room contains not only the latent vector inputs, but the six addi-
tional numbers for controlling global structure and connectivity:
room presence, right door presence, down door presence, right door
type, down door type, and start/end preference. Therefore, aM ×N
room grid requires genomes of lengthM × N × (Z + 6).

Such massive genomes induce large search spaces that are diffi-
cult to search, as demonstrated by the experiments described next.

5 EXPERIMENTS
Demonstrating the expressive range of new game level encodings is
important. Therefore, the Quality Diversity algorithm MAP-Elites
[17], which divides the search space into phenotypically distinct
bins, is used for evolving both CPPNs and real-valued vectors.

5.1 MAP Elites
Instead of only optimizing towards an objective, as in standard
evolutionary algorithms, MAP Elites (Multi-dimensional Archive
of Phenotypic Elites [17]) collects a diversity of quality artefacts
that differ along a number N of predefined dimensions. MAP-Elites
discretizes the space of produced artefacts into different bins and,
given some objective, keeps track of the highest performing indi-
vidual for each bin in the N -dimensional behavior space.

Our implementation starts by generating an initial population
of 100 random individuals that are placed in bins based on their
attributes. Each bin only holds one individual, so individuals with
higher fitness replace less fit individuals. Once the initial popula-
tion is generated, solutions are randomly sampled uniformly from
the bins and undergo crossover and/or mutation to generate new
individuals. These newly created individuals also replace less fit
individuals as appropriate, or end up occupying new bins, filling
out the range of possible designs. Performance is measured both in
terms of achieved fitness and the number of bins that are filled as
more individuals are generated. Our experiments generate 50,000
individuals per run after the initial population is generated.

To support a range of meaningful variation within each domain,
each game uses its own distinct binning scheme and fitness measure.

5.2 Dimensions of Variation Within Levels
In Mario, the bin dimensions are based on measurements of three
quantities: decoration frequency, space coverage, and leniency.
These measures were inspired by a study on evaluation measures
for platformer games [23]. Each measure expresses different char-
acteristics of a level:

• decoration frequency: Percentage of non-standard tiles4
• space coverage: Percentage of tiles that Mario can stand on5
• leniency: Average of leniency values6 across all tiles. Enemies
and gaps have negative values, power-ups positive values.

Each score highlights different aspects of a level. All measures
focus on visual characteristics, but also relate to how a player can
navigate through a level. These scores were calculated for individual
segments (10 per level) and then summed across the segments.

4breakable tiles, question blocks, pipes, all enemies
5solid and breakable tiles, question blocks, pipes and bullet bills
61: question blocks; -0.5: pipes, bullet bills, gaps in ground; -1: moving enemies; 0:
remaining

Preliminary experiments were conducted to uncover reasonable
ranges for binning. Multiplying decoration frequency and space
coverage by 3.0 scales them roughly to the range [0, 1], which
is evenly split into 10 bins. Only leniency has both negative and
positive values. Multiplying the raw score by 5.0 scales it roughly
to the range [−0.5, 0.5], which is evenly divided into 5 negative bins
and 5 positive bins. Negative bins correspond to greater challenges,
and positive bins correspond to easier levels. In each dimension,
rare out-of-range values were assigned to the nearest bin.

The fitness is the length of the shortest path to beat the level.
The objective is to maximize the path length, which favors levels
that require jumps - the main mechanic of the game. If no path can
be found the level is deemed unsolvable and receives a fitness of 0.

To determine the path, A* search is performed on the tile-based
representation of the level. To limit computational costs, the game
physics are simplified as follows. First, Mario always occupies a
single tile (small state), and can either move left, move right, or
jump. Once a jump starts, Mario moves up one tile per action for
the next four actions (unless there is an obstruction), and then
falls down until landing on an impassible tile. Mario can still make
left/right movements while airborne, but can only initiate a jump if
on solid ground. Enemies are just impassible obstacles, and Mario
dies if he falls in a pit. The heuristic used favors states further to
the right, because the right edge of the screen is the goal.

