537 research outputs found

    Ydj1 governs fungal morphogenesis and stress response, and facilitates mitochondrial protein import via Mas1 and Mas2

    Get PDF
    We thank Zhen-Yuan Lin for help in the preparation of the AP-MS samples, and Cathy Collins for technical assistance. MDL is supported by a Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust 096072), LEC is supported by a Canada Research Chair in Microbial Genomics and Infectious Disease and by Cana-dian Institutes of Health Research (CIHR) Grants MOP-119520 and MOP-86452. OK is supported by National Insti-tutes of Health grant 5R01GM108975. A-CG is supported by a CIHR Foundation Grant (FDN143301), Genome Cana-da Genomics Innovation Network (GIN) Node and Tech-nical Development Grants, and a Canada Research Chair in Functional Proteomics. J-PL was supported by a TD Bank Health Research Fellowship at the Lunenfeld-Tanenbaum Research Institute and by a Scholarship for the Next Gen-eration of Scientists from the Cancer Research Society. JLX is supported by a CIHR – Frederick Banting and Charles Best Canada Graduate Scholarship. The funding agencies had no role in the study design, data collection and inter-pretation, or the decision to submit the work for publication.Peer reviewedPublisher PD

    Surgically cured hypoglycemia secondary to pleural solitary fibrous tumour: case report and update review on the Doege-Potter syndrome

    Get PDF
    The association of paraneoplastic hypoglycemia [Doege-Potter syndrome] and finger clubbing [Pierre-Marie-Bamberg syndrome] with pleural solitary fibrous tumour is rare. We present a previously unpublished but typical example of this rare occurrence together with a detailed updated literature review of previously published cases of pleural SFT discussing the histopathology of SFT; pathophysiology of the hypoglycemia and finger clubbing; treatment and outcome of pleural SFT. The patient, a 57-year-old African male was admitted at our hospital with recurrent episodes of hypoglycemia. He was found to have digital clubbing and decreased breath sounds in the right lower chest but no other significant clinical findings. His insulin level measured during an episode of hypoglycemia was undetectable. Chest radiograph and CT-scan revealed a lobulated mass in the right chest which was diagnosed to be SFT on histology. Surgical excision of the mass resulted in cure of the hypoglycemic episodes and rapid regression of the clubbing. Less than 65 cases of pleural SFT manifesting with hypoglycemia with or without finger-clubbing have been published in the English literature. The mean diameter of these tumours manifesting with hypoglycemia is 20 cm, 54% being benign while 42% were malignant. They predominantly present in the 6th-8th decade, average age of 64 years and a slight male preponderance at 58%. Complete surgical resection remains the most important predictor of clinical outcome in terms of recurrence and metastases, while providing instant cure for the hypoglycemia and rapid resolution of the finger clubbing

    Testing Apps With Real-World Inputs

    Get PDF
    To test mobile apps, one requires realistic and coherent test inputs. The Link approach for Web testing has shown that knowledge bases such as DBPedia can be a reliable source of semantically coherent inputs. In this paper, we adapt and extend the Link approach towards test generation for mobile applications: (1) We identify and match descriptive labels with input fields, based on the Gestalt principles of human perception; (2) We then use natural language processing techniques to extract the concept associated with the label; (3) We use this concept to query a knowledge base for candidate input values; (4) We cluster the UI elements according to their functionality into input and actions, filling the input elements first and then interacting with the actions. Our evaluation shows that leveraging knowledge bases for testing mobile apps with realistic inputs is effective. On average, our approach covered 9% more statements than randomly generated text inputs

    Switchable Membrane Remodeling and Antifungal Defense by Metamorphic Chemokine XCL1

