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A B S T R A C T   

Healthcare datasets obtained from Electronic Health Records have proven to be extremely useful for assessing 
associations between patients’ predictors and outcomes of interest. However, these datasets often suffer from 
missing values in a high proportion of cases, whose removal may introduce severe bias. Several multiple imputation 
algorithms have been proposed to attempt to recover the missing information under an assumed missingness 
mechanism. Each algorithm presents strengths and weaknesses, and there is currently no consensus on which 
multiple imputation algorithm works best in a given scenario. Furthermore, the selection of each algorithm’s pa-
rameters and data-related modeling choices are also both crucial and challenging. 
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In this paper we propose a novel framework to numerically evaluate strategies for handling missing data in the 
context of statistical analysis, with a particular focus on multiple imputation techniques. We demonstrate the 
feasibility of our approach on a large cohort of type-2 diabetes patients provided by the National COVID Cohort 
Collaborative (N3C) Enclave, where we explored the influence of various patient characteristics on outcomes 
related to COVID-19. Our analysis included classic multiple imputation techniques as well as simple complete- 
case Inverse Probability Weighted models. Extensive experiments show that our approach can effectively 
highlight the most promising and performant missing-data handling strategy for our case study. Moreover, our 
methodology allowed a better understanding of the behavior of the different models and of how it changed as we 
modified their parameters. 

Our method is general and can be applied to different research fields and on datasets containing heterogeneous 
types.   

1. Introduction 

While electronic health records (EHRs) are a rich data source for 
biomedical research, these systems are not implemented uniformly across 
healthcare settings and significant data may be missing due to healthcare 
fragmentation and lack of interoperability between siloed EHRs [12]. 

Removal of cases with missing data may introduce severe bias in the 
subsequent analysis [3]; with the goal of reducing bias primarily, and 
improving precision secondarily, imputation of the missing information 
is often performed prior to statistical analysis. 

Imputation of missing data has been debated since the 1980s, when 
Rubin’s seminal work [4] presented Multiple Imputation (MI) as an 
imputation strategy for statistical analysis. Based on Bayesian theory- 
motivated underpinnings [56], MI allows the natural variation in the 
data to be emulated in addition to accounting for uncertainty due to the 
missing values in the subsequent inferences. In practice, the objective of MI 
is to construct valid inference for the estimated quantity of interest [7] 
rather than being able to predict the true missing values with the greatest 
accuracy, which is the typical aim of imputation models applied in 
machine-learning contexts where the focus is on predictive analysis [8]. 

Since the introduction of MI, several MI algorithms have been pro-
posed and successfully deployed in many different domains to avoid 
information loss before the application of standard statistical methods 
for causal inference [9,10]as well as machine learning techniques for 
predictive modeling [11,12]. 

However, there is no consensus on which MI algorithm works best 
under different scenarios. Aside from the choice of the MI strategy to be 
used (see section Literature review), the choice of the specific imputa-
tion algorithm and of its input parameter settings, as well as modeling 
decisions - such as the way datasets with heterogeneous types (cate-
gorical, numeric, binary) are handled - are also both crucial and chal-
lenging. The appropriateness of including outcome variables in the 
imputation model also remains difficult to determine. For example, in a 
prior predictive study [11] the target (outcome) variable was omitted 
during imputation with the aim of avoiding bias in imputation results for 
variables highly correlated with the outcome. However, other works 
[13,14] recommended the inclusion of the outcome variables during 
imputation to accommodate potential confounding explicitly and obtain 
more reliable estimates. 

In this paper, we consider statistical inference problems in the 
medical/clinical context, where missing values may affect the validity of 
the statistical estimates, if not properly handled. More precisely, we 
focus on situations where (potentially adjusted) associations between 
patient characteristics and an outcome of interest need to be inferred. In 
this context, we propose a method for evaluating and comparing several 
MI techniques, with the aim of choosing the most appropriate and per-
formant approach for processing the original (incomplete) dataset and 
compute inferential quantities in retrospective clinical studies. While we 
focus on the evaluation of MI algorithms, the method is general enough 
to be applied to any missing-data handling strategy. 

To show the effectiveness and the practicality of the evaluation 
approach, we used as a case study a cohort of patients with diabetes (type- 

2 diabetes) infected with COVID-19 provided by the National COVID 
Cohort Collaborative (N3C) Enclave (see Material and Methods). The 
same patient-cohort was previously filtered to remove cases with missing 
values and the obtained (complete) cohort was analyzed to assess asso-
ciations between hospital events (hospitalization, invasive mechanical 
ventilation, and death) and crucial descriptors of patients with diabetes. 
Results of this analysis are reported in [15]. By limiting the analysis to 
complete cases, Wong et al. lost 42% of available cases, thereby reducing 
the power of the estimator (subsection Case study: associations between 
descriptors of patients with diabetes and COVID-19 hospitalization 
events). In the literature, strategies such as Inverse Probability Weighting 
(IPW, [16,17], subsection Literature review) have been proposed to 
recover from the limits of complete-case analysis by including a “miss-
ingness model” for the probabilities that each variable’s values are 
missing into the overall analysis. However, frequently-applied imple-
mentations of these strategies, i.e., without augmentation approaches 
[16], may prove ineffective when a high number of cases exhibit missing 
values. Imputation of missing data instead allows all cases to be used for 
computing potentially more reliable statistical estimates. 

To guide the choice of the MI model and of its specification, we used 
our MI evaluation method to choose among the MI methods available 
from the N3C Platform. 

Further, given its generality, we were able to apply the evaluation 
method to also assess the comparative performance of broader families 
of IPW models, comparing them to MI algorithms. In our case study, 
comparison with complete-case analysis confirmed the performance- 
based preference of multiple imputation over IPW models; such con-
clusions may not necessarily apply to augmented IPW approaches that 
make use of all available data (including incomplete cases with some 
modeled variables non-missing; for more on these so-called ‘doubly- 
robust’ IPW methods, see [17]). To obtain actionable results, we finally 
used the most valid and performant (MI imputation) algorithms as 
determined by our evaluation method to compute odds ratios (and 
confidence intervals) describing associations between patient predictors 
and hospital events. 

Of note, in [18] we applied our evaluation method to choose the 
most valid MI strategy to estimate a treatment effect while adjusting for 
other, potentially confounding, variables (subsection Generalizability of 
the evaluation method to different scenarios, [18]). This is another 
practical example showing that our evaluation approach can be applied 
on a broad range of heterogeneous (clinical) datasets to compare 
different strategies and methods for handling missing data while per-
forming statistical analysis. 

The paper is organized as follows. In the Background section we first 
describe the case study we used to show the feasibility of the evaluation 
method (subsection Case study: associations between descriptors of pa-
tients with diabetes and potential COVID-19 hospitalization events), and 
we next detail the MI strategy and its underlying theories (subsection 
Multiple Imputation), followed by a brief literature review (subsection 
Literature review). Next, section Evaluation method details our evaluation 
framework. The following section Experimental material and methods 
firstly reports the data source used for our experiments and 
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implementation details (subsection Data source and implementation de-
tails). Finally, we detail the algorithms evaluated on our use cases and their 
experimental settings (subsection Evaluated algorithms and settings); we 
conclude with Results, Discussion and Conclusions, and Highlights. 

Aim: To propose an evaluation framework for comparing and con-
trasting different approaches for handling heterogeneous data missing-
ness in the context of statistical analysis applied to real-world datasets.  

Statement of Significance 

Problem: Missing data is a problem affecting many research contexts. Imputation of 
missing data has been debated since the 1980s, when Rubin’s seminal work 
presented multiple imputation as a key imputation strategy, given its ability to 
emulate the natural variation in data. 

What is Already Known: Considering that multiple imputation strategies have 
produced promising results in many fields, numerous biomedical/clinical research 
works have applied them to analyze patient data extracted from (electronic) health 
records. However, there are no established rules of thumb for choosing an effective 
multiple imputation method and adopting appropriate assumptions and chosen- 
method specifications required for its implementation. 

What this paper adds: We propose an evaluation framework for comparing the validity 
and performance of multiple imputation algorithms in the context of retrospective 
clinical studies that assess potential associations between patients’ predictors and 
outcomes of interest. As a case study, we used the proposed evaluation method to 
compare different versions of a selection of the most frequently used multiple 
imputation methods over a cohort of patients with diabetes (type-2 diabetes) 
provided by the National COVID Cohort Collaborative (N3C). Besides the clinical 
usefulness of the obtained results, for each algorithm we evaluated various 
specifications, such as the inclusion/exclusion of the outcome variables in the 
imputation model, and the ways in which categorical data are treated, among 
others. In addition to testing the usefulness of the evaluation framework, the results 
allowed us to gain a better understanding of the behavior of the compared 
algorithms. The generality of the evaluation approach allows it to be applied for 
assessing any collection of (multiple) imputation procedures, including recently 
proposed deep learning techniques, as well as any strategy and algorithm for 
handling missing data in the context of statistical analysis, beyond those designed 
for data imputation.  

2. Background 

2.1. Case study: Associations between descriptors of patients with diabetes 
and potential COVID-19 hospitalization events 

We apply our methods to a previously published case study [15] on 
patients with type 2 diabetes mellitus with data from the N3C. We used 
two logistic regression (LR) models and one Cox Survival (CS) model to 
evaluate the association between glycemic control measured by HbA1c3 

and outcomes of acute COVID-19 infection, including mortality (hazards 
estimated by assuming a CS model), mechanical ventilation (odds esti-
mated by an LR model), and hospitalization (odds estimated by an LR 
model). The study aimed at understanding the role of patients’ factors 
such as body mass index (BMI), race, and ethnicity on COVID-19 out-
comes [20,21,22,23]. Before running the LR and CS estimation steps, 
BMI was grouped according to the World Health Organization classifi-
cation [24,25]4 that categorizes adults over 20 years of age as under-
weight (BMI < 18.5 kg/m2), normal weight (18.5 ≤ BMI < 25 kg/m2), 
overweight (25 ≤ BMI < 30 kg/m2), class I obesity (30 ≤ BMI < 35 kg/ 
m2), class II obesity (35 ≤ BMI < 40 kg/m2), and class III obesity (BMI 
≥ 40 kg/m2) and the grouped variable was one-hot-encoded, so that the 
following estimators could accommodate non-linear relationships be-
tween BMI and any of the three outcomes. Grouping and one-hot- 
encoding was also applied for the other numeric predictor variables 
(HbA1c and age). Table 1 reports details about the complete list of 
predictors, their type, the grouping of numeric variables, and the dis-
tribution of cases across all the predictors. Note that categorical 

Table 1 
The variables in the Wong et al. dataset [15], their type and their representation 
in the logistic regression and Cox-survival model. Numeric variables (age, BMI, 
Hba1c) were grouped and one-hot-encoded, while categorical variables 
(Gender, Ethnicity, and Race) were one-hot-encoded. To avoid collinearity, 
when one-hot-encoding a predictor variable, the binary predictor representing 
the largest group was left out for reference (marked with “used for reference” in 
the table). For each predictor group, the table also reports the percentage of 
missing cases, if any.  

Predictor Group and 
predictor type 

Predictor Percentage of 
missing values 

All cases 

Number of cases (%) 56,123 (100%) 
Gender 

One-hot-encoded 
categorical variable 

Male  49% 
Female (used for 
reference)  

51% 

Age 
Grouped and one- 
hot-encoded 
numeric variable   

61.88 ± 0.06 
[18,89] 

age < 40  7% 
40 ≤ age < 50  11% 
50 ≤ age < 60  22% 
60 ≤ age < 70 
(used for 
reference)  

28% 

70 ≤ age < 80  22% 
age ≥ 80  10% 

BMIGrouped and one- 
hot-encoded 
numeric variable  

29% 33.25 ± 0.04 
[12.13,79.73] 

BMI < 20 1% 
20 ≤ BMI < 25 8% 
25 ≤ BMI < 30 18% 
30 ≤ BMI < 35 
(used for 
reference) 

18% 

35 ≤ BMI < 40 12% 
BMI ≥ 40 13% 

Race 
One-hot-encoded 
categorical variable 

White (used for 
reference) 

15% 55% 

Other 1% 
Black 26% 
Asian 3% 

Ethnicity 
One-hot-encoded 
categoric variable 

Hispanic 12% 16% 
Not hispanic 
(used for 
reference) 

73% 

Hba1c 
Grouped and one- 
hot-encoded 
numeric variable   

7.58 ± 0.01 
[4.1,19.3] 

Hba1c < 6  17% 
6 ≤ Hba1c < 7 
(used for 
reference)  

30% 

7 ≤ Hba1c < 8  21% 
8 ≤ Hba1c < 9  12% 
9 ≤ Hba1c < 10  07% 
Hba1c ≥ 10  12% 

Comorbidities 
Binary variables; 
1 = has comorbidity 
0 = does not have 
comorbidity 

MI  13% 
CHF  23% 
PVD  21% 
Stroke  17% 
Dementia  5% 
Pulmonary  31% 
liver mild  16% 
liver severe  3% 
Renal  30% 
Cancer  14% 
Hiv  1% 

Treatments 
Binary variables; 
1 = has comorbidity 
0 = does not have 
comorbidity 

Metformin  26% 
dpp4  5% 
sglt2  5% 
Glp  7% 
Tzd  1% 
Insulin  25% 
Sulfonylurea  9%  

3 HbA1c represents the integrated glucose concentration over the preceding 
8–12 weeks [19].  

4 BMI is defined as a person’s weight in kilograms divided by the square of 
their height in meters [24][25]. 
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predictors were also one-hot-encoded (Race5, Ethnicity6, Gender7) 
before the LR and CS analysis to explicitly investigate the influence of 
the different categories. 