Variation across Zelda levels is based on water tile percentage,
wall tile percentage, and the number of reachable rooms. A room
is reachable if it is the start room, or if a door connects it to any
reachable room. This definition makes it computationally cheap to
determine if a room is reachable, but ignores that single rooms can
be impassable7. Water and wall tile percentages are calculated only
with respect to reachable rooms, and only for the 12×7 floor regions
of rooms (surrounding walls ignored). Bins for these dimensions are
divided into 10% ranges, creating 10 bins per dimension. However,
some of these bins are impossible to fill, because the sum of water
and wall percentages must be less than 100% to fit in the room. Floor
tiles occupy additional space. For the number of reachable rooms,
there is a bin for each possible number out of 100. The maximum
number is 100 because dungeons are generated in a 10 × 10 grid.

The fitness for Zelda dungeons is the percentage of reachable
rooms traversed by the shortest solution path from start to goal. The
objective is to maximize the number of rooms visited, as exploring
is one of the main mechanics of the game. Again, if no path can be
found, the dungeon is deemed unsolvable and receives 0 fitness.

A* is again used to determine the path, now using Manhattan
distance to the goal as a heuristic. We take locked doors and keys
into account to only generate paths with rooms that are actually
reachable. Since the inclusion of keys makes the state space very
large, there is a computation budget of 100,000 states.

5.3 CPPN Evolution Details
Levels for both games are evolved using a variant of NEAT [22],
as described in Section 2.1. The specific implementation is MM-
NEAT8. Because CPPNs are being evolved, every neuron in each
network can have a different activation function from the following

7For example because a needed key is inaccessible
8https://github.com/schrum2/MM-NEAT

https://github.com/schrum2/MM-NEAT


GECCO ’20, July 8–12, 2020, Cancún, Mexico Jacob Schrum, Vanessa Volz, and Sebastian Risi

●

●

●
●

●
● ● ● ● ● ●

100

200

300

400

500

0 10000 20000 30000 40000 50000

Generated Individuals

N
u

m
b

e
r
 o

f 
F

il
le

d
 B

in
s

●

CPPN2GAN

Direct2GAN

(a) Mario

●

●
●

● ● ● ● ● ● ● ●

0

500

1000

1500

0 10000 20000 30000 40000 50000

Generated Individuals

N
u

m
b

e
r
 o

f 
F

il
le

d
 B

in
s

●

CPPN2GAN

Direct2GAN

(b) Zelda

Figure 2: Average Number of Filled Bins. Depicts the average number of bins filled across 30 runs as more levels are generated for both
(a) Mario, and (b) Zelda. The 95% confidence intervals are also shown, and are very narrow, indicating high consistency in performance.
CPPN2GAN fills significantly more bins than Direct2GAN in both domains for nearly the entirety of evolution.

list: sawtooth wave, linear piecewise, id, square wave, cosine sine,
sigmoid, Gaussian, triangle wave, and absolute value.

Whenever a new network is generated, is has a 50% chance of
being the offspring of two parents rather than a clone. The resulting
network then has a 20% chance of having a new node spliced in,
40% chance of creating a new link, and a 30% chance of randomly
replacing one neuron’s activation function. There is a per-link
perturbation rate of 5%.

5.4 Real-Valued Evolution
For Direct2GAN, real-valued vectors are initialized with random
values in the range [−1, 1]. When offspring are produced, there is a
50% chance of single-point crossover. Otherwise, the offspring is
a clone of one parent. Either way, each real number in the vector
then has an independent 30% chance of polynomial mutation [8].

6 RESULTS
In terms of the number of MAP Elites bins filled during search,
CPPN2GAN quickly surpasses Direct2GAN by a statistically sig-
nificant amount (p < 0.05) in both Mario and Zelda (Fig. 2). The
differences are large, and confidence intervals are narrow.

