
Testing Apps With Real World Inputs
Tanapuch Wanwarang

CISPA Helmholtz Center for Information Security
Saarbrücken, Germany

tanapuch.wanwarang@cispa.saarland

Nataniel P. Borges Jr.
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
nataniel.borges@cispa.saarland

Leon Bettscheider
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
s8lnbett@stud.uni-saarland.de

Andreas Zeller
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
zeller@cispa.saarland

ABSTRACT
To test mobile apps, one requires realistic and coherent test inputs.
The Link approach for Web testing has shown that knowledge bases
such as DBPedia can be a reliable source of semantically coher-
ent inputs. In this paper, we adapt and extend the Link approach
towards test generation for mobile applications:

(1) We identify and match descriptive labels with input fields,
based on the Gestalt principles of human perception;

(2) We then use natural language processing techniques to extract
the concept associated with the label;

(3) We use this concept to query a knowledge base for candidate
input values;

(4) We cluster the UI elements according to their functionality
into input and actions, filling the input elements first and
then interacting with the actions.

Our evaluation shows that leveraging knowledge bases for testing
mobile apps with realistic inputs is effective. On average, our ap-
proach covered 9% more statements than randomly generated text
inputs.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Dynamic analysis; • Human-centered computing →
Graphical user interfaces; Smartphones.

KEYWORDS
Automated Testing, Input Generation, Knowledge-Base, Android
ACM Reference Format:
Tanapuch Wanwarang, Nataniel P. Borges Jr., Leon Bettscheider, and An-
dreas Zeller. 2020. Testing Apps With Real World Inputs. In AST ’20: 1st

IEEE/ACM International Conference on Automation of Software Test, May

25–26, 2020, Seoul, South Korea. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Mobile applications (apps) that take complex data as input, such
as travel bookings, maps, or online banking forms, are part of our
everyday life. They require realistic and coherent test inputs to be
tested adequately. These inputs are, however, expensive to generate
manually and challenging to synthesize automatically.

AST ’20, May 25–26, 2020, Seoul, South Korea

2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

Figure 1: Book search functionality in an app. It requires
syntactically and/or semantically correct values to be tested

Consider the example in Figure 1. To search for a book online,
the user is required to type an author, title, or ISBN. While it is
possible to input virtually any value for author and title, the ISBN
must contain only numbers and must be 10 or 13 digits long to
bypass syntactic validation rules.

Now consider an automated test generator being used to test
this app. To explore the app’s functionality, a test generator would
systematically identify the user interface elements and interact with
them. However, to find a book (and to explore the functionality
associated with having found a book), it must first either input an
existing ISBN or a valid combination of author name and book title.
Randomly generated author and book names, or ISBNs, however,
are unlikely to produce any results, and instead, fail to reach code
regions located beyond input validation checks.

Even if the test generator were able to bypass the syntax val-
idation rules, the generated values would rarely be semantically
meaningful. Even though the ISBN may be valid in itself, a random
valid ISBN still is unlikely to point to some existing book.

Currently, these scenarios are handled by using a curated set of
inputs, such as dictionaries, or by manually written values for spe-
cific inputs. Both approaches are laborious, expensive, and subject

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

AST ’20, May 25–26, 2020, Seoul, South Korea Tanapuch Wanwarang, Nataniel P. Borges Jr., Leon Bettscheider, and Andreas Zeller

to human bias, undermining two of the main benefits of automated
testing.

The past research of Mariani et al. [27] indicated that knowledge
bases could be a reliable source of semantically coherent inputs.
Their Link tool would query the DBPedia data collection to identify
data to be used in the tests. They then manually used the extracted
data to generate complex system test inputs. If a field required a
“ZIP” code, for instance, Link would query for “ZIP” codes from
DBPedia.

When Link was conceived, it targeted desktop and web applica-
tions. But would such an approach also work for mobile devices?
Due to limited screen size, mobile apps have different UI design
patterns [12, 14], which diverge from those used on desktops, mak-
ing a Link-like approach less accurate. However, its core strategy
to query a knowledge base for input values might be applicable for
mobile devices too.

In this work, we investigate whether a Link-like approach would
help to generate better tests for Android apps, and if so, in what
way. Our approach consumes data from a knowledge base and uses
these values during text generation in a user-like order. Specifically,
we assess:
RQ1 Can semantic concepts be accurately associated with input

fields?
RQ2 Can syntactically valid and semantically coherent textual

inputs values be automatically extracted from a knowledge
base?

RQ3 Can textual inputs automatically extracted from a knowledge
base improve test generation?

The remainder of this work is organized as follows. After dis-
cussing the approaches and tools used in this work (Section 2), we
make the following contributions:

(1) We present a set of metrics that effectively associate descrip-
tive elements with input fields, tailored to Android-specific
design guidelines, and thus extend Link for use in mobile test

generation (Section 3).
(2) We evaluate our approach (Section 4) and show that:
• Concepts can be associatedwith input fieldswith 87%
precision.
• About three out of four queries to the knowledge
base returned valid results, 94% of which were seman-
tically valid.
• Automatically generated input values used in a user-
like order can improve tests. In our experiments, we
observed an average improvement of 9% in statement
coverage compared to random tests.

After discussing limitations and threats to validity (Section 5) as
well as related work (Section 6), Section 7 prescribes future work
and concludes our paper.

2 BACKGROUND
Mariani et al. [27] proposed Link to query input values from a
knowledge base. Their work exploited the metrics based on the
Gestalt principles [23] of how humans perceive objects and patterns
to associate descriptor labels to input fields. In this section, we
describe the underlying principles or their approach, which we
adapted according to the peculiarities of mobile apps.

