1,488 research outputs found

    Regulation and Function of the Interleukin 13 Receptor α 2 During a T Helper Cell Type 2–dominant Immune Response

    Get PDF
    Highly polarized type 2 cytokine responses can be harmful and even lethal to the host if they are too vigorous or persist too long. Therefore, it is important to elucidate the mechanisms that down-regulate these reactions. Interleukin (IL)-13 has emerged as a central mediator of T helper cell (Th)2-dominant immune responses, exhibiting a diverse array of functional activities including regulation of airway hyperreactivity, resistance to nematode parasites, and tissue remodeling and fibrosis. Here, we show that IL-13 receptor (R)α2 is a critical down-regulatory factor of IL-13–mediated tissue fibrosis induced by the parasitic helminth Schistosoma mansoni. IL-13Rα2 expression was induced after the onset of the fibrotic response, IL-10, IL-13, and Stat6 dependent, and inhibited by the Th1-inducing adjuvant IL-12. Strikingly, schistosome-infected C57BL/6 and BALB/c IL-13Rα2–deficient mice showed a marked exacerbation in hepatic fibrosis, despite displaying no change in granuloma size, tissue eosinophilia, or mastocytosis. Fibrosis increased despite the fact that IL-13 levels decreased significantly in the liver and serum. Importantly, pathology was prevented when IL-13Rα2–deficient mice were treated with a soluble IL-13Rα2-Fc construct, formally demonstrating that their exacerbated fibrotic response was due to heightened IL-13 activity. Together, these studies illustrate the central role played by the IL-13Rα2 in the down-regulation of a chronic and pathogenic Th2-mediated immune response

    Assessing the outcomes of participatory research: protocol for identifying, selecting, appraising and synthesizing the literature for realist review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Participatory Research (PR) entails the co-governance of research by academic researchers and end-users. End-users are those who are affected by issues under study (<it>e.g.</it>, community groups or populations affected by illness), or those positioned to act on the knowledge generated by research (<it>e.g.</it>, clinicians, community leaders, health managers, patients, and policy makers). Systematic reviews assessing the generalizable benefits of PR must address: the diversity of research topics, methods, and intervention designs that involve a PR approach; varying degrees of end-user involvement in research co-governance, both within and between projects; and the complexity of outcomes arising from long-term partnerships.</p> <p>Methods</p> <p>We addressed the above mentioned challenges by adapting realist review methodology to PR assessment, specifically by developing inductively-driven identification, selection, appraisal, and synthesis procedures. This approach allowed us to address the non-uniformity and complexity of the PR literature. Each stage of the review involved two independent reviewers and followed a reproducible, systematic coding and retention procedure. Retained studies were completed participatory health interventions, demonstrated high levels of participation by non-academic stakeholders (<it>i.e.</it>, excluding studies in which end-users were not involved in co-governing throughout the stages of research) and contained detailed descriptions of the participatory process and context. Retained sets are being mapped and analyzed using realist review methods.</p> <p>Results</p> <p>The librarian-guided search string yielded 7,167 citations. A total of 594 citations were retained after the identification process. Eighty-three papers remained after selection. Principle Investigators (PIs) were contacted to solicit all companion papers. Twenty-three sets of papers (23 PR studies), comprising 276 publications, passed appraisal and are being synthesized using realist review methods.</p> <p>Discussion</p> <p>The systematic and stage-based procedure addressed challenges to PR assessment and generated our robust understanding of complex and heterogeneous PR practices. To date, realist reviews have focussed on evaluations of relatively uniform interventions. In contrast our PR search yielded a wide diversity of partnerships and research topics. We therefore developed tools to achieve conceptual clarity on the PR field, as a beneficial precursor to our theoretically-driven synthesis using realist methods. Findings from the ongoing review will be provided in forthcoming publications.</p

    Recent experimental results in sub- and near-barrier heavy ion fusion reactions

    Full text link
    Recent advances obtained in the field of near and sub-barrier heavy-ion fusion reactions are reviewed. Emphasis is given to the results obtained in the last decade, and focus will be mainly on the experimental work performed concerning the influence of transfer channels on fusion cross sections and the hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier fusion taught us that cross sections may strongly depend on the low-energy collective modes of the colliding nuclei, and, possibly, on couplings to transfer channels. The coupled-channels (CC) model has been quite successful in the interpretation of the experimental evidences. Fusion barrier distributions often yield the fingerprint of the relevant coupled channels. Recent results obtained by using radioactive beams are reported. At deep sub-barrier energies, the slope of the excitation function in a semi-logarithmic plot keeps increasing in many cases and standard CC calculations over-predict the cross sections. This was named a hindrance phenomenon, and its physical origin is still a matter of debate. Recent theoretical developments suggest that this effect, at least partially, may be a consequence of the Pauli exclusion principle. The hindrance may have far-reaching consequences in astrophysics where fusion of light systems determines stellar evolution during the carbon and oxygen burning stages, and yields important information for exotic reactions that take place in the inner crust of accreting neutron stars.Comment: 40 pages, 63 figures, review paper accepted for EPJ

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    Ethnic dissimilarity predicts belonging motive frustration and reduced organizational attachment

    Get PDF
    Some empirical studies show negative consequences of being demographically different from one’s group, but the underlying psychological mechanisms are not well understood. To address this gap, we investigated the role of the belonging and distinctiveness motives in individuals’ experiences of being ethnically dissimilar from their group. We propose that ethnic dissimilarity satisfies group members’ need for distinctiveness whereas it frustrates members’ need for belonging, and this frustration reduces their organizational attachment. An experimental study showed that ethnic dissimilarity led to heightened arousal of the belonging motive, indicating that this motive was frustrated. In a naturalistic study of real-life student groups, ethnic dissimilarity was associated with frustrated belonging, which in turn was associated with reduced organizational attachment. This paper contributes to the literature on demographic dissimilarity in groups by closely examining the effect of demographic dissimilarity on group members’ fundamental motives and reactions to group membership

    A method for comparing multiple imputation techniques: A case study on the U.S. national COVID cohort collaborative.

    Get PDF
    Healthcare datasets obtained from Electronic Health Records have proven to be extremely useful for assessing associations between patients’ predictors and outcomes of interest. However, these datasets often suffer from missing values in a high proportion of cases, whose removal may introduce severe bias. Several multiple imputation algorithms have been proposed to attempt to recover the missing information under an assumed missingness mechanism. Each algorithm presents strengths and weaknesses, and there is currently no consensus on which multiple imputation algorithm works best in a given scenario. Furthermore, the selection of each algorithm’s pa- rameters and data-related modeling choices are also both crucial and challenging

    Quantitative X-ray Tomography of the Mouse Cochlea

    Get PDF
    Imaging with hard X-rays allows visualizing cochlear structures while maintaining intrinsic qualities of the tissue, including structure and size. With coherent X-rays, soft tissues, including membranes, can be imaged as well as cells making use of the so-called in-line phase contrast. In the present experiments, partially coherent synchrotron radiation has been used for micro-tomography. Three-dimensional reconstructions of the mouse cochlea have been created using the EM3D software and the volume has been segmented in the Amira Software Suite. The structures that have been reconstructed include scala tympani, scala media, scala vestibuli, Reissner's membrane, basilar membrane, tectorial membrane, organ of Corti, spiral limbus, spiral ganglion and cochlear nerve. Cross-sectional areas of the scalae were measured. The results provide a realistic and quantitative reconstruction of the cochlea
    corecore