This study had several limitations. First, it was only conducted using 
complete cases for whom data on height and weight were present to 
calculate BMI. In particular, 16,507/56,123 (29.4%) of cases were 
excluded due to missing BMI. Also, race and ethnicity information was 
missing for a significant proportion of cases; to avoid their removal, the 
authors introduced missing indicators for race and ethnicity as two 
additional categories that represented uncertain information and that 
were one-hot-encoded as were the other race and ethnicity categories8. 

In particular 8,643/56,123 (15.4%) of patients had missing data on 
race, 6,491/56,123 (11.6%) had missing data on ethnicity. This 
accounted for a total of 23,594/56,123 (42%) of samples containing 
missing or uncertain information. (Fig. 1 shows details about the missing 
data patterns and the number of missing values per variable.) 

In the Wong et al. cohort [15] the predictors were assumed to be, at 
best, Missing at Random (section Multiple Imputation), as suggested by 
Little’s test [27], whose p-value (p < 0.0001) supported rejecting the 
null hypothesis of Missing Completely at Random (section Multiple 
Imputation) missingness. Therefore, the listwise-deletion performed in 
the original analysis (i.e., restriction analysis to “complete cases”) had 
not only reduced the sample size and the statistical power of the esti-
mator, but may have inadvertently introduced bias in the resulting 

inferences. Therefore, we repeated the statistical analysis described in 
[15], after a previous step where we imputed missing data in BMI9, 
Ethnicity, and Race predictor variables. 

2.2. Multiple imputation 

In the remainder of this paper, given a complete dataset X ∈ RNxd 

(containing N points represented by d fully observed predictors) the 
statistical estimates (the log odds and log hazard scales), their variance, 
standard error, and confidence interval estimates will be referred to as 
qi, vari, sei, and, cii, where the subscript i ∈ {1, ..., d} will index the 
predictor variable. The notation used throughout the paper is summa-
rized in Table 2. Here, we assume that the effect of each covariate on the 
outcome is of interest, however if only a subset of effects are of interest 
and the remaining covariates are used for purposes of control, the 
methods remain virtually unchanged. 

When data exhibit missing values, the data may be assumed to be 
Missing Completely At Random (MCAR), Missing At Random (MAR), or 
Missing Not At Random (MNAR) [28,29,30,31]. When the data are 
deemed MCAR the missing observations are considered to constitute a 
(completely) random subset of all observations; in other words, the 
probability of being missing is uniform across all cases or, simply said, 
there is no relationship between the missing values and any other values 
considered for analysis, whether observed or missing. This implies that 
the missing and observed data values will have similar distributions. 
Consequently, apart from the obvious loss of information, the deletion of 
cases with missing values (generally referred to as “listwise deletion” or 
complete case analysis) may be a viable choice if the number of fully 
observed cases is sufficient to obtain sufficiently reliable estimates. 

MAR data, in contrast, entail systematic differences between the un-
derlying distributions for cases exhibiting missing values for certain var-
iables and cases with fully observed values for the same set of variables, but 
these underlying differences can be entirely explained by observed values 
in other variables (thus MCAR can be viewed as a more restrictive special 
case of MAR). In this case the probability of being missing is the same only 
within groups defined by the observed data (i.e., cases with missing values 
occur ‘at random’ within strata or latent groups determined by observed 
variable values), which means that there are relationships between 
missing and observed values, and these relationships may be exploited by 
modeling, to include proper data imputation techniques that adequately 
model such relationships to yield valid inferences about targeted quanti-
ties in the presence of missing data. 

In contrast to MCAR data, for MAR data the removal of cases with 

Fig. 1. The presumed MAR missing data patterns in the Wong et al. [15] dataset.  

5 In the N3C platform, the “Race" predictor reports whether the patient has 
race White, race Black or African American, Asiatic, he/she is Native Hawaiian 
or Other Pacific Islander, or has Other mixed race. In the cohort used by Wong 
et al. [15] no Native Hawaiian or Other Pacific Islander cases were found.  

6 In the N3C platform, the “Ethnicity" predictor reports whether the patient is 
Hispanic or Latino or Not Hispanic or Latino.  

7 In the N3C platform, the “Gender" predictor reports whether the patient is a 
“female”, “male”, or “other”. The cohort used in [15] contained no cases with 
gender “other”. 

8 As this study was conducted within N3C there are tacit data curation fea-
tures that provide a rationale for this: 1) NIH/NCATS data governance had an 
agreement with American Indian / Alaska Native sovereign tribal nations 
(through Summer 2022; see https://ncats.nih.gov/n3c/about/tribal-consultat 
ion) to deterministically impute ‘Unknown’ for their participants (to mitigate 
re-identification risk given concurrent availability of ZIP codes’ first 3 digits), 
and 2) N3C consortial research indicates an increased risk for people of color to 
have incomplete mappings of race and/or ethnicity to an unambiguous 
harmonized OMOP set of fields, when other populations studies have demon-
strated that these same subgroups-within-incompletely-mapped sites are at 
likely disparate risk of COVID-19 sequelae such as the outcomes studied [26]. 

9 BMI is a dependent variable, with square dependency from height. To limit 
the effect of the square dependency, the logarithm of BMI is imputed and the 
resulting values are squared to revert to the original scale. 
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missing values can not only affect statistical power [3], but it also may 
introduce non-negligible if not severe bias [32,33]. Indeed, for MAR 
data Little and Rubin [32] showed that the bias in the estimated mean 
for a given variable increases with the difference between the true un-
derlying means of the observed and missing cases, in tandem with the 
proportion of the cases exhibiting missing values. Schafer and Graham 
[33] reported simulation studies where the removal of cases with 
missing values introduces bias under both MAR and MNAR missingness. 

MNAR data is present when the data meets neither MCAR nor MAR 
assumptions due to underlying relationships, wherein missingness de-
pends on unobserved data (thus MAR can be viewed as a restrictive 
special case of MNAR where dependence on unobserved data no longer 
holds). In this case, missingness is not at random, and it must be 
explicitly modeled to avoid some bias in the subsequent inferences 
[34,35]. As MNAR is empirically unverifiable and, in fact, non- 
identifiable from observed data [35], it follows that for any specific 
model of a MNAR mechanism to be adopted within an analysis, it must 
be postulated using domain-expert-driven assumptions. Given this 
context-specific aspect of MNAR modeling, we consider it outside the 
scope of this paper (aimed at proposing a generic evaluation framework 
for methods accommodating MAR missingness in EHR-based data). It 
requires domain-specific scientifically defensible assumptions in order 
to posit specific MNAR mechanisms, as they are empirically indistin-
guishable from specific MAR mechanisms that could yield an empirical 
(joint) distribution similar in all other respects, once given a set of 
observed data. Sensitivity analysis frameworks or other model- 
postulation-assessment methods are therefore necessarily specific to 
the scientific domain of a particular research question, and thus beyond 
the scope of this work; that said, such approaches should be routinely 
used to stress-test findings as a way to assess any (MI or IPW) missing- 
data techniques under a particular MNAR assumption. 

When an (univariate or multivariate) MI strategy is chosen for 

imputing the missing values prior to conducting the analysis, the 
following three steps are consecutively applied (sketched in Fig. 2). 

(1) An (univariate or multivariate) imputation algorithm containing 
some randomness is used to impute the dataset a number m of times, 

therefore obtaining a set of m imputed sets, X̂(1) , ..., X̂(j) , ..., X̂(m) , where 
the superscript j ∈ {1, ...,m} will be used in the remaining part of this 
work to index the imputation number. 

(2) Each of the m imputed datasets is then individually analyzed to 

obtain a vector Q̂(j) =
[
̂q(j)
i

]
of estimates for each predictor variable 

(indexed by the subscript i ∈ {1,...,d}), their variances, ̂VAR(j) =
[
̂var(j)i

]
, 

standard errors, ̂SE(j) =
[
̂se(j)i

]
, and confidence intervals ̂CI(j) =

[
̂ci(j)i

]
. 

(3) the m estimates are then pooled by Rubin’s rule [4] to obtain the 
final pooled inference as the mean of the estimates across all the im-

putations, Q̂ = 1
m
∑m

j=1 Q̂(j) and its total variance, 

T̂ = Ŵ +
(
1 + 1

m
)
B̂,whereŴ = 1

m
∑m

j=1
̂VAR(j) ≈ W∞ is the estimate of 

the (true) within imputation variance (that would be obtained when 

m→∞) and B̂ = 1
m− 1

∑m
j=1

(
Q̂(j) − Q̂

)2
≈ B∞ is the estimate of the (true) 

between imputation variance (when m→∞). T̂ ≈ T∞ is an estimate of 
the true variance obtained when m→∞. 

While easy to define in principle, the specification of a multiple 
imputation pipeline is not easy, and several open issues remain to be 
clarified. First, beside the arduous choice of the imputation algorithm, 
its application settings are also both crucial and challenging. This choice 
depends on the data structure, the data-generating mechanism, the 
inferential model, and the scientific question at hand. Unfortunately, the 
different algorithms and their different application settings may result in 
completely different estimates, therefore raising doubts about the reli-
ability of the MI estimates. 

Table 2 
The notation used in the paper.  

Parameter Name Meaning 

N number of cases (sample points) 
d number of predictors 
X ∈ RNxd a dataset containing N cases, each described by d predictors 
qi, vari, sei, cii the estimate (its variance, standard error, and confidence interval) computed on X ∈ RNxd by a statistical estimator for 

the ith predictor variable (foreachi ∈ {1, ..., d} ). 
Q = [qi],  

VAR = [vari],  
SE = [sei],  
CI = [cii],  
for each i ∈ {1, ..., d}

The vector of all the estimates (their variance, standard error, and confidence interval) computed over all the 
predictors in a dataset X ∈ RNxd 

m number of multiple imputations 

X̂(j) ∈ RNxd The j-th imputed set 

̂q(j)
i , ̂var(j)i , ̂se(j)i , ̂ci(j)i 
for each i ∈ {1, ..., d}

the estimate (its variance, standard error, and confidence interval) for the ith predictor (i ∈ {1, ..., d} ) of the the j-th 

imputed set X̂(j) ∈ RNxd 

Q̂(j) =
[
̂q(j)
i

]
̂VAR(j) =

[
̂var(j)i

]
̂SE(j) =

[
̂se(j)i

]
̂CI(j) =

[
̂ci(j)i

]
for 

each i ∈ {1, ..., d}

The vector of all the estimates (their variance, standard error, and confidence interval) computed over all the 

predictors in the the j-th imputed set X̂(j) ∈ RNxd. 

q̂i , v̂ari , ŝei , ĉii 
for each i ∈ {1, ..., d}

the pooled estimate (its variance, standard error, and confidence interval) obtained by an MI strategy for the ith 

predictor variable in X ∈ RNxd by applying Rubin’s rule (Rubin et al 1987). 

Q̂ =
1
m
∑m

j=1
Q̂(j) = [q̂i ],  

for each i ∈ {1, ...,d}

The vector of the pooled estimates (one estimate per predictor variable) computed by an MI imputation strategy using 
m imputations 

Ŵ =
1
m
∑m

j=1
̂VAR(j) ≈ W∞ Ŵ = [Ŵi ], for each i ∈ {1, ...,d} Ŵ is the vector of within imputation variances obtained with m imputations (one within imputation variance per 

predictor variable). 
Ŵ is an estimate of W∞, the true within imputation variance when m→∞ 

B̂ =
1

m − 1
∑m

j=1

(
Q̂(j) − Q̂

)2
≈ B∞ B̂ = [B̂i ], for each i ∈ {1,.

..,d}

B̂ is the vector of between imputation variances obtained with m imputations (one within imputation variance per 
predictor variable). 
B̂ is an estimate of B∞, the true between imputation variance when m→∞ 

T̂ = Ŵ +
(
1+

1
m

)

B̂ ≈ T∞ 
T̂ is the total variance that estimates the true total variance, T∞ when m→∞ 

A The number of amputations of the complete dataset 

Q =
1
A
∑A

a=1
Q̂(a) =

[

qi

]

≈ E[Q̂]for each i ∈ {1, ...,d}
The vector with the averages of the MI estimates across all the amputations, that approximates the (vector of) expected 
values of the MI estimates for each predictor  
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Second, there does not exist a clear and well-defined theory that 
allows the optimal number m of multiple imputations to be chosen. 
Indeed, several researchers [36,37] have supported Rubin’s empirical 
results [4] according to which 3 to 10 imputations usually suffice to 
obtain reliable estimates. However, more recent research studies 
[38,39] experimentally showed that the number of multiple imputations 
should be set to larger values (e.g. m ≥ 20), which is now computa-
tionally more feasible than it was several decades ago. In our settings, m 
was chosen in order to maximize the efficiency of the multiple impu-
tation estimator (see Appendix A), by applying Von Hippel’s [40] rule of 
thumb, according to which a number of imputations comparable or 
higher than the percentage of cases that are incomplete is a reasonable 
setting. In our case-study, this criterion would require setting m = 42; 
however, since the definition of m is controversial and no well-accepted 
rule has been defined, we used the evaluation pipeline we are proposing 
to also experiment with the value m = 5 suggested by Rubin and set as 
default by many packages (section Results). This allowed the stability of 
the computed estimates to be assessed with respect to the value of m. 

2.3. Literature review 

Statistical analysis of incomplete (missing) data is gaining a lot of 
interest in the research community. 

To this aim, classic approaches such as simple complete-case IPW 
[16] limit the statistical analyses to the subset of complete cases 
weighted by their inverse probability of containing missing values. Since 
this probability is often unknown, it is typically estimated by using a 
logistic regression model that is fitted on the complete predictors and 
with outcome given by an indicator of each case containing at least one 
missing value. Though effective in several contexts, when a complex 
missingness pattern is present in the data and many predictors contain 
missing values, or when many cases are incomplete, IPW models tend to 

have a significant power loss due to the high number of cases being 
dropped; beyond the scope of this paper, the degree of power loss when 
using augmented IPW approaches leveraging all available data, e.g., 
[41], would warrant separate lines of research. 