2.1 Associating Descriptor Labels to Input
Fields

Link relied on the Gestalt principles of visual perception to associate
descriptor labels with input fields on desktop GUIs. It namely used
the metrics of Proximity, Homogeneity, and Closure, as implemented
by Becce et al. [7]. These metrics work as follows:

Proximity Humans associate elements which are close to each
other. Besides, app UIs are developed to be explored from left
to right and top to bottom. Therefore, this metric dictates
that descriptive labels must be located on the left or top of
an input field.

Homogeneity Elements should be distributed according to their
semantics. On UI design, the regular distribution of UI ele-
ments is mostly done through their alignment. This metric
dictates that a label should be either vertically or horizontally
aligned to the input field.

Closure Semantically correlated elements should be grouped to-
gether for easier comprehension. Therefore, this metric dic-
tates that semantically correlated UI elements should be
placed in the same container.

2.2 Querying Knowledge Bases
Linked Data [8, 37] describes how to define and publish machine-
readable typed links between arbitrary items on the Web so that it
is interlinked and accessible through semantic queries. It is used
extensively in different topical domains, including Media, Govern-
ment, Publications, etc. [32]. It builds upon standard Web technolo-
gies such as Resource Description Framework (RDF) and Uniform
Resource Identifiers (URIs).

RDF specification1 describes how to connect concepts using
triples containing a subject, a predicate, and an object. URIs [29]
are used to describe properties in the RDF triples. For example, the
URI http://dbpedia.org/resource/London identifies the city of
London, the URI http://dbpedia.org/page/England denotes the
country of England, and the URI http://dbpedia.org/ontology/
isPartOf describes that a subject is a part of an object. There-
fore, the RDF triple: (http://dbpedia.org/resource/London,
http://dbpedia.org/ontology/isPartOf, http://dbpedia.
org/page/England) represents the fact that Londons is a part of
England.

Link exploited this structure to query for complex input values,
based on the UI semantics while maintaining the semantic coher-
ence between the inputs. It first queries DBPedia [5] classes and
predicates for resource URIs whose name match those obtained
in the label matching step. Link uses WordNet to search for syn-
onyms when it cannot find any class or predicate with the exact
word queried.

It then associates the discovered elements by systematically
querying for resources that occur as the subject of both elements.
If a resource exists, the elements are merged into a single query.
Otherwise, they are kept disjoint. Finally, Link queries DBPedia for
resources to obtain resources.

1https://www.w3.org/TR/rdf-concepts/

https://www.w3.org/TR/rdf-concepts/

Testing Apps With Real World Inputs AST ’20, May 25–26, 2020, Seoul, South Korea

3 METHOD
We propose an approach with four steps, namely: description match-

ing, concept extraction, input value acquisition and input value con-

sumption, as illustrated in Figure 2.
Given a UI state, we start by identifying andmatching descriptive

labels with input fields, using a modified version of Becce’s metrics
adapted to mobile apps. We then use natural language processing
(NLP) techniques [26] to extract the concept associated with the
label. We use the extracted concepts, instead of the original labels,
to query knowledge bases for input values. Finally, we fill all input
elements with the queried values and randomly interact with the
non-input elements.

3.1 Matching Labels
To match descriptor labels with input fields, we extend Becce’s
metrics to support the peculiarities of mobile apps. We reuse their
metrics of Proximity, Homogeneity, and Closure on the Android
WindowHierarchy dump [4], which is similar to the DOM structure
used in Becce’s original work.

Becce’s metrics are, however, based on the idea that descriptor
labels and input fields are distinct elements. This approach works
on web and desktop apps because the hint text is frequently used to
exemplify or assist the user in filling the input field, not to describe
its meaning. This does not hold on mobile apps. Due to limited
screen size, mobile apps frequently reuse the input element for
descriptive proposes, through its hint text, as shown in Figure 3.

We thus add an Enclosure metric which combines the Gestalt
principles of proximity and closure. Our metric is defined as follow:
Enclosure Input fields can describe themselves to mitigate UI

space requirements. Therefore, a UI element describes the
other if it is contained within the other.

With this new metric, we produced an algorithm, shown in Al-
gorithm 1, to match a label with an input field on mobile apps. In
principle, our matching algorithm is a map function match(field,
state)→ concept, which receives an input field and a UI state and
returns a concept. For our abstraction, we consider as a UI state the
set of all UI elements on an app screen.

Algorithm 1Matching of an input field to a concept
1: function match(field, state)→ concept

2: if (field, state) < memory then
3: if hasText(field) and hasNoun(field) then
4: label ← field ▷ Enclosure
5: else
6: label ← becce(field, state) ▷ Proxim., Homogen. and Closure
7: end if
8: result ← concepts(label)
9: memory ←

(
(field, state), label

)
10: else
11: result ← memory(field, state)

12: end if
13: return result

14: end function

Our algorithm starts by checking if the input field to be matched
has not already been processed (line 2). This check is necessary

because our enclosure metric uses the hint text as a descriptor.
Android does not know if an input field has been filled or not; that
is, it does not differentiate between the hint text and a typed value
on an input field. Moreover, it is no longer possible to determine
the original label of an input field once it is filled. We thus create
a memory with all previously encountered input fields, alongside
their matched labels. This allows us to reuse the original label
description in case the field gets filled in the future.

If the input field is in the memory, we simply return the pre-
viously mapped concept (line 11). Otherwise, if the input field is
being processed for the first time, we match it to a concept. We
first attempt to match it with our enclosure metric. If the input
field has a text and this text contains a noun (line 3), we define
this text as its label (line 4). We consider only labels that contain a
noun as candidates descriptors because nouns are used to define
objects. Otherwise, we apply Becce’s original metrics (line 6) to
search for the most relevant label descriptor. Finally, we extract the
label’s concept, according to Section 3.2, and add it to our cache,
preventing the input field from being mapped again (line 8-9).

3.2 Extracting Concepts
Since we match input fields to both external widgets, as well as
hint texts, a label can contain information such as City or Name

(required) as previously shown in Figure 3, or more complex in-
formation such as Enter your username or Type a location. As a
consequence, we must pre-process the label to extract a concept
from it. Our approach is shown in Algorithm 2.