Final heatmaps from individual runs demonstrate which regions
of design space each method occupies. Fig. 3 shows final results in
Mario for typical runs of Direct2GAN and CPPN2GAN. Direct2GAN
seems to have trouble discovering levels with a positive leniency.
This is likely because the only way to reach these high leniency
values is by adding lots of question blocks and few enemies, which
limits the number of suitable latent vectors. Here CPPN2GAN ben-
efits from its encoding, which makes it easier to re-use discovered
good solutions. Additionally, even in bins with negative leniency,
CPPN2GAN fills in a wider range of decoration frequency and space
coverage values, and with higher fitness. Interestingly, both meth-
ods have trouble discovering levels with both low space coverage
and high decoration frequency. This is because there are several
decorative tiles that Mario can stand on (pipes, bullet bills, question

blocks, breakable tiles) which thus automatically increase space
coverage as well. Example evolved levels are in Fig. 4.

Example Zelda heatmaps are in Fig. 5. They reveal that Di-
rect2GAN has trouble creating dungeons with many reachable
rooms, whereas CPPN2GAN successfully discovers dungeons with
every possible number of reachable rooms. Even for smaller dun-
geons, CPPN2GAN fills out the range of possible water and wall
percentages more fully, and with higher fitness. Example evolved
dungeons are in Fig. 6. Direct2GAN has trouble connecting scat-
tered rooms, whereas CPPN2GAN, as expected, lays out rooms in a
cohesive pattern with more uniformly structured connectivity.

These experiments demonstrate that CPPN2GAN is vastly su-
perior to Direct2GAN in terms of how much of the design space
is covered for both Mario and Zelda. Further, if specific rare level
characteristics are desired (e.g. Mario levels with high leniency),
CPPNs are more likely to discover suitable levels due to indirect
encoding. However, if diversity within the generated content is
desired, Direct2GAN is the better approach. While Mario levels
generated with CPPN2GAN do switch between patterns as shown
in Fig. 4b, Direct2GAN creates more variation (Fig. 4a). This of
course comes with the cost of losing global level structure.

Similarly, CPPN2GAN is better able to discover Zelda dungeons
with specific properties (such as water and wall percentage), but
CPPN2GAN is better at producing variation in Zelda than in Mario.
Rooms are still frequently repeated, but not as extensively. Con-
fined geographic regions in each dungeon feature particular tile
configurations more prominently, and smoothly transition from
one region to another in an organic fashion. This result is especially
interesting due its potential correlation with the in-game narrative.
For instance, the dungeon in Fig. 6b starts in a region of water-filled
maze-like rooms, leads the player through rooms with a more open
floor plan, then proceeds through a region of different water ob-
stacles before a wide open set of rooms funnels the player to the
Triforce. The dungeon in Fig. 6c is interesting because the solution
path has several twists and turns, despite all rooms being reachable.
This path results from how the CPPN used the geometry of the grid



CPPN2GAN: Combining CPPNs and GANs for Large-scale Pattern Generation GECCO ’20, July 8–12, 2020, Cancún, Mexico

Leniency Bin: 0 Leniency Bin: 1 Leniency Bin: 2 Leniency Bin: 3 Leniency Bin: 4

Leniency Bin: −5 Leniency Bin: −4 Leniency Bin: −3 Leniency Bin: −2 Leniency Bin: −1

Decoration Frequency Bin

S
p

a
c
e

 C
o
ve

ra
g

e
 B

in

250 300 350 400 450 500
Solution Path Length

(a) Direct2GAN

Leniency Bin: 0 Leniency Bin: 1 Leniency Bin: 2 Leniency Bin: 3 Leniency Bin: 4

Leniency Bin: −5 Leniency Bin: −4 Leniency Bin: −3 Leniency Bin: −2 Leniency Bin: −1

Decoration Frequency Bin

S
p

a
c
e

 C
o
ve

ra
g

e
 B

in

250 300 350 400 450 500
Solution Path Length

(b) CPPN2GAN

Figure 3: Heatmaps of Typical Final Archives for Mario Level Evolution. Final MAP-Elites archives are depicted for one run each
of (a) Direct2GAN, and (b) CPPN2GAN. CPPN2GAN fills bins with positive leniency that Direct2GAN cannot fill. Both approaches fail to
create levels with high decoration and low space coverage, since such features contradict each other. Even in negative leniency regions,
CPPN2GAN fills more bins and with higher fitness.