In these contexts, (multiple) data imputation strategies have often 
proven their effectiveness. In particular, MI algorithms can broadly be 
classified into three categories:  

1. parametric multivariate MI imputation techniques exploiting a Joint 
Modeling (JM) approach [7,37]; 

2. univariate imputation methods exploiting a Fully Conditional Spec-
ification (FCS) strategy [28];  

3. machine learning-based (e.g., missForest [42]) or deep-learning based 
MI strategies (e.g., MI via autoencoder models [43] – e.g. MIDA [44], or 
stacked deep denoising-autoencoders [45], or Generative Adversarial 
Networks [46] – e.g. GAIN [47] or MisGAN [48]). 

Multivariate MI techniques exploiting a JM imputation strategy as-
sume a joint distribution for all variables in the data and generate im-
putations for values in all variables by drawing from the implied 
conditional (predictive) distributions of the variables with missing 
values [37]. The multivariate JM strategy adheres to Rubin’s theoretical 
foundations [4] and its empirical computational time costs are signifi-
cantly lower than those required by univariate FCS imputation algo-
rithms; however, it is often challenging to specify a joint underlying 
distributional model, and this particularly happens when dealing with 
high-dimensional datasets and/or datasets characterized by mixed var-
iable types (including binary and categorical types). For these reasons, 
some of the most popular algorithms exploiting a multivariate-JM 
strategy (e.g., “norm”, the classic MI multivariate imputation function 
implemented in R language [37], PROC MI [49], and Amelia [50] - 
subsection Evaluated algorithms and settings), simplify the problem by 

Fig. 2. Schematic diagram of the pipeline used to obtain pooled estimates when applying a MI strategy. The incomplete dataset is imputed m times, where the value 
of m can be defined in order to maximize the efficiency of the MI estimator (see App***endix A); each imputed dataset is individually processed to compute separate 
inferences; all the inferences are pooled by Rubin’s rule [4] to get the pooled estimates (Q̂), their total variances (V̂AR) and standard errors (ŜE) and their confidence 
intervals (ĈI). In the figure, we use the superscript j to index the imputations number (j ∈ {1,⋯,m}) and the subscript i to index the predictor variable in the dataset 
(see Table 2 for a detailed list of all the notations used throughout the paper). 
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assuming an underlying multivariate Gaussian distribution, and dealing 
with categorical variables by converting then to numeric (integer) var-
iables. Besides implicitly imposing an ordering between categories this 
can lead to bias [51]. To avoid any simplifying assumptions about the 
joint distribution, flexible nonparametric techniques have been pro-
posed [7] that obtain effective imputation results by modeling the joint 
distribution through advanced Bayesian techniques. However, they 
incur high computational costs, hampering their practicability on high- 
dimensional, complex datasets such as those recently available from 
medical EHR studies. 

FCS approaches exploit a univariate imputation approach where a 
conditional distribution (generally the normal distribution) is defined 
for each variable with missing values given all the other variables. This 
allows designing an iterative procedure where missing values are 
imputed variable-by-variable, akin to a Gibbs sampler. The most 
representative among MI algorithms using the FCS strategy is Mice [52] 
(subsection Evaluated algorithms and settings); it initially imputes the 
missing data in each variable by using a simple hot-deck-imputation 
technique (the mean/mode of observed values), and then imputes 
each incomplete variable by a separate model that exploits the values 
precedingly imputed from the other variables to “chain” all the uni-
variate imputations. By default, Mice uses predictive mean matching 
(pmm, [28]) for imputing missing values in numeric data, logistic 
regression and polytomous logistic regression for binary data or cate-
gorical data. However, its version using classification and regression 
trees (CART, [53,54]) has also achieved promising results [55], as CART 
and regression trees are more-flexible estimation procedures. Other 
flexible machine-learning and deep-learning-based imputation tech-
niques show promise as well. 

MissForest [42] is a notable such procedure. It imputes missing 
values by applying a univariate FCS strategy, where variables with 
missing values are imputed by using RFs [56] for either regression 
(integer- or real-valued variables) or classification (binary or categorical 
variables). MissForest was presented as an imputation method to be 
applied for predictive modeling, where a unique imputation of missing 
data is generally produced before training any subsequent classifier on 
the imputed data. However, an MI version of MissForest was proposed in 
missRanger, where a final refinement step is added that applies pmm10 

to both avoid outliers and recover the natural data variability (subsec-
tion Evaluated algorithms and settings). 

Given the success of deep-learning techniques in a variety of fields, 
several authors have designed flexible deep, neural-network-based 
imputation models that showed promise in the presence of complex 
data [8]. In particular, two recent advances in the context of deep-neural 
networks are particularly suited for the task of (multiple) data imputa-
tion: denoising autoencoders (for MI) [43,44,45]and Generative 
Adversarial Networks (GANs) [46,47,48]. 

Autoencoders are unsupervised neural networks that compute an 
informative lower-dimensional representation of the input data. They 
are generally characterized by an hourglass shaped architecture, 
composed of two modules: an encoder-module and a decoder-module 
that share a bottleneck layer. The encoder-module processes the input 
layer to produce a lower dimensional representation of the input data in 
the so-called bottleneck layer; the decoder module processes the output 
of the bottleneck layer (the lower dimensional input representation) to 
obtain an output layer that best reconstructs the input data. After being 
trained by a loss function that measures the difference between the input 
and the output layers, the autoencoder can be used to process input 
samples to retrieve their lower dimensional representations in the 
bottleneck layer. In practice, an autoencoder is a neural network model 

trained to learn the identity function of the input data. Denoising 
autoencoders intentionally corrupt the input data (by randomly turning 
some of the input values to zero) in order to prevent the networks from 
learning the identity function, but rather a useful low-dimensional 
representation of the input data. Given a sample with missing values, 
denoising autoencoders are naturally suitable for producing MI data 
because they can simply be run several times by using different random 
initializations. A classic example of algorithm using denoising autoen-
coder for MI is MIDA [44]11. 

GANs [46,47,48] are other neural-network models generally used for 
generative modeling, that is to output new examples that could have 
plausibly been drawn from the original dataset. 

GANs allow reformulating the generative model as a supervised 
learning problem with two sub-modules: a generator-module that is 
trained to generate new examples, and the discriminator-module that is 
trained to classify examples as either real (i.e., from the domain to be 
learnt) or fake (generated). The two models are trained together in an 
“adversarial” game, until the discriminator-module is fooled about half 
of the time, meaning that the generator-module is generating plausible 
examples. GAIN [47] and MisGAN [48] are two recent examples of MI 
algorithms that utilize GANs. Given an input dataset with missing 
values, both of them first add noise and fill the missing values with some 
hot-deck imputation technique or constant values. 

Next, GAIN [47] employs an imputer-generator module that is trained 
to produce plausible imputations of the missing data. The generator is 
adversarially trained to fool a discriminator that determines which entries 
in the completed data were actually observed and which were imputed. 

MisGAN [48] instead uses a generator-module that is trained to 
generate both plausible imputation values and the missingness masks 
that mark the imputed values. This generator is adversarially trained to 
fool a discriminator that solely works on the masked-output of the 
generator to recognize a valid imputation. Both GAIN and MisGAN can 
be used to generate MIs by using several runs of the GAN model with 
varying initial noise and/or imputations of the missing values. 

Machine-learning and deep-learning based MI methods have three 
main advantages over traditional multivariate-JM and univariate-FCS 
MI models. First, they are more flexible and do not need any underly-
ing data distribution to be specified. Second, they are naturally designed 
to deal with mixed data-types. Third, they can uncover more complex, 
nonlinear relationships between variables and are able to exploit them 
to improve the validity of the computed imputations. Deep-learning 
based MI methods are further characterized by their documented abil-
ity to impute complex, high-dimensional data. Moreover, once trained, 
the computational time of deep-learning based models is much lower 
than that required by univariate-FCS algorithms (e.g., MICE) and uni-
variate machine-learning based algorithms (e.g., missForest). 

These advantages are however counterbalanced by crucial points, 
often hampering the practicability of deep-learning based MI techniques; 
indeed, the hyperparameter tuning of deep-learning based models is 
difficult and crucial, and slightly different model architectures can result in 
dramatically different results. Unfortunately, few details are provided in 
the literature about hyperparameter tuning and architectural choices, and 
their consequences for the performance of imputation methods. For this 
reason, their choice is generally limited to predictive modeling contexts, 
where the choice of the best architecture and hyperparameter values may 
be simply guided by the prediction performance. 

Further, while considering recently proposed non-MI and MI methods 
using deep-learning models to handle simulated MNAR data [57,58], one 
encounters a lack of transparency in how deep architectures encode the 
missingness mechanism assumptions. Indeed, the proposed models 
tacitly adopt the (unidentifiable) MAR/MNAR assumptions, akin to 
failing to accommodate how two- and higher-way interactions among 

10 When a pmm model exploiting k donors is used to assign a continuous or 
categorical label to a test sample, xtest, the k training points (donors) that are 
the nearest to xtest (according to a proper similarity metric) are selected and the 
label of a randomly chosen donor is assigned to xtest. 

11 MIDA is available as an R package: https://cran.r-project.org/web/package 
s/rMIDAS/rMIDAS.pdf 
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discrete sets of patient-level predictors might impact outcomes and an-
alytic features deemed crucial by clinicians in most settings. 

This inability to accommodate clinically-valid joint variable distribu-
tions with explainable distinctions between MAR and MNAR, together 
with implementation challenges, highlight that the proper setting of deep- 
learning models in the context of MI is still lacking a grounded theoretical 
basis, whose definition would require additional research. 

3. Evaluation method 

In statistical inference contexts, the goal of MI is to obtain statisti-
cally valid inferences from incomplete data. In other words, given a 
statistical model of interest (e.g., an LR estimator or a CS model), an 
imputation algorithm should ultimately allow the analyst to obtain es-
timates as similar as possible to those that the statistical model would 
provide if the data were complete. 

Unfortunately, there is no rule of thumb for choosing an imputation 
model based on the problem at hand, the amount of missingness, or the 
missingness pattern. 

However, following the guidelines in Van Buuren’s seminal work 

[28], when the number of complete cases has a reasonable cardinality, 
an MI algorithm may be evaluated by comparing the inferences (i.e., 
statistical estimates) obtained on the dataset containing fully observed 
data (complete dataset obtained by listwise deletion) to those computed 
by pooling all the MI estimates obtained on an amputated version of the 
complete dataset, where amputation refers to the process that syntheti-
cally generates missing values in a dataset [59]. Of course the compar-
ison should be performed by using a properly designed evaluation 
pipeline exploiting solid evaluation measures. Such an MI evaluation 
pipeline is still lacking in literature. 

Therefore, this paper proposes an MI evaluation framework that le-
verages Van Buuren’s guidelines and proposes a set of evaluation mea-
sures that are pooled across multiple amputated datasets. 

The application of our approach allows numerical evaluation of the 
validity of any imputation model and its various application settings 
given the specific problem at hand. After testing a set of imputation 
algorithms (and/or their different application settings) the user can 
comparatively analyze the obtained numeric evaluations and choose the 
most appropriate imputation algorithm to be applied to the original 
(incomplete) dataset. 

Fig. 3. Schematic diagram of the pipeline used to evaluate one MI algorithm across A multiple amputation settings. The following steps are applied: 1) listwise 
deletion is used to produce a complete dataset on which a vector of estimates to be used as “gold standard” is computed; 2) a number A of amputated datasets is 
computed by using an amputation algorithm that reproduces the same missingness pattern in the original dataset; 3) An MI estimation pipelines (see Fig. 2) are 
applied to get A pooled estimates, their total variances, standard errors and confidence intervals; 4) averaging the A estimates the expected value of the MI estimates 
are approximated and compared to the gold standard estimates computed on the complete dataset (step 1). 
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In practice, given a statistical estimator of interest, we propose to 
numerically evaluate a specific MI algorithm by applying the steps 
sketched in Fig. 3: 

(step 1) starting from the original dataset with missing values, obtain 
a complete dataset by listwise deletion and apply the statistical estimator 
of interest to compute “gold standard” estimates; 

(step 2) produce A amputated versions of the complete dataset by 
reproducing the same (MCAR or MAR) missingness observed in the 
original dataset (for details about the best value for parameter A see 
section Results, while a discussion about proper approaches for repro-
ducing MCAR or MAR missingness is reported below); 

(step 3) process each amputated dataset by applying the MI esti-
mation pipeline detailed in Section Multiple Imputation (sketched in 
Fig. 2) to obtain a vector of MI estimates (both point estimates and 
uncertainty estimates such as standard errors or confidence intervals) 
based on the statistical analysis of interest (one estimate per predictor 
variable in the dataset); 

(step 4) average each MI estimate across all the amputations to obtain 
a vector approximating the expected value of the MI estimate for all the 
predictor variables in the dataset. Finally, compare the gold standard 
estimates (obtained on the complete dataset) to the expected values of the 
MI estimates by using the numeric evaluation measures detailed below. 

Before detailing the evaluation method, an important note about the 
above step-2 is due. Reproduction of MCAR missingness in the complete 
dataset is simple and requires producing the same missingness pro-
portions by sampling from uniform distributions. 

On the other hand, data amputation to simulate a MAR mechanism is 
challenging and few works are available in literature [59] that describe 
different methodologies for producing simulated MAR data. The critical 
task is the estimation of the distribution describing the missingness in one 
variable conditioned on the other variables. The literature review in this 
context highlights that the method proposed by Shouten et al. [59] is 
promising and has been observed to be a reliable approach for emulating 
the MAR missingness characterizing a given dataset. Moreover, Shouten 
et al. support their results with extensive simulations showing the effec-
tiveness of the produced amputations. Therefore, we produced MAR 
missingness by using the function “ampute”, available from the MICE 
package R, which implements the techniques of Shouten et al.12. 

