8 research outputs found

    Subclinical seizures on stereotactic EEG: characteristics and prognostic value

    No full text
    OBJECTIVE: Although stereotactic EEG (sEEG) has become a widely used intracranial EEG technique, the significance of subclinical seizures (SCS) recorded on sEEG is unclear and studies examining this finding on sEEG are limited. We investigated (1) the prevalence of SCS in patients undergoing sEEG and clinical factors associated with their presence, (2) how often the subclinical seizure onset zone (SOZ) colocalizes with clinical SOZ, (3) the association of SCS and surgical outcomes, and (4) the influence of resection of the subclinical SOZ on surgical outcome. METHODS: We reviewed all patients who underwent intracranial monitoring with sEEG at our institution from 2015 through 2020 (n=169). Patient and seizure characteristics were recorded, as was concordance of subclinical and clinical seizures and post-surgical outcomes. RESULTS: SCS were observed during sEEG monitoring in 84 of 169 patients (50%). There was no difference in the prevalence of SCS based on imaging abnormalities, temporal vs extratemporal SOZ, number of electrodes, or pathology. SCS were more common in females than males (62% vs 40%, p=0.0054). SCS had complete concordance with clinical SOZ in 40% of patients, partial concordance in 29%, overlapping in 19%, and discordant in 12%. Eighty-three patients had surgery, 44 of whom had SCS. There was no difference in excellent outcome (ILAE 12 or 2) based on the presence of SCS or SCS concordance with clinical SOZ; however, there were improved outcomes in patients with complete resection of the subclinical SOZ compared with patients with incomplete resection (p =0.013). SIGNIFICANCE: These findings demonstrate that SCS are common during sEEG and colocalize with the clinical SOZ in most patients. Discordance with clinical SOZ does not necessarily predict poor surgical outcome; rather, complete surgical treatment of the subclinical SOZ correlates with excellent outcome. For unclear reasons, subclinical seizures occurred more commonly in females than males

    Hemispherectomy Outcome Prediction Scale: Development and validation of a seizure freedom prediction tool.

    No full text
    To develop and validate a model to predict seizure freedom in children undergoing cerebral hemispheric surgery for the treatment of drug-resistant epilepsy. We analyzed 1267 hemispheric surgeries performed in pediatric participants across 32 centers and 12 countries to identify predictors of seizure freedom at 3 months after surgery. A multivariate logistic regression model was developed based on 70% of the dataset (training set) and validated on 30% of the dataset (validation set). Missing data were handled using multiple imputation techniques. Overall, 817 of 1237 (66%) hemispheric surgeries led to seizure freedom (median follow-up = 24 months), and 1050 of 1237 (85%) were seizure-free at 12 months after surgery. A simple regression model containing age at seizure onset, presence of generalized seizure semiology, presence of contralateral 18-fluoro-2-deoxyglucose-positron emission tomography hypometabolism, etiologic substrate, and previous nonhemispheric resective surgery is predictive of seizure freedom (area under the curve = .72). A Hemispheric Surgery Outcome Prediction Scale (HOPS) score was devised that can be used to predict seizure freedom. Children most likely to benefit from hemispheric surgery can be selected and counseled through the implementation of a scale derived from a multiple regression model. Importantly, children who are unlikely to experience seizure control can be spared from the complications and deficits associated with this surgery. The HOPS score is likely to help physicians in clinical decision-making

    Implementation of genomic medicine for rare disease in a tertiary healthcare system: Mayo Clinic Program for Rare and Undiagnosed Diseases (PRaUD)

    No full text
    Abstract Background In the United States, rare disease (RD) is defined as a condition that affects fewer than 200,000 individuals. Collectively, RD affects an estimated 30 million Americans. A significant portion of RD has an underlying genetic cause; however, this may go undiagnosed. To better serve these patients, the Mayo Clinic Program for Rare and Undiagnosed Diseases (PRaUD) was created under the auspices of the Center for Individualized Medicine (CIM) aiming to integrate genomics into subspecialty practice including targeted genetic testing, research, and education. Methods Patients were identified by subspecialty healthcare providers from 11 clinical divisions/departments. Targeted multi-gene panels or custom exome/genome-based panels were utilized. To support the goals of PRaUD, a new clinical service model, the Genetic Testing and Counseling (GTAC) unit, was established to improve access and increase efficiency for genetic test facilitation. The GTAC unit includes genetic counselors, genetic counseling assistants, genetic nurses, and a medical geneticist. Patients receive abbreviated point-of-care genetic counseling and testing through a partnership with subspecialty providers. Results Implementation of PRaUD began in 2018 and GTAC unit launched in 2020 to support program expansion. Currently, 29 RD clinical indications are included in 11 specialty divisions/departments with over 142 referring providers. To date, 1152 patients have been evaluated with an overall solved or likely solved rate of 17.5% and as high as 66.7% depending on the phenotype. Noteworthy, 42.7% of the solved or likely solved patients underwent changes in medical management and outcome based on genetic test results. Conclusion Implementation of PRaUD and GTAC have enabled subspecialty practices advance expertise in RD where genetic counselors have not historically been embedded in practice. Democratizing access to genetic testing and counseling can broaden the reach of patients with RD and increase the diagnostic yield of such indications leading to better medical management as well as expanding research opportunities