We employ natural language processing (NLP) techniques [26] to
extract the concept of a label.We first use part-of-speech tagging [28]
to identify all nouns of a label (line 2). We then take the first noun
as the candidate concept (line 3). We use lemmatization [34] to
reduce this noun to its inflectional form and query the available
classes and predicates of the knowledge base using this lemma
(lines 4-5). If the lemma is found in the knowledge base (line 6), we
use it as the label’s concept. Otherwise, we search for synonyms in
a dictionary (line 7) and systematically query the knowledge base
for each synonym. We repeat this process until a result is found
in the knowledge base, or there are no synonyms left (lines 8-13).
If we found a result for any synonym, we return the result as the
label’s concept (line 11). If we did not, we proceed to the next noun
(line 3). If we do not find any result for any of the nouns, we return
an empty label (line 18).

3.3 Obtaining Input Values
Once we extracted all input fields and their concepts, we leverage
Link to obtain semantically aware input values to use during test-
ing. Link consumes our concepts and uses the knowledge base to
identify the largest subset of concepts which are interconnected.
By identifying elements which are interconnected, it ensures the
semantic coherence of part of the inputs.

Consider our motivating example, Link can associate the con-
cepts: author, title and ISBN and query for semantically coherent
values, such as (Sun Tzu, The Art of War, 9781590302255). It is
not, however, able to associate the term publisher with them. We
overcome this limitation by recursively using Link. We query the
knowledge base until all concepts which exist in the knowledge

AST ’20, May 25–26, 2020, Seoul, South Korea Tanapuch Wanwarang, Nataniel P. Borges Jr., Leon Bettscheider, and Andreas Zeller

Label
Matching

Concept
Extraction

Input Value
Acquisition

Input Value
Consumption

Labels Concepts Inputs

UI actions

Figure 2: Approach overview diagram. Associate input fields and labels elements, extract the label’s concepts and query for
input values. Finally, use queried values to fill input fields during testing

Figure 3: Self-explanatory input fields. Due to limited space,
Android apps frequently use the hint text property to de-
scribe the input field

base produce input values, either interrelated to other concepts or
independently. We summarize our approach to query a knowledge
base for input values in Algorithm 3.

Our approach starts with a set of concepts to query, and it re-
cursively queries the knowledge base until all concepts have been
used. It first uses Link’s concept association feature to obtain the
largest set of interrelated concepts (line 2). It then invokes Link to
get input values for these concepts (line 3). If there are remaining
concepts to query, it recursively invokes itself, passing only the
remaining concepts (lines 4-6). Finally, it returns the list of queried
input values (line 7).

3.4 Consuming Input Values
Users expect app functionality to be triggered when interacting
with specific types of UI elements [17]. They expect apps to trigger
some functionality when they press a button or click on an image.
They seldom expect anything but input validation to happen when
they enter data on an input field. Moreover, app UIs are designed to

Algorithm 2 Extracting the concept of a label
1: function concepts(label)→ concept

2: tagged ← part-of-speech(label)

3: for candidate in nouns(tagged) do
4: lemma← lemmatization(candidate)

5: value← link(lemma)

6: if |value| = 0 then
7: synonyms← synonyms(lemma)

8: for synonym in synonyms do
9: value← link(synonym)

10: if |value| > 0 then
11: return value

12: end if
13: end for
14: else
15: return value

16: end if
17: end for
18: return ∅
19: end function

Algorithm 3 Querying a knowledge base for candidate input val-
ues for a set of concepts
1: function qery(concepts)→ input values

2: largest-set ← link-associate(concepts)

3: values← link(largest-set)

4: if | (concepts \ largest-set) | > 0 then
5: values←qery(concepts \ largest-set) ▷ Recursion
6: end if
7: return values
8: end function

guide the user towards specific flows, making the appmore intuitive
to use. Users, for example, fill forms sequentially, with apps guiding
them to the next field after entering a value. Under these premises,
we intuitively split the UI elements into two categories: input and
non-input fields.

To test an app UI, we then first enter values in all input fields
for which we successfully queried an input value. We fill the input
fields from top to bottom and left to right, to emulate the behavior
of a user. Once we have filled all possible input fields, we randomly
interact with the remaining UI elements to access functionality.

Testing Apps With Real World Inputs AST ’20, May 25–26, 2020, Seoul, South Korea

4 EVALUATION AND EXPERIMENTS
In this work, we aim to gather empirical evidence that syntactically
correct and semantically coherent input values can be automatically
generated and used to improve automated Android testing. More
specifically, we aim to answer the following research questions:

RQ1 (Associating and Extracting Concepts) Can semantic con-
cepts be accurately associated with input fields?

RQ2 (Obtaining Input Values) Can syntactically valid and se-
mantically coherent textual inputs values be automatically
extracted from a knowledge base?

RQ3 (Consuming Input Values) Do textual inputs, automatically
extracted from a knowledge base, improve test generation?

4.1 Experimental Setup
To evaluate our approach we implemented Saigen (Semantic Aware
Input Generator) as DroidMate-2 [10] plug-in. DroidMate-2 is
an open-source Android test input generator that can be used out
of the box on Android devices or emulators executing with oper-
ating system version 6.0 or newer. To identify the UI states and
elements on the app, we relied on DroidMate-2’s uniqueness mea-
surement, which allows the same UI element to be re-identified
between different states.

In our experiments, we consider as input fields only UI elements
of class android.widget.TextView, Android’s native input field. We
used as a knowledge base DBPedia [5]—a structured source of
information gathered from Wikipedia—and we used WordNet as a
synonym dictionary.