We must further note that it is possible for the subset of complete data 
to systematically differ from the original (incomplete) data that have 
“real” missingness, so that any amputation procedure would not be able to 
reproduce the exact missingness pattern. However, this numerical 
approach of evaluating imputation methods still has merit as an evaluative 
technique, as it provides empirical evidence of the ability of imputation 
approaches to handle observable missingness patterns in a given dataset. 

Hereafter, we report the details about the evaluation method and the 
evaluation metrics we are using to compare the gold standard estimates 
to the MI estimates. Fig. 4 reports a more detailed overview of the steps 
we are applying and considers the more general situation when more 
than one statistical estimator is applied, where each estimator computes 
inferences related to a specific outcome of interest (as an example, in our 
use case we had three outcomes of interest and three respective statis-
tical estimators). In particular, for each outcome variable (statistical 
estimator) the following steps are applied to evaluate an MI algorithm: 

1) Obtain gold standard statistical estimates (and their confidence intervals) 
on a complete dataset [light green box on top of Fig. 4]. To this aim, listwise 
deletion is applied on the original (incomplete) dataset to get the complete 
dataset X ∈ RN×d (composed by N complete cases and d predictor vari-
ables). The complete dataset is then normalized to have predictors with the 

same scale, and the estimator of interest is applied to get a vector of sta-
tistical estimates for each predictor variable in the dataset i ∈ {1, ..., d}. 
Note that the dataset normalization step is not mandatory but it ensures 
obtaining statistical estimates (and evaluation measures) characterized by 
the same scale. This is a useful characteristic when having multiple pre-
dictors in the input dataset (as shown in section Results). 

Hereafter, the vector of gold standard statistical estimates will be 
referred to as Q = [qi] and the corresponding vector of confidence in-
tervals will be CI =

[
qmin

i , qmax
i

]
= [CIi]. 

2) Obtain the expected values of the MI estimates [light-blue box in 
Fig. 4 and pseudo-code sketched in Algorithm 1 below]. To this aim, the 
following steps are applied:  

I. Compute A amputations of the complete dataset (step I). Hereafter, 

we will refer to the ath amputated dataset as X̂(a) (a = 1, ...,A).

At this stage, the MI estimation pipeline (section Multiple Imputation 
and Fig. 2) is applied to each of the A amputated datasets. More pre-
cisely, on the a th (a ∈ {1, ...,A}) amputated dataset:  

II. the MI algorithm under evaluation is applied to compute m 
imputations;  

III. each imputed dataset is normalized as done on the complete 
dataset (light-green box in Fig. 4) to obtain predictors with the 
same scale;  

IV. the statistical estimator of interest is applied on each imputed- 
normalized dataset and Rubin’s rule is used to pool all the esti-
mates and obtain an imputation estimate. This allows to compute 
the vector of estimates Q̂(a) = [q̂i(a)], the vector of standard 
errors, ̂SE(a) = [sei(a)]13, and the vector of the 95% confidence 
interval estimates, ĈI(a) = [cii(a)]14 (i ∈ {1, ..., d}) for the a th 

amputated dataset. The vector is composed of the imputation 
estimates for each of the d predictors in the dataset.  
II. For each predictor variable, average all the estimates across 

the A amputated datasets to obtain a vector approximating the 
expected value of the MI estimate E[Q̂]. The vector E[Q̂] is 

estimated as: Q =

[

qi

]

= 1
A
∑A

a=1 Q̂(a) ≈ E[Q̂]. 

3) Compare the gold standard estimates to the MI estimates [yellow-box 
in Fig. 4]: the inferences obtained on the complete data (Q = [qi] - step 1) 
are compared to those obtained on each of the amputated datasets 
(Q̂(a) = [q̂i(a)], i ∈ {1, ..., d} ) by computing the evaluation measures 
described below (some of which are listed in [23] by considering a 
unique amputated dataset). In particular, considering the vectors con-
taining all the predictor estimates, we compute:  

- the raw bias vector RB = [rbi](i ∈ {1, ..., d}) = Q − Q ≈ E[Q̂] − Q, 
where rbi is the raw bias for the ith predictor variable, whose sign may 
be observed across all the predictor variables to understand whether 
the multiple imputation has the effect of globally underestimating or 
overestimating the true estimates. This information is complemented 

by the estimate ratio (ER), ER = [eri](i ∈ {1, ..., d}) = Q
Q ≈

E[Q̂]

Q , eri 

being the estimate ratio for the ith predictor variable, and by the 
vector containing the expected value of the Mean Squared Error 

12 Further details about the “ampute” function are reported at:https://rian-
neschouten.github.io/mice_ampute/vignette/ampute.html#Introduction_to_ 
mice::amputehttps://www.gerkovink.com/Amputation_with_Ampute/ 
Vignette/ampute.html#:~:text=The%20function%20ampute%20works% 
20by,a%20certain%20missing%20data% 

13 The standard error of the estimates is computed via the “pool” function 
provided by the Mice package, which exploits Rubin’s rule [4] to compute both 
the total variance and the standard error of the estimate.  
14 The CI of the estimates is computed by using the “confint” function from 

stats package in R. The function uses a maximum likelihood estimator. 
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Fig. 4. Schematic diagram of the pipeline used to evaluate a multiple imputation algorithm. [TOP light green BOX: compute gold standard estimates] Listwise 
deletion is used to create a “complete” dataset where all the values are observed; the predictor variables in the complete dataset are normalized to obtain uniform 
scales across different predictors; statistical estimators (in our experiments they were two logistic regression models and one Cox survival model) are applied to 
compute statistical estimates describing the influence of the available predictors on O outcome variables (in our experiments they were O = 3 outcomes describing 
the hospitalization event, the invasive ventilation event, and patients’ survival). [BOTTOM light blue BOX: compute MI estimates] (I1, ⋯, IA) From the complete 
dataset, A amputated dataset are computed; (II1, ⋯, IIA) each amputated dataset is imputed m times by the MI algorithm under evaluation and (III) each imputed 
dataset is normalized (as done in the TOP BOX for the complete dataset) to obtain uniform scales across all the predictors in all the imputed datasets and in the 
complete dataset. (IV) Each imputed-normalized dataset is processed by the O statistical estimators and Rubin’s rule [4] is applied to pool the estimates across the m 
imputations. (V) The pooled estimates obtained for each outcome and predictor variable are averaged across the A simulations (1 simulation per amputated dataset) 
to approximate the expected values of the estimate for each predictor and outcome. [YELLOW BOX: compare the gold standard estimates to the imputation estimates] 
The evaluation measures detailed in Section “Evaluation method” are computed for comparing the computed estimates to the gold standard estimates computed on 
the complete-normalized dataset (for each of the predictors and outcome variables). Of note, the normalization of the (complete and imputed) dataset predictors to a 
unique scale before the estimation would allow averaging all the evaluation measures across all the predictors. For each imputation algorithm under evaluation, the 
depicted pipeline provides a set of evaluation measures that can be analyzed to choose the most valid and performant algorithm for handling the data missingness. 
The chosen algorithm can be finally applied to the original (incomplete) dataset to obtain reliable statistical estimates. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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(MSE) of the estimate, where again msei refers to the ith predictor: 

MSE = [msei] =
1
A
∑A

a=1(Q̂(a) − Q)
2
≈ E

[
(Q̂ − Q)

2
]
.  

- the coverage rate (cri) for the ith predictor variable is the proportion 
over all the A amputations of the confidence intervals ̂cii(a) = ( for 
each a ∈ {1, ...,A}) that contain the true estimate qi. The actual rate 
should be equal to or exceed the nominal rate (95%). If cri falls below 
the nominal rate, the method is too optimistic, leading to higher rates 
of false positives. A cri too low (e.g., below 90 percent for a nominal 
95% interval) indicates low reliability. On the other hand, a cri too 
high (e.g., 0.99 for a 95% confidence interval) may indicate that the 
confidence intervals of the pooled estimates ̂cii(a) are too wide, 
which means that the MI method could be inefficient. In this case, the 
analysis of average standard error of each pooled estimates, ̂sei(a), 
and the ratio of the standard errors of the pooled and true estimates 

ratiosei =
ŝei(a)
sei(a) may inform about the effective reliability of a high cri 

value. In practice, high values of cri are consistent with standard 

errors ŝei of the MI estimate being lower or comparable to the 
standard error of the true estimate (i.e., ratiosei ≤ 1). To obtain such 
a result, the number of imputations must be sufficiently high to 
guarantee that the variance of the MI estimate is mainly dominated 
by the variance of the statistical estimator (evaluated by the within 
imputation variance). 

4) Choose the most valid and performant MI algorithm and use it to 
compute statistical estimates from the original (incomplete) datasets: having 
applied steps 1 to 3 by using different MI imputation algorithms and 
(eventually) their different application settings, the obtained numerical 
evaluation measures can be comparatively analyzed to choose the most 
valid MI imputation model for the problem at hand. The chosen model 
can then be applied to the original (incomplete) datasets to obtain the 
desired MI estimates. 

Algorithm 1. Pseudo-code of the algorithm used to obtain the expected 
values of the MI estimates from the A = 25 amputations  
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We note that, when considered by itself, each of the numeric mea-
sures described above provides limited information about the validity of 
the MI algorithm being evaluated. However, when considered together, 
the evaluation measures we are proposing provide a full picture about 
the capability of each MI algorithm to provide estimates approximating 
the gold standard estimates computed on the complete set. 

The proposed evaluation measures are general and can be used under 
different scenarios (subsection Generalizability of the evaluation 
method to different scenarios) where statistical estimators providing 
estimates, standard error of the estimate, and confidence intervals must 
be applied. 

We used the proposed procedure to evaluate the validity of the es-
timates computed by IPW models and to compare them to those 
computed by MI algorithms (subsection Evaluated algorithms and set-
tings and section Results). 

Note that until the past decade, several methods amputated the 
complete data and then compared the application of different imputa-
tion algorithms by using the RMSE (or NRMSE) between the true values 
and the imputed values. However, research has clarified that such 
metrics may not give a full picture of the comparisons and sometimes 
can be even misleading and may lead to unreliable conclusions [60]. 
Moreover, when redesigned for assessing MI datasets, they are usually 
computed by considering the mean across all the imputations, which 
results in an opaque metric with an uncertain statistical meaning that 
ignores the uncertainty of imputations. 

4. Experimental material and methods 

4.1. Data source and implementation details 

The dataset used in this study was provided by the N3C Enclave. The 
N3C receives, collates, and harmonizes EHR data from 72 sites across the 
US. With data from over 14 million patients with COVID-19 or matched 
controls, the N3C Platform (funded by NIH/NCATS, powered by Palantir 
Foundry©2021, Denver, CO) provides one of the largest and most 
representative datasets for COVID-19 research in the US [61,62,63]. 

The rationale, design, infrastructure, and deployment of N3C, and 
the characterization of the adult [62] and pediatric [63] populations 
have been previously published. Continuously updated data are pro-
vided by health care systems to N3C and mapped to the OMOP common 
data model15 for authorized research. 

N3C data has been used in multiple studies to better understand the 
epidemiology of COVID-19 and the impact of the disease on health and 
healthcare delivery [15,64,65,66,67,68]. 

All the code for the analysis was implemented on the Palantir plat-
form leveraging the Foundry operating system16. The platform enables 
groups of users to share code workbooks. Each code workbook is orga-
nized as a directed acyclic network of communicating nodes; each node 
can be written in SQL, Python/Pyspark, or R/SparkR code. The input 
and output of each node must be formatted in the form of a table (tabular 
dataframe) or a dataset (a collection of tables/dataframes). 

For consistency, all the IPW [13] and imputation algorithms used in 
our experiments (subsection Evaluated algorithms and settings) are 
implemented in R packages, available from the CRAN repository. These 
included Amelia (version 1.7.6,[50]17), Mice (version 3.8.0, [52]18), 
and missRanger (version 2.1.3, [42]19). 

4.2. Evaluated algorithms and settings 

To demonstrate the feasibility and practicability of our evaluation 
method, we conducted a series of experiments where IPW models were 
compared to MI techniques for obtaining statistical estimates on the use- 
case presented in subsection Case study: associations between de-
scriptors of patients with diabetes and potential COVID-19 hospitaliza-
tion events. 

The IPW models varied both the method used to compute the 
probability of missing values and the predictors used to estimate it. More 
precisely, for estimation of the non-missingness probability we 
compared the usage of logistic regression models and RFs [56]. With 
regards to the predictor variables used to estimate the missingness 
probability, we compared the inclusion/exclusion of the outcome vari-
ables in the prediction model. Moreover, in line with the LR models 
applied by Wong et al. [15], we also compared the usage of numeric 
variables (age and HbA1c) to the setting where numeric variables are 
binned and then one-hot-encoded. 

The MI algorithms were chosen among those that 1) obtained good 
performance as reported by literature studies and by preliminary ex-
periments; 2) were freely available as R/SparkR or python/pySpark 
packages (programming languages supported by the N3C Palantir secure 
analytics platform) and did not have technical constraints that 
hampered their application in the N3C Palantir secure analytics plat-
form; 3) had a memory/time complexity supporting the computation on 
a large dataset within the N3C Palantir secure analytics platform. 

Among the feasible packages we chose three R packages that applied 
different strategies (FCS imputation, JM imputation, or machine- 
learning based imputation) and were based on different theoretical 
grounds and assumptions 20. 

Among the chosen imputation models, two imputation algorithms, 
Amelia [50] and Mice [52], exploit, respectively, a multivariate-JM 
strategy and an univariate-FCS strategy where an underlying normal 
distribution is assumed; the third method (missRanger [42]) is a 
representative of more-flexible machine-learning-based imputation ap-
proaches. All the methods are described in the section Literature review. 

In the following we describe their different specifications and 
compare them by using the evaluation method proposed in this paper 
(section Evaluation method). 