(a) Direct2GAN

(b) CPPN2GAN

Figure 4: Example Evolved Mario Levels. Each level is shown with blue X marks at positions checked by A* search, and a trail of red
X marks along the solution path. Both (a) Direct2GAN and (b) CPPN2GAN levels are shown. These levels are in the same bin, but from
different runs. The CPPN2GAN level begins with one repeating pattern of segments, but then switches to another in the latter half.

to restrict room connectivity. However, this dungeon also has an
interesting diversity of room layouts. It is possible that the selection
pressure to develop interesting room connectivity patterns inserted
so many diverse activation functions into the the CPPNs that more
diverse room patterns emerged as a side-effect. The Direct2GAN
dungeon (Fig. 6a) also features diverse room patterns, but they are
not arranged in a cohesive fashion, and this approach is also more
susceptible to creating isolated, disconnected rooms.

7 CONCLUSIONS AND FUTUREWORK
Generative Adversarial Networks (GANs) have shown impressive
results as generators for high-quality images. However, combining
multiple GAN-generated patterns into a cohesive whole, which
is especially relevant for level generation in games, was so far an
unexplored area of research. This paper presents the first method
that can create large-scale game levels through the combination of
a Compositional Pattern Producing Network and a GAN. One of the
main insights is that there is a functional relationship between the
latent vectors of different game segments, which the CPPN is able
to exploit. Additionally, in comparison to a direct representation of
multiple latent vectors, the introduced CPPN2GAN approach was
able to generate a larger variety of different complete game levels.

However, CPPN2GAN results often contained repeated segments.
If this is undesirable for different applications, future experiments
could use measures for solution variety that also consider local

diversity. Such measures might do a better job of encouraging
repetition with variation instead of pure repetition.

Beyond our proposed approach, there are other interesting ways
to combine the two techniques in this paper. For example, CPPNs
could be used to generate global structure only, while modules
are evolved independently to fulfill local objectives. For Zelda, this
would mean that the global dungeon structure (room presence and
their connections) is generated via CPPN, but the separate rooms
are determined by evolved real vectors. Such a combination would
create interesting global layouts, but allow for arbitrary, chaotic
variation when going from room to room.

The two approaches could also be combined sequentially. First,
CPPN2GAN would introduce some initial global structure and im-
pose some regular patterns in the level. Afterwards, Direct2GAN
could take over to fine-tune the results and/or introduce more local
variety. This idea is similar to HybrID [6].

However, these extensions lose the ability to scale to arbitrary
sizes; a major benefit of CPPNs. In fact, the CPPN2GAN encoding
could enable levels in which components are lazily generated as
needed. This would be especially useful for exploration games, as
new modules (e.g. dungeon rooms) can be served by CPPN2GAN
whenever new areas of the map are discovered by the player.

Besides different combination approaches, modifications to the
training process are also possible. Here, the GAN was pre-trained
and only the CPPNs were evolved. However, it should be possible to
make use of a discriminator to also decide whether global patterns



GECCO ’20, July 8–12, 2020, Cancún, Mexico Jacob Schrum, Vanessa Volz, and Sebastian Risi