We previewed 120 Android apps on Google Play Store and F-
Droid [20] from June to July 2018. We then filtered out those apps
with less than 10,000 downloads and remained with 85 apps. We
explored these 85 apps using DroidMate-2’s random strategy for
500 actions and filtered out those in which the exploration did not
reach any native Android text field. We used 500 actions as a limit
as previous work [10] showed only a marginal discovery of new
functionality after this point.

After these filtering steps, our dataset contained 20 apps across
different domains, including travel, music, tools, books, games, busi-
ness, and cars. These apps (henceforth test set) and their information
are shown in Table 1.

We executed all experiments on a set of Google Nexus 5X and
Google Pixel XL devices, running Android 7.1.2. To prevent device-
dependent behavior, all tests for the same app were executed on
the same device.

4.2 RQ1: Associating and Extracting Concepts
Our first research question aims tomeasure the accuracy of our label
matching and concept extraction approaches, as they have a high
impact on our remaining studies. With this goal, we re-executed
DroidMate-2’s default exploration strategy for 500 actions on
all 20 apps from the test set, while recording (screenshot) all input
fields found and their matched label descriptors2. We then manually
classified each input field found according to the following rules:

2We ignored fields with the following concepts: username, password and email, as
they are intentionally not available on the knowledge base.

Table 1: Selected Applications for the experiment (M forMil-
lions)

Name Domain Downloads
Trip.com Travel 1M+
Booking.com Travel 100M+
Agoda Travel 10M+
Book Catalogue Books 100,000+
Yelp Travel 10M+
Kayak Travel 10M+
Arnab Tools 100,000+
Youtube Music Music 50M+
Lonely Planet Guides Travel 500,000+
TripAdvisor Travel 100M+
Airbnb Travel 10M+
Expedia Travel 10M+
My Books - Library Books 50,000+
CLZ Games Games 10,000+
Nader Tools 50,000+
Rakesh Tools 10,000+
Careerjet Job Search Business 1M+
All Job Search Business 50,000+
AnyCar Cars 1M+
Jamendo Music 100,000+

• True Positive (TP) if the label matches the correct input
field;
• False Positive (FP) if the label does not match the correct
input field, and there is a textual label for this input field on
the screen.
• True Negative (TN) if the input field was not matched to
any label, and there was no textual label matching label on
the screen;
• False Negative (FN) if the input field was not matched to
any label, however, there was a valid textual label for it on
the screen.

We applied the rules according to the point of view of a human,
accounting for a limitation of our implementation: we do not asso-
ciate input fields with images. While it is still possible for a human
to extract concepts from images, our implementation works only
with textual contents. Therefore, if our approach was unable to
match an input field because an image instead of a text identified it,
we classified this as a true negative. Our reasoning for this choice
is that the algorithm did not incorrectly associate the input field
with an incorrect label.

We, however, consider as false-negative, situations in which our
approach could not find a textual label for an input field because
it did not contain any noun, such as Flying to orWhere to? While
our approach disregards labels without nouns, it is intuitive for a
human to associate Flying to to the destination of a flight.

Since the evaluation was manual and thus subject to human bias,
we performed three independent evaluations for each field-label
pair and selected as the final result the one with more votes.

Our findings are shown in Table 2 and summarized in Table 3.
Our experiment identified 250 unique input widgets, of which
202werematched (≈ 81%). Overall, ourmatching algorithm achieved

AST ’20, May 25–26, 2020, Seoul, South Korea Tanapuch Wanwarang, Nataniel P. Borges Jr., Leon Bettscheider, and Andreas Zeller

Table 2: Per app breakdown of input field matching

Name Input Fields Matched Ratio TP TN FP FN Precision Recall Specificity Accuracy
Trip.com 18 15 83% 11 3 4 0 73% 100% 43% 78%
Booking.com 14 5 36% 5 8 0 1 100 % 89 % 100 % 93 %
Agoda 2 1 50% 1 1 0 0 100 % 100 % 100 % 100 %
Book Catalogue 26 24 92% 20 1 4 1 83 % 50 % 20 % 81 %
Yelp 15 6 40% 5 9 1 0 83 % 100 % 90 % 93 %
Kayak 12 8 67% 7 4 1 0 88 % 100 % 80 % 92 %
Arnab 10 9 90% 9 1 0 0 100 % 100 % 100 % 100 %
Youtube Music 4 4 100% 3 0 1 0 75 % - 0 % 75 %
Lonely Planet Guides 10 9 90% 8 0 1 1 89 % 0 % 0 % 80 %
TripAdvisor 12 11 92% 11 0 0 1 100 % 0 % - 92 %
Airbnb 7 5 71% 3 2 2 0 60 % 100 % 50 % 71 %
Expedia 27 24 89% 23 1 1 2 96 % 33 % 50 % 89 %
My Books - Library 7 7 100% 5 0 2 0 71 % - 0 % 71 %
CLZ Games 15 15 100% 14 0 1 0 93 % - 0 % 93 %
Nader 7 7 100% 7 0 0 0 100 % - - 100 %
Rakesh 15 8 53% 7 7 1 0 88 % 100 % 88 % 93 %
Careerjet Job Search 9 9 100% 9 0 0 0 100 % - - 100 %
All Job Search 14 12 86% 9 1 3 1 75 % 50 % 25 % 71 %
AnyCar 18 16 89% 13 2 3 0 81 % 100 % 40 % 83 %
Jamendo 8 7 88% 5 1 2 0 71 % 100 % 33 % 75 %
Total 250 202 81% 175 41 27 7

Table 3: Unique label descriptor to input fields matching

Classified as
Input True False Total Precision = 87%
True TP = 175 FN = 7 182 Recall = 96%
False FP = 27 TN = 41 68 Accuracy = 86%
Total 202 48 250 Specificity = 60%

87% precision and 96% recall, with 86% accuracy. These input fields
represented 1.2% of the total number of unique UI elements found
during the tests, which is in line with previous research [31] that
demonstrated that less than 3% of the UI elements on apps are input
fields.