In its default settings, for each variable with missing values, Mice 
uses the observed part to fit either a predictive mean matching (pmm, 
for numeric variables), or a logistic regression (for binary variables), or a 
polytomous regression (for categorical variables) model and then pre-
dicts the missing part by using the fitted model. 

Mice also provides the ability to use a Bayesian estimator for 
imputing numeric variables. To perform an exhaustive comparison, we 
therefore compared the performance of Mice with default settings 
(referred to as Mice-default in the following) with those of a Mice using 
univariate Bayesian estimators (hereafter denoted with Mice-norm) and 
run on a version of the dataset where all the categorical variables are 
one-hot-encoded to convert them to a numeric type. 

This choice is coherent with the study from [15], where authors 
performed their analysis by 1) one-hot-encoding categorical variables 
(e.g. “Race”), and 2) binning continuous variables (BMI, age, and 

15 https://ohdsi.github.io/TheBookOfOhdsi/  
16 https://www.palantir.com/platforms/foundry/  
17 https://cran.r-project.org/web/packages/Amelia/Amelia.pdf  
18 https://cran.r-project.org/web/packages/mice/mice.pdf  
19 https://cran.r-project.org/web/packages/missRanger/missRanger.pdf 

20 Unfortunately, we could not apply any MI imputation strategy using deep 
learning models, because all the open source packages had technical constraints 
that are not yet supported by the N3C platform. However, we tested MIDA 
(available from the rMIDAS R package from the CRAN repository) on our local 
machines by using private datasets (data not shown due to nondisclosure 
agreements). Results show that, after proper tuning of the MIDA hyper- 
parameters (including the model architecture) MIDA achieves effective re-
sults, comparable to those obtained by the missRanger algorithm, not only 
when used for statistical estimation, but also when used in unsupervised and 
supervised classification contexts. 
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HbA1c) and then one-hot-encoding the resulting binned variables. As 
aforementioned, using such representation in an imputation setting 
essentially results in a fuzzy imputation, where each imputation run is 
allowed to choose multiple categories for each sample. We thus aimed to 
understand if one-hot-encoding both numeric and categorical variables 
could positively or negatively affect the obtained results. Experimenting 
this setting with Mice-default resulted in the application of a logistic 
regression model for each binned variable to be imputed. We use Mice- 
logreg to denote the Mice algorithm run on samples expressed by one- 
hot-encoded variables imputed via LR models. For exhaustiveness of 
comparison we also used the application of Mice-norm under this 
setting. 

Independent from the univariate imputation models used, all the 
Mice algorithms iterate their univariate imputations over all the vari-
ables with missing values by following a pre-specified variable impu-
tation order (increasing or decreasing number of missing values), and 
then restart the iteration until a stopping criterion is met, or a maximum 
number of user-specified iterations is reached. Iteration is used because 
each model refines the previous imputations by exploiting the better 
quality data from the previous imputation. In our experiments, due to 

the high dimensionality, we set the maximum number of iterations equal 
to 21 and tested the application of Mice when the univariate imputation 
order was given by the increasing and the decreasing number of missing 
values. 

The missRanger algorithm (hereafter denoted as missRanger) is a fast 
R implementation of the missForest algorithm, which applies the same 
univariate, iterative imputation schema used by Mice, where the main 
difference is in the usage of the RF model for each univariate imputation. 
Note that, in between the consecutive variable imputations, missRanger 
allows using the pmm estimator (section Literature review). In this way, 
for each imputed value in variable v, pmm finds the nearest k predictions 
for the observed data in v, randomly chooses one of the k nearest pre-
dictions, and then uses the corresponding observed value as the imputed 
value. The application of pmm avoids imputing with values not present 
in the original data (e.g., a value less than zero in variables with non- 
negative valued variables); it also raises the variance in the resulting 
conditional distributions to a realistic level. 

In our experiments, due to the high sample cardinality, we used 50 
trees per RF, allowed a maximum number of iterations equal to 21, 
tested the application of missRanger by using the univariate imputation 

Table 3 
MI algorithms, their (default and evaluated) settings and the advantages and drawbacks evidenced by our experiments. Overall, we compared 44 different MI al-
gorithms. They are four different specifications of Mice-default and Mice-logreg (using/avoiding the outcome variables in the imputation model and trying the 
imputation order given by the increasing/decreasing number of missing values), eight different specifications of MIce-Norm (where we also compared the usage of 
numeric variables - BMI/hba1c/age - versus the imputation and usage of one-hot-encoded binned numeric variables), four specifications of Amelia (using/avoiding the 
outcome variables in the MI model and using/one-hot encoding binned numeric variables) and 24 different specifications of missRanger (using/avoiding the outcome 
variables in the MI model and using/one-hot encoding binned numeric and categorical variables, using the imputation order provided by the increasing/decreasing 
order of missing values, and testing three different options for the pmm donors).  

MI algorithm (m =

5,42)
Mice-default 
(4 different specifications) 

Mice-norm 
(8 different specifications) 

Mice-logreg 
(4 different specifications) 

missRanger Amelia 
(4 different specifications) 

Univariate / 
multivariate 
imputation model 

univariate imputation by: 
pmm (continuous 
predictor) 
LR (binary predictors) 
polR (categorical 
predictors) 

univariate imputation by 
Bayesian estimator 

univariate imputation by 
LR 

univariate imputation via 
RF 

multivariate estimation of the 
distribution underlying the 
observed data via EM 

Univariate 
imputation order 

Increasing number of missing values (monotone order)  

Decreasing number of missing values (Reverse monotone order)   

Multivariate imputation model 

Use outcomes in the 
imputation model 

TRUE / FALSE 

One-hot-encoding 
of categorical 
predictors 

FALSE (default) TRUE (default) TRUE (default) FALSE (default) 
TRUE 

TRUE (default) 

One-hot-encoding 
of binned numeric 
predictors 

FALSE (default) FALSE (default) 
TRUE 

TRUE (default) FALSE (default) 
TRUE 

FALSE (default) 
TRUE 

pmm donors 3 donors – – no pmm, 3 donors, 5 
donors  

Maximum number 
of iterations 

21 

notable 
ADVANTAGES 
and 
DRAWBACKS 

ADVANTAGES:  

1) usage of ad-hoc 
univariate imputation 
models based on predictor 
type  

2) collinearities in 
predictor data are 
detected and reported to 
allow users to repair the 
problem   

ADVANTAGES:  

1) collinearities in 
predictor data are 
detected and reported to 
allow users to repair the 
problem  

ADVANTAGES:  

1) collinearities in 
predictor data are 
detected and reported to 
allow users to repair the 
problem 

ADVANTAGES: 
1) deals with 
heterogeneous data types  

2) low variance when 
predictive mean matching 
is not used  

3) application of pmm 
avoids generation of 
values outside the 
original data distribution  

DRAWBACKS: 
1) RFs may take many 
iterations to converge 
when non informative 
predictors are provided 

ADVANTAGES: 1) identifies 
collinearities that may alter results  

2) faster than Mice and missRanger 
when working on datasets having 
large dimensionality  

DRAWBACKS: 
1) when data collinearities are 
detected, the predictors causing 
the collinearities are not reported. 
In this case, the matrix is singular 
and Amelia crashes  
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order given by the increasing and the decreasing number of missing 
values, and we also compared the behavior of the algorithm when pmm 
is avoided (missRanger no-pmm), or when it is applied with 3 or 5 donors 
(values suggested by authors of missRanger themselves). Further, for 
allowing an exhaustive comparison to the setting where all the variables 
are binarized, we also tested the application of missRanger under the 
scheme when categorical and binned numeric variables are one-hot- 
encoded. 

The Amelia algorithm uses the Expectation Maximization algorithm 
presented in [50] to estimate the parameters underlying the distribution 
behind the complete observations, from which the imputed values are 
drawn. In case of categorical data, Amelia uses a one-hot-encoding 
strategy, which essentially reverts to fuzzy imputations for categorical 
variables. Similar to what was done for the other evaluated algorithms, 
we also experimented after binning and one-hot-encoding numeric 
variables. 

In Table 3 we detail the 44 different MI specifications we compared 
when using the three imputation algorithms (Mice, missRanger, and 
Amelia) and (1) considering/neglecting the outcome variables in the 
imputation model, (2) one-hot-encoding numeric and categorical pre-
dictors or keeping their natural type, (3) varying the univariate impu-
tation order (for the missRanger and the Mice methods), (4) varying the 
number of pmm donors in missRanger. 

5. Results 

When evaluating the various missing-data handling algorithms 
(subsection Evaluated algorithms and settings), we considered the same 
patients’ cohort detailed in [15], we obtained a complete dataset by 
listwise deletion, and we run our evaluation pipeline by using A = 25 
amputated datasets, where we simulated MAR missingness with similar 
missingness patterns. 

The value A = 25 was empirically set as a tradeoff between the 
computational memory/time complexity supported by the N3C Platform 
and the stability of the obtained results. To choose it, we started by a low 
number of amputated datasets (A = 5) and we increased it until we 
noted no appreciable changes of the computed measures. With addi-
tional computational power, a higher number of amputated datasets 
would be suggested to guarantee robustness of the obtained results. 

For the evaluation, we defined a statistical estimation pipeline that 
reproduces the analysis in [15]. 

More precisely, a first step of variable binarization21 was applied to 
have comparable scales across predictors (both in the imputed and in the 
complete dataset) and the normalized dataset was then used to run two 
LR models and one CS model to understand the influence of the available 
predictors on the hospitalization event, invasive ventilation – i.e. me-
chanical ventilation, and patient survival (Tables 4, 5 and 6). These 
analyses constituted the scientific analyses of interest in the motivating 
study and thus served as the basis for evaluating the different missing- 
data handling approaches. In particular, the regression parameters 
estimated by these three models (i.e. the log odds/hazard ratios) served 
as the targets of estimation. We treated the parameter estimates 
computed on the complete dataset (and their associated standard errors 
and confidence intervals – top left forest plots in Supplementary 
Figures S4, S5, and S6) as the gold standard estimates, and compared the 
parameter estimates computed by using the amputated data to these 
gold standard estimates. 

The evaluation schema presented in this work was used to compare 
the validity of the considered IPW and MI algorithms under their 
different specifications (subsection Evaluated algorithms and settings). 

As a result, for each algorithm we obtained evaluation measures for d =

38 binarized predictor variables and O = 3 estimates. Thanks to the 
predictor binarization step mentioned above, the obtained statistical 
estimates and therefore the computed evaluations (RB = [rbi], MSE =

[msei], ER = [eri], CR = [cri], i ∈ {1, ..., d}) were expressed in the same 
scale and could be averaged over all the d predictors and then over the O 
outcomes. This allowed obtaining for each imputation algorithm (and its 
specification) representative average RB, MSE, ER, and CR measures. 

In Fig. 5 we provide a visual comparison of the computed average 
evaluations, where the number of imputations (m = 42) was chosen 
according to Von Hippel’s rule of thumb [40] (Appendix A). To assess 
the significance of the comparison between different (IPW and MI) al-
gorithms, we applied the two-sided Wilcoxon signed-rank test at the 
95% confidence (p-value < 0.05). For the sake of exhaustiveness, the 
win-tie-loss tables resulting from comparisons of the RB, MSE, ER, CR 
evaluation measures obtained by the different models over each 
outcome variable and by using m = 42 and m = 5 imputations are re-
ported in, respectively, the Supplementary files S1.xlsx, S2.xlsx. 

Observing the results, it is clear that in our case study IPW ap-
proaches yield systematically less valid inferences. This may be due to 
the fact that IPW estimates the missingness probability by using only 
fully observed predictors, whereas MI uses all variables to estimate the 
conditional probabilities from which imputations are drawn. As a result, 
when the missingness pattern is complex and several and/or crucial 
variables contain missing values, as it is often the case in EHR data, the 
estimation of the inverse probability weights can thus only exploit a 
limited (less informative) set of predictors [16]. 

Moreover, the complex missingness patterns that characterize EHR 
data often result in many individuals with at least one missing value. In 
these cases, inverse probability weighting may exhibit extreme power 
loss as too many rows need to be dropped. 

With regards to the comparison of the imputation algorithms, all but 
four missRanger models (with no pmm and considering the outcome 
variables) obtained negative RB values and corresponding ER measures 
lower than one, meaning that all the models but missRanger (with no 
pmm and considering the outcome variables in the imputation model) 
underestimated the log-odds computed on the complete dataset (per p- 
value < 0.05). When comparing the results achieved by the algorithms 
exploiting iterative univariate FCS imputation strategies (Mice and 
missRanger models), we note that the visiting order had a slight impact 
only in the case of missRanger, where the order given by the decreasing 
number of missing values produced lower RB distributions when 
compared to Amelia, Mice, and other missRanger algorithm settings (see 
the average RB values for the three outcomes in Fig. 5 and the sum of the 
wins, ties, losses over the three outcomes in, respectively, Figure S1 and 
in the more detailed, per-outcome, colored win-tie-loss tables in Sup-
plementary file S1.slsx). The slight behavioral differences among the 
two imputation orders suggested that the iterative procedure effectively 
reaches convergence. 

On the other hand, the usage of the outcome variables in the impu-
tation models did have an effect on the resulting evaluation measures. 
Amelia, Mice-norm, and Mice-logreg all achieved better results when the 
outcome variables were included in the imputation model (lower ab-
solute RB and lowest MSE, p-value < 0.05, Fig. 8, Supplementary 
Figures S1 and S2, and Supplementary file S1.xlsx). Mice under the 
default settings appeared more robust with respect to the inclusion of 
the outcome variables. The behavior of missRanger with respect to the 
inclusion of the outcome variables strongly depended on the usage of the 
pmm estimator. Indeed, when pmm was used, the inclusion of the 
outcome achieved better results (p-value < 0.05); when pmm was not 
used, the inclusion of the outcome variables produced worse results (p- 
value < 0.05). Summarizing, all algorithms that used parametric ap-
proaches were improved by inclusion of the outcome variables, while 
algorithms solely based on RF classifier models were biased by the in-
clusion of the outcome. 

