333 research outputs found

    Time to Shine Volunteer Listeners Report

    Get PDF
    This Volunteer Listeners report provides stories about older people’s experiences of social isolation as part of the evaluation Of Time to Shine, Leeds. The report details the Volunteer Listeners Approach as an idea, its development, pilot testing and full implementation during 2019. The methodology is simple, volunteers hold conversations with older people to capture their stories, and notes about these are then produced as stories. The common themes found within the stories are reported in detail here, and show that the older people telling their stories had experienced complex life circumstances, including loss, bereavement and loneliness. Their participation in Time to Shine Funded activities led to a number of individual benefits. Some also discussed being able to give back by supporting others and volunteering themselves. However, several barriers to participation were also identified

    The Brighton declaration: the value of non-communicable disease modelling in population health sciences.

    Get PDF
    The Brighton declaration arose out of a one day workshop held in Brighton in September 2013 as part of the Society for Social Medicine annual conference. The workshop convened UK based non-communicable disease modellers to discuss the challenges and opportunities for non-communicable disease modelling in the UK. The declaration describes the value and importance of non-communicable disease modelling, both for research and for informing health policy. The declaration also describes challenges and issues for non-communicable disease modelling. The declaration has been endorsed by many non-communicable disease modellers in the UK.The following academics collaborated with the authors to finalise this article are and acknowledged as co-signatories on its content. The authors are extremely grateful for their input. University of Cambridge: Ali Abbas, Marko Tanio; University of Edinburgh: Dr Susannah McLean; UK Health Forum: Martin Brown, Tim Marsh, Marco Mesa-Frias, Lise Retat; Imperial College London: Anthony Laverty; The London School of Hygiene and Tropical Medicine: Zaid Chalabi; University College London: Luz Sanchez Romero; University of Oxford: Anja Mizdrak, Mike Rayner, Marco Springmann; University of Sheffield: Alan Brennan, James Chilcott, John Holmes, Petra Meier, John Mooney; University of Southampton: Grant Aitken. ADMB and OTM are funded by the Wellcome Trust. PS is funded by the British Heart Foundation. JW is funded by an MRC Population Health Scientist Fellowship.This is the final published version. The article was originally published in the European Journal of Epidemiology (2014) 29, 867–870, DOI 10.1007/s10654-014-9978-0

    DNA methylation in the promoter region of the p16 (CDKN2/MTS-1/INK4A) gene in human breast tumours

    Get PDF
    The p16 (CDKN2/MTS-1/INK4A) gene is one of several tumour-suppressor genes that have been shown to be inactivated by DNA methylation in various human cancers including breast tumours. We have used bisulphite genomic sequencing to examine the detailed sequence specificity of DNA methylation in the CpG island promoter/exon 1 region in the p16 gene in DNA from a series of human breast cancer specimens and normal human breast tissue (from reductive mammaplasty). The p16 region examined was unmethylated in the four normal human breast specimens and in four out of nine breast tumours. In the other five independent breast tumour specimens, a uniform pattern of DNA methylation was observed. Of the nine major sites of DNA methylation in the amplified region from these tumour DNAs, four were in non-CG sequences. This unusual concentration of non-CG methylation sites was not a general phenomenon present throughout the genome of these tumour cells because the methylated CpG island regions of interspersed L1 repeats had a pattern of (almost exclusively) CG methylation similar to that found in normal breast tissue DNA and in DNA from tumours with unmethylated p16 genes. These data suggest that DNA methylation of the p16 gene in some breast tumours could be the result of an active process that generates a discrete methylation pattern and, hence, could ultimately be amenable to theraputic manipulation. © 1999 Cancer Research Campaig

    Neo-Aristotelian Naturalism and the Evolutionary Objection: Rethinking the Relevance of Empirical Science

    Get PDF
    Neo-Aristotelian metaethical naturalism is a modern attempt at naturalizing ethics using ideas from Aristotle’s teleological metaphysics. Proponents of this view argue that moral virtue in human beings is an instance of natural goodness, a kind of goodness supposedly also found in the realm of non-human living things. Many critics question whether neo-Aristotelian naturalism is tenable in light of modern evolutionary biology. Two influential lines of objection have appealed to an evolutionary understanding of human nature and natural teleology to argue against this view. In this paper, I offer a reconstruction of these two seemingly different lines of objection as raising instances of the same dilemma, giving neo-Aristotelians a choice between contradicting our considered moral judgment and abandoning metaethical naturalism. I argue that resolving the dilemma requires showing a particular kind of continuity between the norms of moral virtue and norms that are necessary for understanding non-human living things. I also argue that in order to show such a continuity, neo-Aristotelians need to revise the relationship they adopt with empirical science and acknowledge that the latter is relevant to assessing their central commitments regarding living things. Finally, I argue that to move this debate forward, both neo-Aristotelians and their critics should pay attention to recent work on the concept of organism in evolutionary and developmental biology