The per-app breakdown of our results shows that most apps
yielded high true-positive and true-negative values. Our manual
evaluation of the false positives showed that some apps used noun-
less labels, such as Where to?, to identify the content of an input
field, as shown in Figure 4a. Other false positives happened when
hints were used to exemplify inputs, as shown in Figure 4b. Both
false-positive examples highlight the limitations of our approach.

SAIGEN matched 81% of the input fields with 87% precision.

4.3 RQ2: Obtaining Input Values
The goal of our second research question is to assess the quality
of querying a knowledge base for input values. With this goal,
we explored the apps in our test set using DroidMate-2’s default
exploration strategy for 500 actions. During the exploration, we
recorded the input values obtained for each input field matched
from the RQ1.

(a) Label without noun (b) Noun which is not a concept

Figure 4: App functionality which requires syntactically
and/or semantically correct values to bypass validations

We then manually assessed the syntactic and semantic quality of
the inputs we obtained from the knowledge base. We considered an
input as syntactically valid if it has passed all app input validation
checks (no validation errors triggered).

We considered it as semantically valid if it matches the label
associated with the input field. Similarly to the previous research
question, we analyzed our results from a human perspective and

Testing Apps With Real World Inputs AST ’20, May 25–26, 2020, Seoul, South Korea

performed three independent analyses to mitigate the inherent bias
of manual evaluations. Due to the significant manual effort involved
in analyzing each input value queried from the knowledge base, we
randomly chose twelve apps from our test set for this evaluation.

Table 4: Per app breakdown of unique labels and number of
labels found on the knowledge base

Name Unique Found Ratio
Trip.com 13 3 23%
Booking.com 3 2 67%
Agoda 1 1 100%
Book Catalogue 24 13 54%
Yelp 4 2 50%
Kayak 4 2 50%
Arnab 8 7 88%
Youtube Music 2 1 50%
Lonely Planet Guides 6 2 33%
TripAdvisor 9 4 44%
Airbnb 7 6 86%
Expedia 20 8 40%
Total 101 51

Table 4 shows the number of unique labels found on each app, as
well as the number of unique labels that were successfully queried.
Using DBPedia, we were able to find an input for, on average, 50%
of the labels found at least once during testing, with the worst app
(Trip.com) finding only 23%. Note that the total number of labels is
less or equal to the number of text fields found in the app (Table 2).
This happens because the same label can be reused on different
input fields.

Regarding the number of queries and the quality of the results,
our results are shown in Table 5.We executed 360 queries for the 204
unique input fields matched (Table 2). This number is higher than
the overall number of unique input fields because the same fields
can be used in different queries. Considering our initial example, the
concepts Author, Title, and ISBN are used together on the example
screen, as well as alongside the label Date (from date published) on
a different screen, resulting in two different queries. The knowledge
base was able to return input values for 307 out of our 360 queries
(≈ 85%), of which we classified 302 values as syntactically correct
(≈ 98%) and 287 as semantically coherent (≈ 94%).

85% of Saigen’s queries were able to find a result in the

knowledge base. 98% of the results were syntactically valid and

94% of them were semantically valid.

4.4 RQ3: Consuming Input Values
The goal of our final research question is to measure if automatically
extracted textual inputs improve Android testing. Moreover, it aims
tomeasure the benefits of orderly interactingwith the app UI. In this
work, we used code coverage as an indication of the test quality as
it has been shown by previous research [18] to be a good predictor.
We obtained the code coverage from DroidMate-2’s native code
instrumentation metrics.

After instrumentation, many apps in our test set could no longer
be used. This issue arises because many popular apps have safety
verifications in place, such as certificate checks, which render the
app unusable once instrumented. In the end 5 out of our 20 apps
could be instrumented with DroidMate-2, namely: My Books Li-
brary, Rakesh, Kayak, Arnab, Book Catalog.

For this experiment, we explored each app five times in each of
the configurations described in Table 6, to mitigate noise caused
by the seed selection and by app non-determinism, resulting in
20 executions per app. In each test of each app, we executed 500
actions (≈ 30min), as previous research [9, 10, 15] showed this
to be enough to reach over 95% of the maximum test coverage.
We compared the explorations by the number of actions because
the overhead of querying DBPedia can be significantly reduced by
hosting it locally for testing.

The results of our experiments are summarized in Figure 5.
The random exploration with random textual inputs (Scenario 1)
achieved an average statement coverage of 38%, with a minimum
of 4% and a maximum of 74%. Scenario 2, which replaces random
inputs for Saigen generated inputs but still retains DroidMate-2’s
random exploration strategy, achieved an average coverage of 45%,
with a minimum of 7% and a maximum of 74%. These results in-
dicate that syntactically valid and semantic coherent inputs are
beneficial to the tests, with an average increase of 7%.

Using randomly generated textual inputs, alongside our sorted
exploration order (Scenario 3), achieved an average coverage of
40%, with a minimum of 10% and a maximum of 74%, marginally
outperforming DroidMate-2’s random strategy concerning aver-
age coverage (2%) but increasing the minimum test coverage by 6%.
Compared against Scenario 2, random inputs with a sorted widgets
interaction achieve, on average, 5% less coverage; however, it still
increases the minimum test coverage by 3%. These results indicate
that orderly interacting with widgets after filling out the text fields
affects the test coverage. However, it also shows that the value
entered on the input field is more important than the interaction
order.

Finally, in Scenario 4, when combining the sorted exploration
order with Saigen, we achieve an average statement coverage of
47%, with a minimum of 11% and a maximum of 75%. These results
again show the benefits of using valid input values, outperforming
all our previous test scenarios. When compared to random input
values and interaction order, Scenario 4 achieves, on average, 9%
more coverage, with a 7% increase on the minimum coverage. When
compared to Scenario 2 (Saigen inputs and random interaction
order), the minimum coverage obtained is increased by 4%, and the
average coverage is increased by 2%.