Regarding the coverage rates (CR), all the models but one (Amelia 

21 In our model, variable binarization was performed by one-hot-encoding 
categorical, and binned numeric variables; this allows obtaining a normalized 
dataset ensuring that the following statistical estimates are expressed in the 
same scale. 
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Table 4 
Dataset statistics for all the 56,123 patients (column “all cases”), hospitalized patients (column “hospitalized cases”) and non-hospitalized patients (column “non- 
hospitalized cases”). Column p-value reports, for each predictor, the p-value for the null hypothesis of a Pearson correlation test between the binary predictor and the 
outcome variable (Hospitalization event).  

Hospitalization event 

Predictor Group Predictor % of missing 
values 

All cases Hospitalized cases Non-hospitalized cases p-value 

Number of cases (%) 56,123 (100%) 25,399 (45%) 30,725 (55%)  
Gender Male  49% 23% 26% < 0.0001 

Female (used for reference)  51% 22% 29% < 0.0001 
Age   61.88 ± 0.06 [18,89] 63.7 ± 0.09 [18,89] 60.39 ± 0.08 [18,89] < 0.0001 

age < 40  7% 3% 4% < 0.0001 
40 ≤ age < 50  11% 4% 7% < 0.0001 
50 ≤ age < 60  22% 9% 14% < 0.0001 
60 ≤ age < 70 (used for 
reference)  

28% 13% 15% ~ 
0.4257 

70 ≤ age < 80  22% 11% 11% < 0.0001 
age ≥ 80  10% 6% 4% < 0.0001 

BMI  29% 33.25 ± 0.04 
[12.13,79.73] 

32.87 ± 0.06 
[12.4,79.73] 

33.62 ± 0.06 
[12.13,78.98] 

< 0.0001 

BMI < 20 1% 1% 0% < 0.0001 
20 ≤ BMI < 25 8% 5% 4% < 0.0001 
25 ≤ BMI < 30 18% 9% 9% ~ 

0.0104 
30 ≤ BMI < 35 (used for 
reference) 

18% 8% 10% < 0.0001 

35 ≤ BMI < 40 12% 5% 7% < 0.0001 
BMI ≥ 40 13% 6% 7% ~ 

0.0574 
Race White (used for reference) 15% 55% 23% 32% < 0.0001 

Other 1% 0% 1% ~ 
0.1463 

Black 26% 14% 12% < 0.0001 
Asian 3% 1% 2% ~ 

0.0032 
Ethnicity Hispanic 12% 16% 8% 8% < 0.0001 

Not hispanic (used for reference) 73% 33% 40% < 0.0001 
Hba1c   7.58 ± 0.01 [4.1,19.3] 7.78 ± 0.01 [4.1,19.3] 7.41 ± 0.01 [4.1,18.7] < 0.0001 

Hba1c < 6  17% 8% 9% ~ 
0.4878 

6 ≤ Hba1c < 7 (used for 
reference)  

30% 12% 18% < 0.0001 

7 ≤ Hba1c < 8  21% 09% 12% < 0.0001 
8 ≤ Hba1c < 9  12% 06% 6% < 0.0001 
9 ≤ Hba1c < 10  07% 04% 3% < 0.0001 
Hba1c ≥ 10  12% 07% 5% < 0.0001 

Comorbidities MI  13% 8% 5% < 0.0001 
CHF  23% 14% 9% < 0.0001 
PVD  21% 12% 9% < 0.0001 
Stroke  17% 10% 7% < 0.0001 
Dementia  5% 3% 2% < 0.0001 
Pulmonary  31% 15% 16% < 0.0001 
liver mild  16% 7% 8% < 0.0001 
liver severe  3% 2% 01% < 0.0001 
Renal  30% 18% 12% < 0.0001 
Cancer  14% 7% 07% < 0.0001 
Hiv  1% 0% 1% ~ 

0.5856 
Treatments Metformin  26% 8% 18% < 0.0001 

dpp4  5% 2% 3% < 0.0001 
sglt2  5% 2% 3% < 0.0001 
Glp  7% 2% 5% < 0.0001 
Tzd  1% 0% 1% < 0.0001 
Insulin  25% 14% 11% < 0.0001 
Sulfonylurea  9% 03% 6% < 0.0001  
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Table 5 
Dataset statistics for all the 56,123 patients (column “all cases”), patients who were treated with invasive ventilation (column “cases with invasive ventilation”) and 
were not treated with invasive ventilation (column “cases without invasive ventilation”). Column p-value reports, for each predictor, the p-value for the null hypothesis 
of a Pearson correlation test between the binary predictor and the outcome variable (Invasive ventilation event).  

Invasive ventilation event 
Predictor 
Group 

Predictor % of missing 
values 

All cases Cases with invasive 
ventilation 

Cases without invasive 
ventilation 

p-value 

Number of cases (%) 56,123 (100%) 3623 (6.6%) 52,500 (93.4%)  
Gender Male  49% 4% 0.45% <

0.0001 
Female (used for reference)  51% 3% 0.48% <

0.0001 
Age   61.88 ± 0.06 [18,89] 64.22 ± 0.21 [19,89] 61.72 ± 0.06 [18,89] <

0.0001 
age < 40  7% 0% 7% <

0.0001 
40 ≤ age < 50  11% 0% 11% <

0.0001 
50 ≤ age < 60  22% 1% 21% ~ 2e-04 
60 ≤ age < 70 (used for 
reference)  

28% 2% 26% <

0.0001 
70 ≤ age < 80  22% 2% 20% <

0.0001 
age ≥ 80  10% 1% 9% ~ 

0.4262 
BMI  29% 33.25 ± 0.04 

[12.13,79.73] 
33.44 ± 0.18 [13,77.41] 33.24 ± 0.04 [12.13,79.73] ~ 

0.5314 
BMI < 20 1% 0% 0% ~ 2e-04 
20 ≤ BMI < 25 8% 1% 7% ~ 0.496 
25 ≤ BMI < 30 18% 1% 17% ~ 0.538 
30 ≤ BMI < 35 (used for 
reference) 

18% 1% 17% ~ 
0.6923 

35 ≤ BMI < 40 12% 1% 11% ~ 
0.1574 

BMI ≥ 40 13% 1% 12% ~ 
0.5489 

Race White (used for reference) 15% 55% 3% 52% <

0.0001 
Other 1% 0% 1% ~ 1e-04 
Black 26% 2% 24% <

0.0001 
Asian 3% 0% 3% ~ 

0.1976 
Ethnicity Hispanic 12% 16% 1% 15% <

0.0001 
Not hispanic (used for 
reference) 

73% 5% 68% <

0.0001 
Hba1c   7.58 ± 0.01 [4.1,19.3] 7.83 ± 0.04 [4.1,18.3] 7.56 ± 0.01 [4.1,19.3] <

0.0001 
Hba1c < 6  17% 1% 16% ~ 

0.3225 
6 ≤ Hba1c < 7 (used for 
reference)  

30% 2% 29% <

0.0001 
7 ≤ Hba1c < 8  21% 1% 20% ~ 

0.1481 
8 ≤ Hba1c < 9  12% 1% 11% <

0.0001 
9 ≤ Hba1c < 10  7% 1% 6% <

0.0001 
Hba1c ≥ 10  12% 1% 11% <

0.0001 
Comorbidities MI  13% 1% 12% <

0.0001 
CHF  23% 2% 21% <

0.0001 
PVD  21% 2% 19% <

0.0001 
Stroke  17% 1% 16% <

0.0001 
Dementia  5% 0% 5% ~ 0.269 
Pulmonary  31% 2% 29% ~ 

0.0013 
liver mild  16% 1% 15% ~ 

0.4166 
liver severe  3% 0% 3% <

0.0001 
Renal  30% 3% 27% 

(continued on next page) 
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with no outcome variables and one-hot-encoded binned numeric vari-
ables, first row in Fig. 5) obtained values greater than the nominal rate 
(0.95), with a confidence interval lower than that obtained on the true 
estimates (the ratio SE measures are always lower than one). 

When the imputation models used one-hot-encoded (binned) 
numeric variables, only Amelia models seemed to be strongly impacted 
by an increase in the absolute values of the RB measure and of the MSE 
values and a decrease in the standard error. On the other hand, mis-
sRanger showed lower absolute values of RB and MSE measures when 
one-hot encoding of categorical and binned numeric variables was 
performed (Fig. 5, Supplementary Figures S1 and S2, and Supplemen-
tary file S1.xlsx). 

Overall, the missRanger algorithms using no pmm and one-hot- 
encoding both categorical and binned numeric variables produced the 
most reliable results; they also achieved the lowest average standard 
errors, even when compared to the standard error obtained on the 
complete dataset (as shown by the ratio SE values, p-value < 0.05, Fig. 5 
and Supplementary file S1.xlsx). With regards to the two other algo-
rithms, among all the tested Mice models, Mice-norm with outcome 
variables achieved the lowest (absolute values of the) RB and MSE 
values (Fig. 8, Supplementary Figures S1 and S2), outperforming also all 
the Amelia models; for Amelia, the inclusion of the outcome variables 
produced the best results. 

When analyzing the results obtained by using only m = 5 imputa-
tions (Supplementary file S2.xlsx), the conclusions drawn from the 
comparative evaluation measures over the 44 MI algorithms were 
similar. However, when comparing the evaluation measures obtained by 
each model on the m = 42 versus m = 5 imputations, we noted that a 
higher number of imputations tended to result in a lower variability of 
the evaluation measures with respect to different algorithm specifica-
tions, such as the usage of one-hot-encoded variables or the inclusion/ 
deletion of the outcome variables in the prediction model. In other 
words, the higher the number of imputations, the higher the stability of 
the MI algorithm. This is particularly true for the missRanger algorithm. 

Having chosen the settings with best performance for each of the 
three algorithms we then ran them on the full dataset by computing m =

42 imputations. In this way, we obtained the odds estimates shown in 
Supplementary Figures S4 (Hospitalization event), S5 (Invasive venti-
lation event), and S6 (Cox survival estimate). 

To show the feasibility and practicality of our evaluation method on 

different missingness mechanisms, while also providing a further 
assessment of the compared algorithms, we also run experiments by 
simulating MCAR and MNAR missingness. For coherence with the MAR 
experiments, we therefore performed the following two experiments, 
where we amputated the BMI, Race, and Ethnicity predictors to produce, 
respectively, the 30%, the 15%, and the 15% of MCAR and MNAR 
missing values. 

5.1. Practicality of the evaluation method on different missingness 
mechanisms 

For producing MCAR missingness the values to be amputated were 
randomly chosen by sampling from the uniform distribution. While 
MAR amputation maintains the proportion of cases with at least one 
missing value unaltered (42% in our case study - section Case study: 
associations between descriptors of patients with diabetes and potential 
COVID-19 hospitalization events), MCAR amputation produces random 
missingness patterns, resulting in different proportions of cases with at 
least one missing value across the amputations, i.e. therefore different 
numbers, m, of multiple imputations per dataset. In particular, on the 
average of the amputations we drew, the proportion of cases with at 
least one missing value was (average ± standard error) 49% ± 2%, 
which is on average 1.5 times higher than that of MAR simulations. This 
boils down to a higher number of multiple imputations with respect to 
the MAR experiments (m = 49 ± 2 imputations [40], Appendix A). 
Moreover, considering that the relationships between missing and 
observed data are not guaranteed in MCAR, it may be more difficult for 
the data imputation algorithm to estimate the imputation values. 
Indeed, all the algorithms we experimented needed more iterations to 
reach convergence; however, the computed evaluation metrics were 
comparable to those computed for MAR amputations, and also the 
behavior of the different models was confirmed (Fig. 6 and Supple-
mentary file S3_MCAR.xlsx). This may suggest that, in this specific case 
study, the subset of complete cases remaining after amputation may 
suffice to describe the underlying data distribution; in other words, in-
dependent from the data being MAR or MCAR, the analysis of the 
observed data allows estimating the latent underlying relationships 
between predictors to recover the missing information. 

To produce MNAR missingness we simulated the scenario where not- 
critical values for the BMI, race, and ethnicity variables are sometimes 

Table 5 (continued ) 

Invasive ventilation event 
Predictor 
Group 

Predictor % of missing 
values 

All cases Cases with invasive 
ventilation 

Cases without invasive 
ventilation 

p-value 

<

0.0001 
Cancer  14% 1% 13% ~ 

0.0186 
Hiv  1% 0% 1% ~ 

0.6854 
Treatments Metformin  26% 1% 25% <

0.0001 
dpp4  5% 0% 5% <

0.0001 
sglt2  5% 0% 5% <

0.0001 
Glp  7% 0% 7% <

0.0001 
Tzd  1% 0% 1% ~ 

0.0272 
Insulin  25% 2% 23% <

0.0001 
Sulfonylurea  9% 0% 9% <

0.0001  
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Table 6 
Dataset statistics for all the 56,123 patients (column “all cases”), patients who died (column “death”) and who survived (column “survival”). Column p-value reports, 
for each predictor, the p-value for the null hypothesis of a Pearson correlation test between the binary predictor and the outcome variable (death event).  