1

11

21

31

41

51

61

71

81

91

2

12

22

32

42

52

62

72

82

92

3

13

23

33

43

53

63

73

83

93

4

14

24

34

44

54

64

74

84

94

5

15

25

35

45

55

65

75

85

95

6

16

26

36

46

56

66

76

86

96

7

17

27

37

47

57

67

77

87

97

8

18

28

38

48

58

68

78

88

98

9

19

29

39

49

59

69

79

89

99

10

20

30

40

50

60

70

80

90

100

Water Percentage Bin

W
a
ll 

P
e
rc

e
n
ta

g
e
 B

in

0.00 0.25 0.50 0.75 1.00
Percent Rooms Traversed

(a) Direct2GAN

1

11

21

31

41

51

61

71

81

91

2

12

22

32

42

52

62

72

82

92

3

13

23

33

43

53

63

73

83

93

4

14

24

34

44

54

64

74

84

94

5

15

25

35

45

55

65

75

85

95

6

16

26

36

46

56

66

76

86

96

7

17

27

37

47

57

67

77

87

97

8

18

28

38

48

58

68

78

88

98

9

19

29

39

49

59

69

79

89

99

10

20

30

40

50

60

70

80

90

100

Water Percentage Bin

W
a
ll 

P
e
rc

e
n
ta

g
e
 B

in

0.00 0.25 0.50 0.75 1.00
Percent Rooms Traversed

(b) CPPN2GAN

Figure 5: Heatmaps of Typical Final Archives for Zelda Dungeon Evolution. Final MAP-Elites archives are depicted for one run each
of (a) Direct2GAN, and (b) CPPN2GAN. Each square corresponds to dungeons having a different number of reachable rooms, shown in the
upper-right corners. Within each square are 10 columns for the percentage of room tiles that are water, partitioned into groups of 10%. The
rows of each square indicate the percentage of wall tiles in a similar way. The color intensity is the fitness of the individual in the bin: the
percent of reachable rooms traversed from start to goal. Note that the upper-right corners of each square are impossible to fill, because the
sum of water and wall percentage must be less than 100%. CPPN2GAN has multiple representatives with every possible number of reachable
rooms, but Direct2GAN struggles to create dungeons with larger numbers of reachable rooms.

(a) Direct2GANDungeon: 50 Reachable Rooms (b) CPPN2GAN: 50 Reachable Rooms (c) CPPN2GAN: 100 Reachable Rooms

Figure 6: Example Evolved Dungeons. The (a) Direct2GAN and (b) CPPN2GAN dungeons with 50 reachable rooms each have the same
fitness (38% of reachable rooms traversed in solution path). There is also a (c) CPPN2GAN dungeon with 100 reachable rooms and a
comparable fitness of 34% reachable rooms. Direct2GAN could not produce dungeons with so many reachable rooms. The Direct2GAN
dungeon is more sprawling, and has several rooms that are not reachable (magenta X). Both CPPN2GAN dungeons are more cohesive, and
themes can be noticed in different regions of the dungeons. Larger versions of these figures are included in supplementary material.

(such as Zelda room structure) are similar to the original levels.
This would mean adversarial training of the complete CPPN2GAN
network against a discriminator. Training could be end-to-end or
by alternating between the CPPN and the generator. The resulting
samples should be able to reproduce both global and local patterns
in complete game levels rather than just in individual segments.

ACKNOWLEDGMENTS
The authors would like to thank the Schloss Dagstuhl team and
the organisers of Dagstuhl Seminars 17471 and 19511 for hosting
productive seminars.



CPPN2GAN: Combining CPPNs and GANs for Large-scale Pattern Generation GECCO ’20, July 8–12, 2020, Cancún, Mexico

REFERENCES
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Genera-

tive Adversarial Networks. In International Conference on Machine Learning.
[2] Philip Bontrager, Wending Lin, Julian Togelius, and Sebastian Risi. 2018. Deep

Interactive Evolution. European Conference on the Applications of Evolutionary
Computation (EvoApplications).

[3] Philip Bontrager, Julian Togelius, and Nasir Memon. 2017. DeepMasterPrint:
Generating Fingerprints for Presentation Attacks. arXiv:1705.07386 (2017).

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. 2018. Large Scale GAN
Training For High Fidelity Natural Image Synthesis. arXiv:1809.11096 (2018).

[5] Daniel Cellucci, Robert MacCurdy, Hod Lipson, and Sebastian Risi. 2017. 1D
Printing of Recyclable Robots. IEEE Robotics and Automation Letters 2, 4 (2017).

[6] Jeff Clune, Benjamin E. Beckmann, Robert T. Pennock, and Charles Ofria. 2009.
HybrID: A Hybridization of Indirect and Direct Encodings for Evolutionary
Computation. In European Conference on Artificial Life. 134–141.

[7] Jeff Clune and Hod Lipson. 2011. Evolving Three-dimensional Objects with a
Generative Encoding Inspired by Developmental Biology. In European Conference
on Artificial Life. 141–148.