To ensure the statistical significance of our results, we performed
a Friedman Test, which resulted in a p-value < 0.00001, meaning
that the results are significant at 1%.

Filling input fields with Saigen generated values before

interacting with other widgets improves code coverage by an

average of 9%.

AST ’20, May 25–26, 2020, Seoul, South Korea Tanapuch Wanwarang, Nataniel P. Borges Jr., Leon Bettscheider, and Andreas Zeller

Table 5: Per app breakdown of syntactically and semantically valid inputs queried

Name Queries Found Ratio Syntactically Valid Ratio Semantically Valid Ratio
Trip.com 23 13 57% 13 100% 13 100%
Booking.com 13 12 92% 12 100% 12 100%
Agoda 6 6 100% 6 100% 6 100%
Book Catalogue 44 33 75% 32 97% 32 97%
Yelp 8 6 75% 6 100% 6 100%
Kayak 19 15 79% 15 100% 15 100%
Arnab 138 137 99% 137 100% 135 99%
Youtube Music 5 4 80% 4 100% 4 100%
Lonely Planet Guides 39 35 90% 35 100% 23 66%
TripAdvisor 20 15 75% 15 100% 14 93%
Airbnb 21 19 90% 15 79% 15 79%
Expedia 24 12 50% 12 100% 12 100%
Total 360 307 80% 302 98% 287 94%

Figure 5: Coverage (%) per experimental scenario

Table 6: Coverage test scenarios

Textual Input generation Widget Selection
1 Random Random
2 Saigen Random
3 Random Sorted
4 Saigen Sorted

5 LIMITATIONS AND THREATS TO VALIDITY
The presented approach and experimental evaluation present limi-
tations and threats to validity.

Regarding external validity, our experiments have demonstrated
evidence that the Saigen generated textual input values can sig-
nificantly improve the test coverage with a set of benchmark apps.
However, we cannot ensure that the results generalize to all apps
and testing tools. We selected apps from different sizes and cate-
gories to mitigate this threat. Additionally, we added Saigen to
random test generation approaches; thus, our results are limited
by their constraints, such as their inherent inability to perform

complex tasks. Saigen, however, can be used alongside any test
generation approach to fill input fields automatically.

Regarding construct validity, in the process of extracting a con-
cept from a label, we use a dictionary to identify synonyms for
concepts that are not in the knowledge base. We observed that the
synonyms acquired from the dictionary are, at times, not flexible
enough for our use. Our approach is, however, abstract concerning
how to obtain synonyms. Additionally, a notable limitation to our
work includes the inability of Link to generate queries when mul-
tiple words are used as a query input for the knowledge base. As it
stands, the approach requires a single word to be used as a query
input for each concept. This can be problematic when the concepts
that Saigen extract from the label descriptor contain more than one
word per concept, or contains multiple concepts. This limitation
causes the loss of semantics and may result in the returned values
being inaccurate, as explored in [30].

Regarding internal validity, we opted for DroidMate-2’s native
bytecode instrumentation to acquire statement coverage, being able
to test our approach with both open source and commercial apps.
Our tests showed that some apps have failsafe mechanisms, such

Testing Apps With Real World Inputs AST ’20, May 25–26, 2020, Seoul, South Korea

as certificate checks, to prevent app repackaging. A more accurate
coverage measurement can be obtained by using the app source
code instead of its bytecode and by measuring coverage on native
and JavaScript components.

6 RELATEDWORK
Android test input generation is an active field of research. Test-
ing strategies are commonly classified as random, model-based, or
explorative strategies [13].

6.1 Random Strategies
Random strategies explore app behavior by generating random
inputs. This type of strategy is used by several tools, which are
mainly used to test the robustness of apps.

Monkey [16]. Google’s automated random testing tool, which
is a part of the Android software development kit. It is the most fre-
quently used tool implementing random testing3. It generates both
system-level and user events, such as clicks, touches, or gestures,
using a basic random strategy. It is often used to stress-test appli-
cations and can generate reports if the app under test crashes or
receives non-handled exceptions. Dynodroid [24]. It also applies
random testing. However, it attempts to explore more UI elements
than Monkey by prioritizing paths that have not yet been tested. It
can also generate system events. To do so, it requires instrumenting
the Android framework. It checks which system events are rele-
vant for the app under test by monitoring when the app registers
listeners within the Android framework. DroidMate [21]. It is a
fully automatic GUI execution generator that runs out-of-the-box
on both devices and emulators. By default, it follows Dynodroid’s
principle of prioritizing UI elements in which have not yet been
explored, with a more accurate re-identification of UI elements.
Due to its flexible architecture, we opted to use its latest version
(DroidMate-2 [10]) as the base for our experiments.

6.2 Model-Based Strategies
Model-based strategies extract and use a model of the app under
test to systematically generate test inputs.

DroidBot [22]. It dynamically constructs a state transitionmodel
on-the-fly and consumes it to generate test inputs. Its mains ad-
vantage is to work without instrumentation, making it useful to
examine malware, because malicious apps often check their signa-
ture before triggeringmalicious behavior, as well as apps with safety
checks against repackaging. Similar to DroidMate, users can also in-
tegrate their strategies and use them as a framework. PUMA [19].
Features a programmable UI automation API for dynamic analysis
of mobile apps. Similar to DroidBot and DroidMate-2, it can be
extended with different strategies.MobiGUITAR [3]. It is a tool
that dynamically generates a model of an app during exploration,
based on the run-time state of GUI widgets. The generated model
can then be consumed for test generation. SwiftHand [12]. Learns
and iteratively refines, through generated inputs, a model of the
app under test. It attempts to mitigate restarting an app in order to
reach deeper exploration paths. It only generates touch and scroll
events, no system events.