    Twelve Years' Experience with Direct-to-Consumer Advertising of Prescription Drugs in Canada: A Cautionary Tale

    Get PDF
    Direct-to-consumer advertising (DTCA) of prescription drugs is illegal in Canada as a health protection measure, but is permitted in the United States. However, in 2000, Canadian policy was changed to allow 'reminder' advertising of prescription drugs. This is a form of advertising that states the brand name without health claims. 'Reminder' advertising is prohibited in the US for drugs that have 'black box' warnings of serious risks. This study examines spending on DTCA in Canada from 1995 to 2006, 12 years spanning this policy shift. We ask how annual per capita spending compares to that in the US, and whether drugs with Canadian or US regulatory safety warnings are advertised to the Canadian public in reminder advertising.Prescription drug advertising spending data were extracted from a data set on health sector spending in Canada obtained from a market research company, TNS Media Inc. Spending was adjusted for inflation and compared with US spending. Inflation-adjusted spending on branded DTCA in Canada grew from under CAD2millionperyearbefore1999toover2 million per year before 1999 to over 22 million in 2006. The major growth was in broadcast advertising, accounting for 83% of spending in 2006. US annual per capita spending was on average 24 times Canadian levels. Celebrex (celecoxib), which has a US black box and was subject to three safety advisories in Canada, was the most heavily advertised drug on Canadian television in 2005 and 2006. Of 8 brands with >$500,000 spending, which together accounted for 59% of branded DTCA in all media, 6 were subject to Canadian safety advisories, and 4 had US black box warnings.Branded 'reminder' advertising has grown rapidly in Canada since 2000, mainly due to a growth in television advertising. Although DTCA spending per capita is much lower in Canada than in the US, there is no evidence of safer content or product choice; many heavily-advertised drugs in Canada have been subject to safety advisories. For governments searching for compromise solutions to industry pressure for expanded advertising, Canada's experience stands as a stark warning

    Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase

    Get PDF
    The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair

    Uniform electron gases

    Full text link
    We show that the traditional concept of the uniform electron gas (UEG) --- a homogeneous system of finite density, consisting of an infinite number of electrons in an infinite volume --- is inadequate to model the UEGs that arise in finite systems. We argue that, in general, a UEG is characterized by at least two parameters, \textit{viz.} the usual one-electron density parameter ρ\rho and a new two-electron parameter η\eta. We outline a systematic strategy to determine a new density functional E(ρ,η)E(\rho,\eta) across the spectrum of possible ρ\rho and η\eta values.Comment: 8 pages, 2 figures, 5 table

    Divergence of Mammalian Higher Order Chromatin Structure Is Associated with Developmental Loci

    Get PDF
    Several recent studies have examined different aspects of mammalian higher order chromatin structure - replication timing, lamina association and Hi-C inter-locus interactions - and have suggested that most of these features of genome organisation are conserved over evolution. However, the extent of evolutionary divergence in higher order structure has not been rigorously measured across the mammalian genome, and until now little has been known about the characteristics of any divergent loci present. Here, we generate a dataset combining multiple measurements of chromatin structure and organisation over many embryonic cell types for both human and mouse that, for the first time, allows a comprehensive assessment of the extent of structural divergence between mammalian genomes. Comparison of orthologous regions confirms that all measurable facets of higher order structure are conserved between human and mouse, across the vast majority of the detectably orthologous genome. This broad similarity is observed in spite of many loci possessing cell type specific structures. However, we also identify hundreds of regions (from 100 Kb to 2.7 Mb in size) showing consistent evidence of divergence between these species, constituting at least 10% of the orthologous mammalian genome and encompassing many hundreds of human and mouse genes. These regions show unusual shifts in human GC content, are unevenly distributed across both genomes, and are enriched in human subtelomeric regions. Divergent regions are also relatively enriched for genes showing divergent expression patterns between human and mouse ES cells, implying these regions cause divergent regulation. Particular divergent loci are strikingly enriched in genes implicated in vertebrate development, suggesting important roles for structural divergence in the evolution of mammalian developmental programmes. These data suggest that, though relatively rare in the mammalian genome, divergence in higher order chromatin structure has played important roles during evolution
    corecore