    Get PDF
    Antimicrobial peptides (AMPs) are a class of molecules which generally kill pathogens via preferential cell membrane disruption. Chemokines are a family of signaling proteins that direct immune cell migration and share a conserved α–β tertiary structure. Recently, it was found that a subset of chemokines can also function as AMPs, including CCL20, CXCL4, and XCL1. It is therefore surprising that machine learning based analysis predicts that CCL20 and CXCL4’s α-helices are membrane disruptive, while XCL1’s helix is not. XCL1, however, is the only chemokine known to be a metamorphic protein which can interconvert reversibly between two distinct native structures (a β-sheet dimer and the α–β chemokine structure). Here, we investigate XCL1’s antimicrobial mechanism of action with a focus on the role of metamorphic folding. We demonstrate that XCL1 is a molecular “Swiss army knife” that can refold into different structures for distinct context-dependent functions: whereas the α–β chemokine structure controls cell migration by binding to G-Protein Coupled Receptors (GPCRs), we find using small angle X-ray scattering (SAXS) that only the β-sheet and unfolded XCL1 structures can induce negative Gaussian curvature (NGC) in membranes, the type of curvature topologically required for membrane permeation. Moreover, the membrane remodeling activity of XCL1’s β-sheet structure is strongly dependent on membrane composition: XCL1 selectively remodels bacterial model membranes but not mammalian model membranes. Interestingly, XCL1 also permeates fungal model membranes and exhibits anti-Candida activity in vitro, in contrast to the usual mode of antifungal defense which requires Th17 mediated cell-based responses. These observations suggest that metamorphic XCL1 is capable of a versatile multimodal form of antimicrobial defense

    Switchable Membrane Remodeling and Antifungal Defense by Metamorphic Chemokine XCL1

    Get PDF
    Antimicrobial peptides (AMPs) are a class of molecules which generally kill pathogens via preferential cell membrane disruption. Chemokines are a family of signaling proteins that direct immune cell migration and share a conserved α–β tertiary structure. Recently, it was found that a subset of chemokines can also function as AMPs, including CCL20, CXCL4, and XCL1. It is therefore surprising that machine learning based analysis predicts that CCL20 and CXCL4’s α-helices are membrane disruptive, while XCL1’s helix is not. XCL1, however, is the only chemokine known to be a metamorphic protein which can interconvert reversibly between two distinct native structures (a β-sheet dimer and the α–β chemokine structure). Here, we investigate XCL1’s antimicrobial mechanism of action with a focus on the role of metamorphic folding. We demonstrate that XCL1 is a molecular “Swiss army knife” that can refold into different structures for distinct context-dependent functions: whereas the α–β chemokine structure controls cell migration by binding to G-Protein Coupled Receptors (GPCRs), we find using small angle X-ray scattering (SAXS) that only the β-sheet and unfolded XCL1 structures can induce negative Gaussian curvature (NGC) in membranes, the type of curvature topologically required for membrane permeation. Moreover, the membrane remodeling activity of XCL1’s β-sheet structure is strongly dependent on membrane composition: XCL1 selectively remodels bacterial model membranes but not mammalian model membranes. Interestingly, XCL1 also permeates fungal model membranes and exhibits anti-Candida activity in vitro, in contrast to the usual mode of antifungal defense which requires Th17 mediated cell-based responses. These observations suggest that metamorphic XCL1 is capable of a versatile multimodal form of antimicrobial defense

    Prescription of reninâ angiotensinâ aldosterone system inhibitors (RAASi) and its determinants in patients with advanced CKD under nephrologist care

    Full text link
    Reninâ angiotensinâ aldosterone system inhibitors (RAASi) are recommended for chronic kidney disease (CKD) patients. In this study, we describe RAASi prescription patterns in the Chronic Kidney Disease Outcomes and Practice Patterns Study (CKDopps) in Brazil, Germany, France, and the United States (US). 5870 patients (mean age 66â 72 years; congestive heart failure [CHF] in 11%â 19%; diabetes in 43%â 54%; serum potassium â ¥5 in 20%â 35%) were included. RAASi prescription was more common in Germany (80%) and France (77%) than Brazil (66%) and the United States (52%), where the prevalence of prescription decreases particularly in patients with CKD stage 5. In the multivariable regression model, RAASi prescription was least common in the United States and more common in patients who were younger, had diabetes, hypertension, or less advanced CKD. In conclusion, RAASi prescription patterns vary by country, and by demographic and clinical characteristics. RAASi appear to be underused, even among patients with strong classâ specific recommendations. Although the reasons for this variation could not be fully identified in this crossâ sectional observation, our data indicate that the risk of hyperkalemia may contribute to the underuse of this class of agents in moderate to advanced CKD.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150590/1/jch13563.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150590/2/jch13563_am.pd

    Epidemiology, prehospital care and outcomes of patients arriving by ambulance with dyspnoea: An observational study