3https://developer.android.com/studio/test/monkey.html

Stoat [33]. Uses a combination of dynamic and static analysis
to reverse-engineer a stochastic model of the app’s GUI. It then
consumes this model to generate events that will lead to crashes.
ORBIT [36]. It is a gray-box approach to extract an app model. It
uses static analysis to extract the set of events supported by the
app’s GUI and then reverse-engineers an app model by systemat-
ically exercising these events. A3E Targeted [6]. It uses a static
data flow analysis on the app byte code, to construct an activity
transition graph, that captures legal transitions among activities
(app screens), and then explores the graph systematically. It directs
the exploration to cover all activities - especially activities that
would be difficult to reach during normal use.

Our approach, without the ordering of UI elements, is built on
top of a random test generation strategy. It can, however, be used
alongside model-based strategies to bypass syntactic validations
and improve test generation.

6.3 Explorative Strategies
The third main category of exploration strategies are explorative
strategies.

AndroidRipper [2]. It uses a user-interface driven ripper to
systematically traverse the app’s user interface. IntelliDroid [35].
It is a tool that attempts to trigger specific behaviors through sym-
bolic execution. It can be configured to produce inputs specific
to a dynamic analysis tool for dynamic malware analysis, and it
can determine the precise order these inputs must be injected. Cu-
riousDroid [11] Decomposes the app GUI on-the-fly, creating a
context-basedmodel that is tailored to the current user layout. It can
be used for creating dynamic sandboxes, which is a well-known ap-
proach for detecting malicious applications.A3E Depth-First [6]A
depth-first variant of theAˆ3E tool. It re-uses the same activity tran-
sition graphs as A3E Targeted but explores the activities and GUI
elements in a depth-first manner. It traverses the app in a slower,
but more systematic way than A3E Targeted. Evodroid [25] Uses
a combination of program analysis and evolutionary algorithm to
generate test cases that improve the overall test suite coverage.

Our approach with sorted UI element interaction is an example
of an explorative approach. Saigen can, however, be used alongside
other explorative test generation strategies.

7 CONCLUSION AND FUTUREWORK
We proposed an approach to obtain textual input values while
testing Android apps automatically. Our results showed that even
on mobile devices, it is possible to correctly identify over 95% of the
labels associated with input fields; and that by entering these values
on the forms from a user-perspective led to an average coverage
improvement of 9%.

While our experiments were conducted in DroidMate-2, our
approach is not tied to any specific test generator or strategy and can
be used alongside other tools. Our approach builds upon previous
research for desktop and web applications, adapting it towards
Android peculiarities. There is still much room for improvements
and future work:
Non-Textual UI Semantics. Our labelmatching approach attempts
to identify a textual element to be paired to an input field. Due
to size constraints, developers frequently use non-textual objects,

AST ’20, May 25–26, 2020, Seoul, South Korea Tanapuch Wanwarang, Nataniel P. Borges Jr., Leon Bettscheider, and Andreas Zeller

such as images, to describe input fields. Extracting UI semantics
from non-textual elements on the GUI can allow for more accurate
matching of input fields and labels.
Enhanced Concept Extraction. The concept extraction algorithm
uses standard natural language processing techniques, such as part-
of-speech tagging and lemmatization. It can benefit from more
advanced textual concept extraction approaches that derive a con-
text from the textual content. A brief survey on such techniques is
presented in [1].
Enhanced Exploration Strategies. We explored the use of se-
mantically aware inputs alongside a random test generation ap-
proach. The same approach can be used with model-based or explo-
rative strategies in order to trigger more complex app functionality.

REPRODUCIBILITY
To facilitate replication and extension, all our work is available as
open source. The replication package is available at:

https://drive.google.com/drive/folders/
1DS7TEUIDyu8ucQ1QEFknvW8Fun35b3TO?usp=sharing

REFERENCES
[1] Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi, Saied Safaei, Elizabeth D

Trippe, Juan B Gutierrez, and Krys Kochut. 2017. A brief survey of text
mining: Classification, clustering and extraction techniques. arXiv preprint

arXiv:1707.02919 (2017).
[2] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore

De Carmine, and Atif M Memon. 2012. Using GUI ripping for automated test-
ing of Android applications. In Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering. ACM, 258–261.
[3] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung

Ta, and Atif M Memon. 2015. MobiGUITAR: Automated model-based testing of
mobile apps. IEEE software 32, 5 (2015), 53–59.

[4] Android. 2017. UI Overview. https://developer.android.com/guide/topics/ui/
overview.html

[5] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. DBpedia: A nucleus for a web of open data. In The

semantic web. Springer, 722–735.
[6] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration

for systematic testing of Android apps. In ACM SIGPLAN Notices, Vol. 48. ACM,
641–660.

[7] Giovanni Becce, Leonardo Mariani, Oliviero Riganelli, and Mauro Santoro. 2012.
Extracting widget descriptions from GUIs. In International Conference on Funda-

mental Approaches to Software Engineering. Springer, 347–361.
[8] Christian Bizer, Tom Heath, and Tim Berners-Lee. 2009. Linked data—the story

so far. International journal on semantic web and information systems 5, 3 (2009),
1–22.

[9] Nataniel P Borges Jr, Maria Gómez, and Andreas Zeller. 2018. Guiding app testing
with mined interaction models. In Proceedings of the 5th International Conference

on Mobile Software Engineering and Systems. ACM, 133–143.
[10] Nataniel P Borges Jr, Jenny Hotzkow, and Andreas Zeller. 2018. DroidMate-2:

a platform for Android test generation. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering. ACM, 916–919.
[11] Patrick Carter, Collin Mulliner, Martina Lindorfer, William Robertson, and Engin

Kirda. 2016. CuriousDroid: automated user interface interaction for Android
application analysis sandboxes. In International Conference on Financial Cryptog-

raphy and Data Security. Springer, 231–249.
[12] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI testing of

Android apps with minimal restart and approximate learning. In Acm Sigplan

Notices, Vol. 48. ACM, 623–640.
[13] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-

mated test input generation for Android: Are we there yet? (E). In Automated

Software Engineering (ASE), 2015 30th IEEE/ACM International Conference on. IEEE,
429–440.