Death event 

Predictor Group predictor % of missing 
values 

sample distribution death Survival p-value 

Number of cases (%) 56,123 (100%) 2865 (5.1%) 53,258 (94.9%)  
Gender Male  49% 3% 46% < 0.0001 

Female (used for reference)  51% 2% 49% < 0.0001 
Age   61.88 ± 0.06 [18,89] 71.34 ± 0.21 [20,89] 61.38 ± 0.06 [18,89] < 0.0001 

age < 40  7% 0% 7% < 0.0001 
40 ≤ age < 50  11% 0% 11% < 0.0001 
50 ≤ age < 60  22% 1% 22% < 0.0001 
60 ≤ age < 70 (used for reference)  28% 1% 27% < 0.0001 
70 ≤ age < 80  22% 2% 20% < 0.0001 
age ≥ 80  10% 1% 9% < 0.0001 

BMI  29% 33.25 ± 0.04 
[12.13,79.73] 

31.47 ± 0.18 
[12.4,74.91] 

33.36 ± 0.04 
[12.13,79.73] 

< 0.0001 

BMI < 20 1% 0% 0% < 0.0001 
20 ≤ BMI < 25 8% 1% 7% < 0.0001 
25 ≤ BMI < 30 18% 1% 17% ~ 

0.0029 
30 ≤ BMI < 35 (used for 
reference) 

18% 1% 17% ~ 
0.0114 

35 ≤ BMI < 40 12% 0% 12% ~ 7e-04 
BMI ≥ 40 13% 1% 12% < 0.0001 

Race White (used for reference) 15% 55% 3% 52% ~ 
0.0452 

Other 1% 0% 1% ~ 0.77 
Black 26% 1% 25% ~ 

0.0385 
Asian 3% 0% 3% ~ 

0.8894 
Ethnicity Hispanic 12% 16% 1% 15% ~ 

0.6093 
Not hispanic (used for reference) 73% 0.04% 0.69% ~ 

0.6093 
Hba1c   7.58 ± 0.01 [4.1,19.3] 7.55 ± 0.04 [4.2,18] 7.58 ± 0.01 [4.1,19.3] ~ 

0.3272 
Hba1c < 6  17% 1% 16% ~ 0.833 
6 ≤ Hba1c < 7 (used for 
reference)  

30% 1% 29% ~ 
0.0522 

7 ≤ Hba1c < 8  21% 1% 20% ~ 
0.2162 

8 ≤ Hba1c < 9  12% 1% 12% < 0.0001 
9 ≤ Hba1c < 10  07% 0% 7% ~ 

0.3081 
Hba1c ≥ 10  12% 1% 11% ~ 6e-04 

Comorbidities MI  13% 1% 12% < 0.0001 
CHF  23% 2% 21% < 0.0001 
PVD  21% 2% 19% < 0.0001 
Stroke  17% 1% 16% < 0.0001 
Dementia  5% 1% 4% < 0.0001 
Pulmonary  31% 2% 29% < 0.0001 
liver mild  16% 1% 15% ~ 

0.7307 
liver severe  3% 0% 3% < 0.0001 
Renal  30% 3% 27% < 0.0001 
Cancer  14% 1% 13% < 0.0001 
Hiv  1% 0% 1% ~ 

0.0048 
Treatments Metformin  26% 1% 25% < 0.0001 

dpp4  5% 0% 5% ~ 
0.0217 

sglt2  5% 0% 5% < 0.0001 
Glp  7% 0% 7% < 0.0001 
Tzd  1% 0% 1% ~ 

0.0029 
Insulin  25% 2% 23% < 0.0001 
Sulfonylurea  9% 0% 9% < 0.0001  
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Fig. 5. Average measures obtained by the tested imputation algorithms across the three outcomes (the table is also made available in Supplementary file S1 – sheet 
“mean_measures_m42”) when MAR missingness is simulated in the amputated datasets. For the RB and MSE measures the highlighted cells mark the models that had 
less losses according to the paired Wilcoxon rank-sum tests computed over the three outcomes. For the CR measure, all the models, but the (non-augmented) IPW 
model (where the probability of data being missing was computed by an RF including the outcome variables in the model) had comparable performance. missRanger 
with no pmm achieves the lowest standard error estimate (indeed the ratio SE measures - column “ratio SE” - is the lowest, as also confirmed by the paired Wilcoxon 
rank-sign test), IPW models obtain a standard error greater than the one computed on the unweighted dataset. 
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not recorded by clinicians. In practice, for BMI, race, and ethnicity we 
still removed, respectively, the 30%, 15%, and 15% of values. However, 
we created dependencies between the outcome variable and BMI by 
randomly choosing the 95% of the values to be removed among those in 
the BMI range [20–30]. The remaining 5% of the values were randomly 
chosen. For race and ethnicity we proceeded in the same way and used 
as less crucial categories the most frequent “White” category (for the 
race predictor) and “Not Hispanic or Latino” category (for the ethnicity 
predictor). Statistical hypothesis tests (p-value < 0.05) showed that this 
simulated amputation indeed generated strong dependencies both be-
tween the values in the outcome variables and the missingness indicator 
in the three predictors (BMI, race, and ethnicity) and, curiously, also 
among the missingness indicators of the three predictors themselves. 

Moreover, we must highlight that, as it happens for MCAR amputa-
tion, the percentage of cases with at least one missing value obtained for 
the amputated dataset by producing MNAR missingness is different from 
the one in the original (incomplete) dataset (on average ± standard 
error equals 44.5% ± 0.5%). The comparative evaluation measures are 
shown in Fig. 7 (detailed results are reported in Supplementary file 
S4_MNAR.xlsx). Under the MNAR scenario both the average absolute 
RB, the MSE, and the ER measure suggest that the simple missRanger 
algorithm with no pmm (i.e. the base missForest imputation algorithm) 
avoiding the inclusion of the outcome in the imputation model is the 
most accurate MI algorithm. This is probably due to the capability of the 

RF-based regressor used by the missForest/missRanger algorithm of 
uncovering the hidden mechanism and the relationships behind this 
particular data missingness in the predictors. Notably, when the 
outcome variables are included in the missRanger imputation model, the 
application of the pmm estimator is needed to obtain effective results. 
This suggests that the inclusion of the outcome variable may cause 
overfitting (boiling down to inflated imputation values) when using 
machine-learning based imputation algorithms. In this case, the imputed 
values must be corrected by the subsequent application of a pmm esti-
mator, which guarantees that the final imputed values belong to the 
predictor distribution in the original dataset (section Literature review). 
This last example shows that our evaluation framework allows gaining 
hints about the behavior of a missing data handling strategy when 
different application settings are used. 

5.2. Generalizability of the evaluation method to different scenarios 

The evaluation method and evaluation metrics we are proposing are 
generalizable to different datasets, contexts, and scenarios. 

Of course, depending on the problem at hand, any researcher may 
decide to favor one evaluation metric with respect to the others. As an 
example, besides the case study presented in subsection Case study: 
associations between descriptors of patients with diabetes and potential 
COVID-19 hospitalization events, we applied our evaluation method in a 

Fig. 6. Average absolute value of the RB measures obtained by the tested imputation algorithms across the 38 predictors and the three outcomes (the table is also 
made available in Supplementary file S3_MCAR – sheet “mean_measures_m42”) when MCAR missingness is simulated in the amputated datasets. 
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context where we wanted to estimate the effect of a primary exposure 
(usage of metformin treatment in patients with diabetes) while adjusting 
for other variables that may act as confounders [18]. In this context, the 
original data contained MAR missing values in the BMI (24%), race 
(15%), and ethnicity (7%) predictors, with 30% of cases having at least 
one missing value. To choose a proper imputation model, we applied our 
evaluation process. More precisely, we obtained a complete dataset by 
listwise deletion, we adjusted it by IPW, and we used a statistical esti-
mator to estimate the gold-standard treatment-effect on the adjusted 
cohort. Next, for each MI algorithm under evaluation, we amputated the 
complete dataset multiple times by producing MAR missingness and we 
analyzed each amputated dataset as described in [69] to obtain MI- 
estimates of the treatment-effect on adjusted cohorts. Averaging all 
the MI treatment-effect estimates across all the amputations we obtained 
the expected value of the MI treatment-effect estimates. We next 
computed the numeric evaluation measures proposed in section Evalu-
ation method to compare the gold-standard treatment effect estimates to 
the expected values of the MI treatment-effect estimates. In this context, 
we considered as the most important evaluation metrics the raw bias 
(whose absolute value we desired to be as little as possible), the ratio 
between the standard errors of the estimates (which we required to be as 
little as possible), and the coverage rate (which we required to be as high 
as possible). This is because in our context we wanted to identify the MI 
algorithms that could provide reliable inference for the treatment-effect. 

In other words, treatment-effects estimates as protective (or dangerous) 
on the gold-standard (complete) dataset, should also result as protective 
(or dangerous) when estimated by the MI algorithm. Under this specific 
scenario Mice-default and missRanger obtained comparable results. 
Between the two, we decided to use the missRanger algorithm because it 
obtained lower standard errors of the imputation estimates (p < 0.05); 
this guaranteed higher stability when running the estimation pipeline 
multiple times to evaluate different balancing scenarios. By using mis-
sRanger we therefore followed the algorithm proposed in [69] to process 
the original (incomplete) dataset and obtained pooled estimates on 
adjusted cohorts. 

In the previously mentioned case, the treatment variable was of key 
scientific interest, while the others were used as adjustment factors; 
therefore we simply observed and compared the evaluation measures 
computed for the treatment variable across different MI algorithms. 
When instead all the predictor variables (or a subset of variables) in the 
dataset are of interest, since we propose to normalize the dataset, all 
estimates are on the same scale. We can therefore average each evalu-
ation measure across the different predictors (of interest) and obtain 
unique RB, MSE, ER, CR values characterizing the estimates of interest 
computed by applying the specific imputation method to the specific 
outcome variable. We observe that each MI algorithm is well charac-
terized by the RB, MSE, ER, CR vectors that contain, respectively, the rbi, 
msei, eri and cri measures for each predictor variable in the dataset. 

Fig. 7. Average absolute value of the RB measures obtained by the tested imputation algorithms across the 38 predictors and the three outcomes (the table is also 
made available in Supplementary file S4_MNAR – sheet “mean_measures_m42”) when MNAR missingness is simulated in the amputated datasets. 
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Therefore, given a measure of interest (e.g., RB), its vector can be seen as 
a distribution characterizing the specific MI algorithm. The distribution 
characterizing an MI algorithm can therefore be compared to the RB 
vector characterizing a second MI algorithm by the Wilcoxon paired 
rank sign test. 

The cohort used in [18] comprises patients with diabetes described 
by a set of predictors (demographic, laboratory and comorbidity de-
scriptors) similar to the one used in our main analysis. 

In [70] we used our evaluation scheme to choose the most valid 
imputation model to be applied on a dataset comprising 1,135,973 pa-
tients who had experienced acute COVID-19, on which we wanted to 
evaluate the relationships between manifestations associated with post- 
acute sequelae of SARS-CoV2 Infection (PASC) and new-onset of psy-
chiatric sequelae. In this case, patients were described by demographic 
variables (age, gender, BMI, race, ethnicity, length of hospital stay if 
applicable) and by a set of 178 Human Phenotype Ontology (HPO) terms 
[71] that represent PASC-associated manifestations. Each term is rep-
resented by a binary variable (1 if that symptom/manifestation has been 
declared by the clinician for the patient, 0 otherwise). The dataset 
contained MAR missingness in age, BMI, ethnicity, and race predictors 
per assumptions adopted following domain-expert input. 

A preliminary version of this work was completed prior to the 
availability of the evaluation code presented here and our initial 
application of different MI methods produced divergent results, leading 
to our decision to work on a complete dataset (see preprint at [72]). For 
the final version of this work [70], we applied our framework and 
determined that Amelia and missRanger obtained comparable results, 
with missRanger showing higher stability of imputation values. 

6. Discussion and conclusions 

In this work we presented a novel method to numerically evaluate 
(imputation) algorithms for handling missing data in the context of 
statistical analysis. The method is general and can be used in different 
research fields and with real-world datasets containing heterogeneous 
types. It allows different missing data handling strategies to be 
compared. Different application settings can be evaluated to determine 
the most appropriate and performant approach to be applied on any 
given dataset. The method is based on a robust evaluation pipeline and 
exploits well-grounded evaluation measures. Its application allows an 
informed choice of the proper imputation model (and the corresponding 
settings) to be used for the problem at hand. This avoids reverting to the 
often ‘default’ choice of removing cases with missing values, which may 
substantially reduce the number of available cases, therefore reducing 
the power of the following statistical estimators. A further advantage of 
the method relies in the fact that it can also be used to study the behavior 
of any missing data handling strategy with respect to their different 
settings or with respect to the different missingness mechanisms (MAR, 
MCAR, and MNAR) that may be assumed to have yielded the observed 
data. 

To show the practicability of our method we analyzed a large cohort 
of patients with type 2 diabetes infected by COVID-19. The dataset, 
which contained a postulated MAR missingness affecting a high pro-
portion (42%) of cases, was used in a previous work to perform a 
complete case analysis to identify associations between crucial pre-
dictors and three COVID-19 outcomes (hospitalization, invasive me-
chanical ventilation, death). By using the dataset we conducted 
thorough investigations to both answer computational and statistical 
questions about MI techniques, by also comparing them to commonly- 
applied forms of IPW models, and to validate our previous clinical re-
sults [15]. 

From a computational and statistical point of view, we were inter-
ested in understanding the differences between different specifications 
of (univariate and multivariate) multiple imputation techniques 
exploiting either flexible machine-learning based approaches [42] or 
parametric approaches [50,52]as the core model. 

The comparison between complete-case IPW and imputation models 
showed that, in our use-case, MI techniques performed systematically 
better, probably due to the decrease in power caused by the high pro-
portion of cases (42%) that must be dropped from the weighted, 
complete-case analysis performed by the (non-augmented) IPW algo-
rithm. Our approach allows researchers to make considerations about 
the amount of missingness above which imputation should be applied 
with caution. In these regards, no universal limit has been defined yet in 
literature, though the work from Jakobsen et al. [29] concentrates on 
methods for handling missing data in randomized clinical trials and, 
based both on an extensive literature study, group discussions, and 
experience-in-the-field, suggests avoiding imputation when the pro-
portions of missing data are large on important variables. In particular, 
when the proportions of missingness in predictors exceed, e.g., the 40% 
authors suggest to just report the results of the (eventually weighted) 
complete case analysis and then clearly discuss the resulting interpre-
tative limitations of the trial results. Indeed, as also noted by Clark and 
Altman [73] if the proportions of missing data are large on crucial 
variables, then the obtained estimates may only be considered as hy-
pothesis generating results. 