    Get PDF
    Background: This study aimed to determine epidemiology and outcome for patients presenting to emergency departments (ED) with shortness of breath who were transported by ambulance. Methods: This was a planned sub-study of a prospective, interrupted time series cohort study conducted at three time points in 2014 and which included consecutive adult patients presenting to the ED with dyspnoea as a main symptom. For this sub-study, additional inclusion criteria were presentation to an ED in Australia or New Zealand and transport by ambulance. The primary outcomes of interest are the epidemiology and outcome of these patients. Analysis was by descriptive statistics and comparisons of proportions. Results: One thousand seven patients met inclusion criteria. Median age was 74 years (IQR 61-68) and 46.1 % were male. There was a high rate of co-morbidity and chronic medication use. The most common ED diagnoses were lower respiratory tract infection (including pneumonia, 22.7 %), cardiac failure (20.5%) and exacerbation of chronic obstructive pulmonary disease (19.7 %). ED disposition was hospital admission (including ICU) for 76.4 %, ICU admission for 5.6 % and death in ED in 0.9 %. Overall in-hospital mortality among admitted patients was 6.5 %. Discussion: Patients transported by ambulance with shortness of breath make up a significant proportion of ambulance caseload and have high comorbidity and high hospital admission rate. In this study, >60 % were accounted for by patients with heart failure, lower respiratory tract infection or COPD, but there were a wide range of diagnoses. This has implications for service planning, models of care and paramedic training. Conclusion: This study shows that patients transported to hospital by ambulance with shortness of breath are a complex and seriously ill group with a broad range of diagnoses. Understanding the characteristics of these patients, the range of diagnoses and their outcome can help inform training and planning of services

    The long noncoding RNA lncNB1 promotes tumorigenesis by interacting with ribosomal protein RPL35

    Get PDF
    The majority of patients with neuroblastoma due to MYCN oncogene amplification and consequent N-Myc oncoprotein over-expression die of the disease. Here our analyses of RNA sequencing data identify the long noncoding RNA lncNB1 as one of the transcripts most over-expressed in MYCN-amplified, compared with MYCN-non-amplified, human neuroblastoma cells and also the most over-expressed in neuroblastoma compared with all other cancers. lncNB1 binds to the ribosomal protein RPL35 to enhance E2F1 protein synthesis, leading to DEPDC1B gene transcription. The GTPase-activating protein DEPDC1B induces ERK protein phosphorylation and N-Myc protein stabilization. Importantly, lncNB1 knockdown abolishes neuroblastoma cell clonogenic capacity in vitro and leads to neuroblastoma tumor regression in mice, while high levels of lncNB1 and RPL35 in human neuroblastoma tissues predict poor patient prognosis. This study therefore identifies lncNB1 and its binding protein RPL35 as key factors for promoting E2F1 protein synthesis, N-Myc protein stability and N-Myc-driven oncogenesis, and as therapeutic targets

    Memory-like differentiation enhances NK cell responses to melanoma

    Get PDF
    PURPOSE: Treatment of advanced melanoma is a clinical challenge. Natural killer (NK) cells are a promising cellular therapy for T cell-refractory cancers, but are frequently deficient or dysfunctional in patients with melanoma. Thus, new strategies are needed to enhance NK-cell antitumor responses. Cytokine-induced memory-like (ML) differentiation overcomes many barriers in the NK-cell therapeutics field, resulting in potent cytotoxicity and enhanced cytokine production against blood cancer targets. However, the preclinical activity of ML NK against solid tumors remains largely undefined. EXPERIMENTAL DESIGN: Phenotypic and functional alterations of blood and advanced melanoma infiltrating NK cells were evaluated using mass cytometry. ML NK cells from healthy donors (HD) and patients with advanced melanoma were evaluated for their ability to produce IFNγ and kill melanoma targets RESULTS: NK cells in advanced melanoma exhibited a decreased cytotoxic potential compared with blood NK cells. ML NK cells differentiated from HD and patients with advanced melanoma displayed enhanced IFNγ production and cytotoxicity against melanoma targets. This included ML differentiation enhancing melanoma patients\u27 NK-cell responses against autologous targets. The ML NK-cell response against melanoma was partially dependent on the NKG2D- and NKp46-activating receptors. Furthermore, in xenograft NSG mouse models, human ML NK cells demonstrated superior control of melanoma, compared with conventional NK cells. CONCLUSIONS: Blood NK cells from allogeneic HD or patients with advanced melanoma can be differentiated into ML NK cells for use as a novel immunotherapeutic treatment for advanced melanoma, which warrants testing in early-phase clinical trials
    corecore