[8] Kalyanmoy Deb and Ram Bhushan Agrawal. 1995. Simulated Binary Crossover
For Continuous Search Space. Complex Systems 9, 2 (1995), 115–148.

[9] Chrisantha Fernando, Dylan Banarse, Malcolm Reynolds, Frederic Besse, David
Pfau, Max Jaderberg, Marc Lanctot, and DaanWierstra. 2016. Convolution by Evo-
lution: Differentiable Pattern Producing Networks. In Genetic and Evolutionary
Computation Conference. 109–116.

[10] Edoardo Giacomello, Pier Luca Lanzi, and Daniele Loiacono. 2019. Searching the
Latent Space of a Generative Adversarial Network to Generate DOOM Levels. In
Conference on Games. IEEE, 1–8.

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In Advances in Neural Information Processing Systems. 2672–2680.

[12] Jake Gutierrez and Jacob Schrum. 2020. Generative Adversarial Network Rooms in
Generative Graph Grammar Dungeons for The Legend of Zelda. arXiv:2001.05065
(2020).

[13] David Ha, Andrew Dai, and Quoc V. Le. 2017. HyperNetworks. In International
Conference on Learning Representations.

[14] N. Hansen and A. Ostermeier. 2001. Completely Derandomized Self-Adaptation
in Evolution Strategies. Evolutionary Computation 9, 2 (2001), 159–195.

[15] Erin Jonathan Hastings, Ratan K Guha, and Kenneth O Stanley. 2009. Automatic
Content Generation in the Galactic Arms Race Video Game. IEEE Transactions
on Computational Intelligence and AI in Games 1, 4 (2009), 245–263.

[16] Amy K Hoover, Paul A Szerlip, Marie E Norton, Trevor A Brindle, Zachary
Merritt, and Kenneth O Stanley. 2012. Generating a Complete Multipart Musical
Composition from a Single Monophonic Melody with Functional Scaffolding. In
International Conference on Computational Creativity. 111–118.

[17] Jean-BaptisteMouret and JeffClune. 2015. Illuminating Search Spaces byMapping
Elites. arXiv:1504.04909 (2015).

[18] Kyungjin Park, Bradford W. Mott, Wookhee Min, Kristy Elizabeth Boyer, Eric N.
Wiebe, and James C. Lester. 2019. Generating Educational Game Levels with
Multistep Deep Convolutional Generative Adversarial Networks. In Conference
on Games. IEEE, 1–8.

[19] Sebastian Risi, Joel Lehman, David B D’Ambrosio, Ryan Hall, and Kenneth O
Stanley. 2012. Combining Search-Based Procedural Content Generation and
Social Gaming in the Petalz Video Game. In Artificial Intelligence and Interactive
Digital Entertainment.

[20] Jimmy Secretan, Nicholas Beato, David B. D’Ambrosio, Adelein Rodriguez, Adam
Campbell, Jeremiah T. Folsom-Kovarik, and Kenneth O. Stanley. 2011. Picbreeder:
A Case Study in Collaborative Evolutionary Exploration of Design Space. Evolu-
tionary Computation 19, 3 (2011), 373–403.

[21] Kenneth O. Stanley. 2007. Compositional Pattern Producing Networks: A Novel
Abstraction of Development. Genetic Programming and Evolvable Machines 8, 2
(2007), 131–162.

[22] Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks
Through Augmenting Topologies. Evolutionary Computation (2002).

[23] Adam Summerville, Julian R. H. Mariño, Sam Snodgrass, Santiago Ontañón, and
Levi H. S. Lelis. 2017. Understanding Mario: An Evaluation of Design Metrics
for Platformers. In Foundations of Digital Games. ACM. https://doi.org/10.1145/
3102071.3102080

[24] Adam James Summerville, Sam Snodgrass, Michael Mateas, and Santiago On-
tañón. 2016. The VGLC: The Video Game Level Corpus. In Procedural Content
Generation in Games. ACM.