We agree with suggestions from both Jakobsen et al. [29] and Clark 
and Altman [73]; however, we considered that other factors are relevant 
in this context. Indeed, the cardinality/dimensionality of the available 
complete cases, the number of variables in the dataset, and the 
complexity of the problem at hand should also be considered when 
evaluating whether the proportion of cases with missing values is too 
high. On one hand, when the overall number of cases is limited and the 
number of variables is high, even lower proportions of missingness (e.g., 
20%) may raise concerns because the available complete cases may not 
be enough to fully represent the underlying data distribution. On the 
other hand, when a large cohort is available, higher proportions of 
missingness (as high as 30%-40%) may carry enough informative con-
tent. Indeed, when we applied our evaluation method to our use-case 
dataset (that contains a large cohort of complete cases and a limited 
number of predictors) and compared the validity of estimates computed 
by IPW or multiple imputation algorithms, we showed that Jakobsen’s 
et al. missingness thresholds (proportions of missingness as high as 30%- 
40%) may be sensible when the available complete cases carry enough 
information about the underlying (MAR) data structure. In any case, 
when the proportion of missingness is large (e.g., the 20%), we would 
suggest using our evaluation method to check the validity of data 
imputation models. 

Obviously, a rare exception to this problem would be if it is relatively 
certain that the data are MCAR, because of the ignorability of this type of 
missingness; this scenario seems, however, rare in biomedical research. 

Our comparative evaluation highlighted that MI models exploiting 
machine-learning techniques, in this case RFs, tend to obtain the most 
reliable estimates and the lowest standard errors. Further, they pro-
duced more reliable estimates when the outcome variables were not 
considered during the imputation. This behavior is opposite to models 
assuming an underlying multivariate distribution (FCS and JM models), 
which yielded results comparable to machine learning-based models 
when considering the outcome variable during imputation. Addition-
ally, the standard errors they obtained were always appropriately 
higher, better resembling the natural uncertainty in the data. The usage 
of one-hot-encoded categorical or binned numerical variables had no 
impact in the overall performance. 

The aforementioned results were confirmed when the number of 
imputations was reduced to m = 5 (default value suggested by [4]), 
though in this case different algorithm specifications had a greater 
impact on the obtained evaluation measures. This result may suggest 
that Von Hippel’s rule of thumb is a good way to guarantee robustness 
with respect to different algorithm specifications. However, considering 
our previous research [11], we would strongly suggest starting with 
Rubin’s default value and then analyzing the behavior of the imputation 
model as the number of imputations increases to a value that is at least as 

E. Casiraghi et al.                                                                                                                                                                                                                               



Journal of Biomedical Informatics 139 (2023) 104295

23

high as the percent of missing cases. This would allow a researcher to 
assess the robustness of the obtained inferences. Therefore, since the 
fuzzy imputation resulting from one-hot-encoding may cause bias due to 
incoherent imputations, when possible we suggest avoiding one-hot- 
encoding. 

In summary, exploiting the proposed MI-evaluation framework, we 
observe that, on our specific problem, missRanger (with no pmm 
application, no outcome variables in the imputation model, and without 
one-hot-encoding of categorical or binned numeric variables) is the most 
reliable imputation model. We applied this approach to impute the 
available samples m = 42 times and then estimate pooled odds ratios 
(Supplementary Figures S4, S5, S6) which were compared by experts to 
those reported in Wong et al. [15]. For the sake of visual comparison we 
also computed pooled estimates by using Mice-Norm (with outcome 
variables in the imputation model) and Amelia (with outcome variables 
in the imputation model). 

From a clinical standpoint, the results we obtained validated those 
presented in Wong et al. [15], where we investigated the relationships 
between HbA1c, BMI, demographics, medications, and comorbidities 
and the severity of COVID-19 infection outcomes. In all analyses, the 
primary findings of the study that risk of hospitalization increased with 
worsening levels of glycemic control, but that the risk of death plateaued 
at HbA1c > 8 and ventilator or extracorporeal membrane oxygenation 
use plateaued at HbA1c > 9 remained consistent. The findings from the 
present study strengthen the robustness of the primary findings in Wong 
et al. [15] and reduce the risk of severe bias due to the removal of cases 
with missing values [3,32,33]. 

There were some minor differences from the original report in the 
comparison of the effect of covariates on the risk of death, namely HIV 
was associated with a statistically significant decrease and cancer with a 
statistically significant increase in death in the MI data sets. When 
modeling the odds ratio (ORs) for ventilation or extracorporeal mem-
brane oxygenation (ECMO), there was also a statistically significant 
increased risk with dementia or severe liver disease, a significantly 
decreased risk with Sodium-glucose Cotransporter-2 (SGLT2) inhibitors, 
and no significant difference with sulfonylurea use in the imputed data 
sets. There was a small but statistically significant increase of hospital-
ization with pulmonary or peripheral vascular disease seen in the 
analysis using the imputed data set that was not seen with the complete 
data. 

Of note, while in this paper we detailed the application of our 
evaluation method on a specific EHR-based dataset and for solving a 
clinical research question that did not require patient adjustment (via 
matching or weighing), in [18] we applied it to evaluate different MI 
algorithms to estimate the effect of a primary exposure while adjusting 
for other variables that may act as confounds (subsection Generaliz-
ability of the evaluation method to different scenarios). This shows that 
our evaluation approach can be applied to a broad range of (clinical) 
datasets to compare different strategies and methods to handle missing 
data while performing statistical analysis. 

The evaluation measures described above provide a further advan-
tage. In particular, we remind that in situations when the proportion of 
missingness is not so high as to raise caution, a proper number of mul-
tiple imputations may be chosen based on the proportion of missingness 
(as detailed in section Appendix A) to maximize the statistical efficiency 
of the MI estimator. As a result, the RB, MSE, ER, CR measures should 
only depend on the validity of the specific MI algorithm being used. On 
the other hand, when either the dataset is particularly complex, or it has 
high cardinality/dimensionality so that the computational costs of MI 
algorithms hamper the computation of a proper number of multiple 
imputations, the RB, MSE, ER, and CR measures could be worse for 
predictors whose imputation is problematic, due to their complexity 
and/or their high percentage of missingness. In this case, the analysis of 
the evaluation measures obtained by each predictor could be used to 
discard variables whose imputation is too problematic. 

Our future work will be aimed at using the proposed evaluation 

method to perform a thorough comparison of different ways to deal with 
missing data when performing a statistical analysis. In particular, we 
will also consider cases when a single imputation strategy is preferred, 
by considering several contexts, scenarios, and datasets. As an example, 
we might consider interaction/effect modification cases, where, e.g., 
variables with missing data are multiplicative in their impact. 

7. Highlights  

• We propose an evaluation framework for comparing the validity 
of multiple imputation algorithms in a range of retrospective 
clinical studies where the need is to compute statistical estimates. 

• While we focused on multiple imputation techniques, the gen-
erality of the method allows us to evaluate any missing-data 
handling strategy (e.g., IPW [16]), beyond those performing 
data imputation.  

• The application of the evaluation method on a large cohort of 
patients from the N3C Enclave has shed some light on the 
following issues regarding the application of MI algorithms:  

(I) inclusion of the outcome variable in the imputation model: when 
choosing MI algorithms exploiting parametric univariate/multi-
variate estimators, the inclusion of the outcome variables in the 
imputations model can provide a better control for confounders. 
When applied to our clinical problem/dataset, MI algorithms 
exploiting estimators based on machine learning (RF) had the 
opposite behavior and tended to be biased by the inclusion of the 
outcome variables. However, caution is warranted here, as 
whether inclusion/exclusion of the outcome variable is best 
practice strongly depends on the properties of the data at hand. 
Indeed, the effect we observed on the output of RF-based models 
was likely due to the strong relationships between the outcome 
variables and the predictors. When using a different dataset 
where these relationships are stronger or weaker, the effect of the 
outcome inclusion may become either stronger or weaker, 
respectively. Therefore, our “universal” guideline is to use our 
evaluation model to improve understanding of whether the outcome 
should be included for a particular application.  

(II) conversion of heterogeneous data types to homogeneous data types by 
one hot encoding: when working on data types containing numeric 
and categorical predictors, some MI algorithms (e.g., Amelia and 
Mice with Bayesian or pmm univariate imputation algorithm) 
convert categorical variables into numeric type, thus introducing 
a severe bias [51], and reducing the validity of the obtained es-
timates. A solution to avoid this is to one-hot-encode categorical 
variables, therefore obtaining a set of binary predictors, whose 
scale and variability is however completely different from that of 
continuously-valued numeric variables. Testing under the setting 
where all variables (even numeric ones) are one-hot-encoded to 
obtain homogeneous predictors did not improve results. In 
particular, RF based MI algorithms seem the most stable with 
respect to data type heterogeneity, and this is due to their ability 
to handle mixed data types by design. Therefore, when heteroge-
neous datasets must be treated, our “universal” guideline is to use 
imputation algorithms, e.g., RF-based methods, handling mixed data 
types by design.  

(III) univariate imputation order: when exploiting iterative univariate 
imputations (Mice and missRanger), the imputation order may 
have an impact on performance. The comparison of the imputa-
tion order according to either increasing or decreasing number of 
missing values showed only a slight impact on bias. This implies 
that, under a reasonable number of iterations, the MI algorithms can 
reach convergence and the univariate imputation order may have no 
particular effect on the obtained results. On the other hand, 
considering that we found no evidence in literature that allows to 
choose one order with respect to the other, when limited 
computational costs are available and hamper the computation of 
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a large number of multiple imputations, our “universal” guideline 
is to use our evaluation method to both check whether the univariate 
imputation order has any effect on the validity of the obtained esti-
mates and, if this is the case, to also choose the most effective one from 
among the orders.  

(IV) number of multiple imputations: to choose the number of multiple 
imputations, Von Hippel’s rule of thumb [40] would surely be a 
good choice. However, when dealing with large datasets, such a 
number of imputations can be prohibitive both from a time and 
memory perspective. For this reason, we would suggest per-
forming a sensitivity analysis that starts with a low number of 
imputations (e.g. m = 5 as suggested by Rubin [4]) and then 
proceeds towards large values until the evaluation measures 
stabilize. This process would also allow gaining additional in-
sights about the behavior of different algorithms. 
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ported by Università degli Studi di Milano, Piano di sviluppo di ricerca, 
grant number 2015-17 PSR2015-17. 

Alberto Paccanaro was supported by Biotechnology and Biological 
Sciences Research Council (https:// bbsrc.ukri.org/) grants numbers 
BB/K004131/1, BB/F00964X/1 and BB/M025047/1, Medical Research 
Council (https://mrc.ukri.org) grant number MR/T001070/1, Consejo 
Nacional de Ciencia y Tecnología Paraguay (https://www.conacyt.gov. 
py/) grants numbers 14-INV-088, PINV15–315 and PINV20-337, Na-
tional Science Foundation Advances in Bio Informatics (https://www. 
nsf.gov/) grant number 1660648, Fundação de Amparo à Pesquisa do 
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Appendix A 

Defining the number m of multiple imputations 

The minimum number of imputation is chosen by considering the statistical efficiency of the estimates obtained after imputation [4,37]. The 
relative efficiency RE of an estimator (e.g. logistic regression model or cox-survival model) exploiting m multiple imputations may be evaluated as the 
ratio of the total variance obtained with m imputations, Tm, compared to the total variance when m→∞, T∞. Rubin [4] showed that this ratio is: 

RE =
Tm

T∞
= 1+

1
m

γ0  

where γ0 is the Fraction of Missing Information FMI = B/(W + B), with W representing within imputation variance and B representing between 
imputation variance [14]. From the above equation we get the percent loss of efficiency which should be minimized: 

Tm

T∞
= 1+

1
m

γ0⇒
Tm − T∞

T∞
=

1
m

γ0 =
1
m

FMI 

Therefore, the value of m should be chosen so that 1m FMI becomes negligible or as small as it is feasible. White et al. [14] suggest using, for example, 
1
m FMI < 0.05, that is, they require a maximum percent loss in efficiency lower than the 5 percent. Of course, this computation requires estimating the 
FMI due to the missing values, which on the other side would require trying different values for m, computing the pooled estimates and their FMI. A 
faster way is to use an upper bound of the FMI, that White et al. [14] conservatively estimated as the fraction of incomplete cases. This led to Von 
Hippel’s rule of thumb [40] that the number of imputations should be similar to the percentage of cases that are incomplete, which means we are requiring 
the maximum percent loss in efficiency lower than 1 percent. Unfortunately, when the sample size is high, such a low maximum percent loss in 
efficiency would result in demanding, and often impractical computational costs. Besides, as noted also in [14] this estimate may not be appropriate, 
because it also depends on the data and the problem at hand. Indeed, several other state-of-the-art definitions of FMI and different experimental results 
proposing estimates for the number of multiple imputations have been shown in literature. As an example, Graham [38] studied the loss in power 
when small numbers of imputed datasets are used. They recommended that at least 20 imputed datasets are needed to restrict the loss of power when 
testing a relationship between variables. Bodner [39] proposed the following guidelines after a simulation study using different values for the FMI to 
determine the number of imputed datasets. For FMIś of 0.05, 0.1, 0.2, 0.3, 0.5 the following number of imputed datasets are needed: ≥3, 6, 12, 24, 59, 
respectively. 

We refer interested readers to Van Buuren’s book [28] for a brief description of different approaches. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jbi.2023.104295. 
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