[14] Pedro Costa, Ana CR Paiva, and Miguel Nabuco. 2014. Pattern based GUI testing
for mobile applications. InQuality of Information and Communications Technology

(QUATIC), 2014 9th International Conference on the. IEEE, 66–74.
[15] Christian Degott, Nataniel P Borges Jr, and Andreas Zeller. 2019. Learning

user interface element interactions. In Proceedings of the 28th ACM SIGSOFT

International Symposium on Software Testing and Analysis. ACM, 296–306.
[16] Android Developers. 2012. UI/application exerciser monkey.
[17] Alan Dix. 2009. Human-computer interaction. In Encyclopedia of database systems.

Springer, 1327–1331.
[18] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code coverage for suite

evaluation by developers. In Proceedings of the 36th International Conference on

Software Engineering. ACM, 72–82.
[19] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.

2014. PUMA: programmable UI-automation for large-scale dynamic analysis of
mobile apps. In Proceedings of the 12th annual international conference on Mobile

systems, applications, and services. ACM, 204–217.
[20] Roberto Jacinto. 2010-2018. What is F-Droid? https://f-droid.org/en/about/.

Accessed: 2018-07-28.
[21] Konrad Jamrozik and Andreas Zeller. 2016. Droidmate: A robust and exten-

sible test generator for Android. In Mobile Software Engineering and Systems

(MOBILESoft), 2016 IEEE/ACM International Conference on. IEEE, 293–294.
[22] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. Droidbot: a

lightweight UI-guided test input generator for Android. In Software Engineering

Companion (ICSE-C), 2017 IEEE/ACM 39th International Conference on. IEEE, 23–
26.

[23] Linda L Lohr. 2000. Three principles of perception for instructional interface
design. Educational Technology 40, 1 (2000), 45–52.

[24] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for Android apps. In Proceedings of the 2013 9th Joint Meeting

on Foundations of Software Engineering. ACM, 224–234.
[25] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. Evodroid: Segmented

evolutionary testing of Android apps. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering. ACM, 599–609.
[26] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard,

and David McClosky. 2014. The Stanford CoreNLP natural language processing
toolkit. In Proceedings of 52nd annual meeting of the association for computational

linguistics: system demonstrations. 55–60.
[27] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro. 2014.

Link: exploiting the web of data to generate test inputs. In Proceedings of the 2014

International Symposium on Software Testing and Analysis. ACM, 373–384.
[28] Lluís Màrquez and Horacio Rodríguez. 1998. Part-of-speech tagging using deci-

sion trees. In European Conference on Machine Learning. Springer, 25–36.
[29] Larry Masinter, Tim Berners-Lee, and Roy T Fielding. 2005. Uniform resource

identifier (URI): Generic syntax. (2005).
[30] Seyed Iman Mirrezaei, Bruno Martins, and Isabel F Cruz. 2015. The triplex

approach for recognizing semantic relations from noun phrases, appositions, and
adjectives. In International Semantic Web Conference. Springer, 230–243.

[31] Alireza Sahami Shirazi, Niels Henze, Albrecht Schmidt, Robin Goldberg, Benjamin
Schmidt, and Hansjörg Schmauder. 2013. Insights into layout patterns of mobile
user interfaces by an automatic analysis of Android apps. In Proceedings of the

5th ACM SIGCHI symposium on Engineering interactive computing systems. ACM,
275–284.

[32] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. 2014. Adoption
of the linked data best practices in different topical domains. In International

Semantic Web Conference. Springer, 245–260.
[33] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang

Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of Android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering. ACM, 245–256.
[34] Kristina Toutanova and Colin Cherry. 2009. A global model for joint lemmati-

zation and part-of-speech prediction. In Proceedings of the Joint Conference of

the 47th Annual Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP: Volume 1-Volume 1. Association for
Computational Linguistics, 486–494.

[35] Michelle Y Wong and David Lie. 2016. IntelliDroid: A Targeted Input Generator
for the Dynamic Analysis of Android Malware.. In NDSS, Vol. 16. 21–24.

[36] Wei Yang, Mukul R Prasad, and Tao Xie. 2013. A grey-box approach for automated
GUI-model generation of mobile applications. In International Conference on

Fundamental Approaches to Software Engineering. Springer, 250–265.
[37] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens Lehmann,

and Sören Auer. 2016. Quality assessment for linked data: A survey. Semantic

Web 7, 1 (2016), 63–93.

https://drive.google.com/drive/folders/1DS7TEUIDyu8ucQ1QEFknvW8Fun35b3TO?usp=sharing
https://drive.google.com/drive/folders/1DS7TEUIDyu8ucQ1QEFknvW8Fun35b3TO?usp=sharing
https://developer.android.com/guide/topics/ui/overview.html
https://developer.android.com/guide/topics/ui/overview.html
https://f-droid.org/en/about/

	Abstract
	1 Introduction
	2 Background
	2.1 Associating Descriptor Labels to Input Fields
	2.2 Querying Knowledge Bases

	3 Method
	3.1 Matching Labels
	3.2 Extracting Concepts
	3.3 Obtaining Input Values
	3.4 Consuming Input Values

	4 Evaluation And Experiments
	4.1 Experimental Setup
	4.2 RQ1: Associating and Extracting Concepts
	4.3 RQ2: Obtaining Input Values
	4.4 RQ3: Consuming Input Values

	5 Limitations and Threats to validity
	6 Related Work
	6.1 Random Strategies
	6.2 Model-Based Strategies
	6.3 Explorative Strategies

	7 Conclusion and Future Work
	References

