9 research outputs found

    Granulin-epithelin precursor is an oncofetal protein defining hepatic cancer stem cells

    Get PDF
    Background and Aims: Increasing evidence has suggested that hepatocellular carcinoma (HCC) might originate from a distinct subpopulation called cancer stem cells (CSCs), which are responsible for the limited efficacy of conventional therapies. We have previously demonstrated that granulin-epithelin precursor (GEP), a pluripotent growth factor, is upregulated in HCC but not in the adjacent non-tumor, and that GEP is a potential therapeutic target for HCC. Here, we characterized its expression pattern and stem cell properties in fetal and cancerous livers. Methods: Protein expression of GEP in fetal and adult livers was examined in human and mouse models by immunohistochemical staining and flow cytometry. Liver cancer cell lines, isolated based on their GEP and/or ATP-dependent binding cassette (ABC) drug transporter ABCB5 expression, were evaluated for hepatic CSC properties in terms of colony formation, chemoresistance and tumorigenicity. Results: We demonstrated that GEP was a hepatic oncofetal protein that expressed in the fetal livers, but not in the normal adult livers. Importantly, GEP+ fetal liver cells co-expressed the embryonic stem (ES) cell-related signaling molecules including β-catenin, Oct4, Nanog, Sox2 and DLK1, and also hepatic CSC-markers CD133, EpCAM and ABCB5. Phenotypic characterization in HCC clinical specimens and cell lines revealed that GEP+ cancer cells co-expressed these stem cell markers similarly as the GEP+ fetal liver cells. Furthermore, GEP was shown to regulate the expression of ES cell-related signaling molecules β-catenin, Oct4, Nanog, and Sox2. Isolated GEP high cancer cells showed enhanced colony formation ability and chemoresistance when compared with the GEP low counterparts. Co-expression of GEP and ABCB5 better defined the CSC populations with enhanced tumorigenic ability in immunocompromised mice. Conclusions: Our findings demonstrate that GEP is a hepatic oncofetal protein regulating ES cell-related signaling molecules. Co-expression of GEP and ABCB5 further enriches a subpopulation with enhanced CSC properties. The current data provide new insight into the therapeutic strategy. © 2011 Cheung et al.published_or_final_versio

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Get PDF
    Aims  The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results  Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion  After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p

    The novel role of growth factor GEP on liver cancer chemo-resistance: therapeutic implications

    No full text
    Poster Presentation: Theme 6 - Cancer: no. 6.31The Conference program's website is located at http://www.med.hku.hk/rps15/postersessions6.htm

    Granulin-epithelin precursor and ATP-dependent binding cassette (ABC)B5 regulate liver cancer cell chemoresistance

    No full text
    Background & Aims: Chemotherapy is used to treat unresectable liver cancer with marginal efficacy; this might result from hepatic cancer cells with stem cell and chemoresistant features. Gene expression profiling studies have shown that hepatic cancer cells express granulin-epithelin precursor (GEP); we investigated its role in hepatic cancer stem cell functions and chemoresistance. Methods: The effects of GEP and drug transporter signaling on chemoresistance were investigated in hepatic cancer stem cells. We analyzed the expression patterns of 142 clinical samples from liver tumors, adjacent nontumorous liver tissue, and liver tissue from patients who did not have cancer. Results: GEP regulated the expression of the adenosine triphosphatedependent binding cassette (ABC)B5 drug transporter in liver cancer cells. Chemoresistant cells that expressed GEP had increased levels of ABCB5; suppression of ABCB5 sensitized the cells to doxorubicin uptake and apoptosis. Most cells that expressed GEP and ABCB5 also expressed the hepatic cancer stem cell markers CD133 and EpCAM; blocking ABCB5 reduced their expression. Expression levels of GEP and ABCB5 were correlated in human liver tumor samples. ABCB5 levels were increased in liver cancer cells compared with nontumor liver tissue from patients with cirrhosis or hepatitis, or normal liver tissue. ABCB5 expression was associated with the recurrence of hepatocellular carcinoma after partial hepatectomy. Conclusions:: Expression of GEP and ABCB5 in liver cancer stem cells is associated with chemoresistance and reduced survival times of patients with hepatocellular carcinoma. Reagents designed to target these proteins might be developed as therapeutics and given in combination with chemotherapy to patients with liver cancer. © 2011 AGA Institute.link_to_subscribed_fulltex

    Renal Drug Transporters and Drug Interactions.

    No full text
    Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers

    Renal Drug Transporters and Drug Interactions

    No full text
    corecore