[25] Ruben Rodriguez Torrado, Ahmed Khalifa, Michael Cerny Green, Niels Justesen,
Sebastian Risi, and Julian Togelius. 2019. Bootstrapping Conditional GANs for
Video Game Level Generation. arXiv:1910.01603 (2019).

[26] Isabel Tweraser, Lauren E Gillespie, and Jacob Schrum. 2018. Querying Across
Time to Interactively Evolve Animations. In Genetic and Evolutionary Computa-
tion Conference. ACM.

[27] Vanessa Volz. 2019. Uncertainty Handling in Surrogate Assisted Optimisation of
Games. Ph.D. Dissertation. TU Dortmund University, Germany.

[28] Vanessa Volz, Boris Naujoks, Pascal Kerschke, and Tea Tušar. 2019. Single- and
Multi-Objective Game-Benchmark for Evolutionary Algorithms. In Genetic and
Evolutionary Computation Conference. ACM, 647–655.

[29] Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M. Lucas, Adam M. Smith, and
Sebastian Risi. 2018. EvolvingMario Levels in the Latent Space of a Deep Convolu-
tional Generative Adversarial Network. In Genetic and Evolutionary Computation
Conference. ACM.

[30] Brian G Woolley and Kenneth O Stanley. 2011. On the Deleterious Effects of A
Priori Objectives on Evolution and Representation. In Genetic and Evolutionary
Computation Conference. ACM, 957–964.

https://doi.org/10.1145/3102071.3102080
https://doi.org/10.1145/3102071.3102080


GECCO ’20, July 8–12, 2020, Cancún, Mexico Jacob Schrum, Vanessa Volz, and Sebastian Risi

Figure 7: A selection of example Zelda levels created by CPPN2GAN. The maps show varying degrees of symmetry, repetition, and
repetition with variation.



CPPN2GAN: Combining CPPNs and GANs for Large-scale Pattern Generation GECCO ’20, July 8–12, 2020, Cancún, Mexico

Figure 8: Direct2GAN Dungeon: 50 Reachable Rooms (large version of Fig. 6a). The @ symbol is the start point, and the triangle is
the goal. The red X marks from the start to the goal mark the solution path, and the white X marks correspond to locations checked by A*
search in order to find the solution. The Direct2GAN dungeon is more sprawling, and has several rooms that are not reachable (magenta X).
CPPN2GAN dungeons are more cohesive, and themes can be noticed in different regions of the dungeons.



GECCO ’20, July 8–12, 2020, Cancún, Mexico Jacob Schrum, Vanessa Volz, and Sebastian Risi

Figure 9: CPPN2GAN: 50 Reachable Rooms (large version of Fig. 6b). The @ symbol is the start point, and the triangle is the goal.
The red X marks from the start to the goal mark the solution path, and the white X marks correspond to locations checked by A* search in
order to find the solution. CPPN2GAN dungeons are more cohesive, and themes can be noticed in different regions of the dungeons.



CPPN2GAN: Combining CPPNs and GANs for Large-scale Pattern Generation GECCO ’20, July 8–12, 2020, Cancún, Mexico

Figure 10: CPPN2GAN: 100 Reachable Rooms (large version of Fig. 6c). The @ symbol is the start point, and the triangle is the goal.
The red X marks from the start to the goal mark the solution path, and the white X marks correspond to locations checked by A* search in
order to find the solution. CPPN2GAN dungeons are more cohesive, and themes can be noticed in different regions of the dungeons.


	Abstract
	1 Introduction
	2 Related Work
	2.1 CPPNs
	2.2 Generative Adversarial Networks
	2.3 Latent Variable Evolution

	3 Video Game Domains
	3.1 Super Mario Bros.
	3.2 The Legend of Zelda

	4 Approach
	4.1 GAN Training Details
	4.2 Level Generation: CPPN2GAN
	4.3 Level Generation: Direct2GAN

	5 Experiments
	5.1 MAP Elites
	5.2 Dimensions of Variation Within Levels
	5.3 CPPN Evolution Details
	5.4 Real-Valued Evolution

	6 Results
	7 Conclusions and Future Work
	Acknowledgments
	References