    Comparison of the real-world effectiveness of vertical versus lateral functional hemispherotomy techniques for pediatric drug-resistant epilepsy: A post hoc analysis of the HOPS study.

    No full text
    This study was undertaken to determine whether the vertical parasagittal approach or the lateral peri-insular/peri-Sylvian approach to hemispheric surgery is the superior technique in achieving long-term seizure freedom. We conducted a post hoc subgroup analysis of the HOPS (Hemispheric Surgery Outcome Prediction Scale) study, an international, multicenter, retrospective cohort study that identified predictors of seizure freedom through logistic regression modeling. Only patients undergoing vertical parasagittal, lateral peri-insular/peri-Sylvian, or lateral trans-Sylvian hemispherotomy were included in this post hoc analysis. Differences in seizure freedom rates were assessed using a time-to-event method and calculated using the Kaplan-Meier survival method. Data for 672 participants across 23 centers were collected on the specific hemispherotomy approach. Of these, 72 (10.7%) underwent vertical parasagittal hemispherotomy and 600 (89.3%) underwent lateral peri-insular/peri-Sylvian or trans-Sylvian hemispherotomy. Seizure freedom was obtained in 62.4% (95% confidence interval [CI] = 53.5%-70.2%) of the entire cohort at 10-year follow-up. Seizure freedom was 88.8% (95% CI = 78.9%-94.3%) at 1-year follow-up and persisted at 85.5% (95% CI = 74.7%-92.0%) across 5- and 10-year follow-up in the vertical subgroup. In contrast, seizure freedom decreased from 89.2% (95% CI = 86.3%-91.5%) at 1-year to 72.1% (95% CI = 66.9%-76.7%) at 5-year to 57.2% (95% CI = 46.6%-66.4%) at 10-year follow-up for the lateral subgroup. Log-rank test found that vertical hemispherotomy was associated with durable seizure-free progression compared to the lateral approach (p = .01). Patients undergoing the lateral hemispherotomy technique had a shorter time-to-seizure recurrence (hazard ratio = 2.56, 95% CI = 1.08-6.04, p = .03) and increased seizure recurrence odds (odds ratio = 3.67, 95% CI = 1.05-12.86, p = .04) compared to those undergoing the vertical hemispherotomy technique. This pilot study demonstrated more durable seizure freedom of the vertical technique compared to lateral hemispherotomy techniques. Further studies, such as prospective expertise-based observational studies or a randomized clinical trial, are required to determine whether a vertical approach to hemispheric surgery provides superior long-term seizure outcomes

    Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders

    No full text
    Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatm

    Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders

    No full text
    Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Na(v)1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (53 months of age) occur almost as often as those with an early infantile onset (53 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (53 months), whereas other antiepileptic drugs were less effective. In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (53 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers. Functional characterization of four selected missense mutations using whole cell patch-clamping in tsA201 cells-together with data from the literature-suggest that mutations associated with early infantile epilepsy result in increased sodium channel activity with gain-of-function, characterized by slowing of fast inactivation, acceleration of its recovery or increased persistent sodium current. Further, a good response to sodium channel blockers clinically was found to be associated with a relatively small gain-of-function. In contrast, mutations in patients with late-onset forms and an insufficient response to sodium channel blockers were associated with loss-of-function effects, including a depolarizing shift of voltage-dependent activation or a hyperpolarizing shift of channel availability (steady-state inactivation). Our clinical and experimental data suggest a correlation between age at disease onset, response to sodium channel blockers and the functional properties of mutations in children with SCN2A-related epilepsy
    corecore