73 research outputs found

    Polysaccharide-Degrading Complex Produced in Wood and in Liquid Media by the Brown-Rot Fungus Poria Placenta

    Get PDF
    The polysaccharide-degrading enzymes produced by Poria placenta in decayed wood and liquid media were compared qualitatively and quantitatively. A single carbohydrate-degrading complex was isolated and purified from wood and liquid cultures that was active on both polysaccharides and glycosides. Quantitative differences in enzyme activities from decayed wood versus liquid media were observed. However, the purified extracellular carbohydrate-degrading complex isolated from decayed wood and from liquid cultures must be structurally similar because of similar isoelectric points, electrophoretic properties, and molecular sieving properties

    Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets.

    Get PDF
    We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 109 particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (∅ 5 μm) and planar (20 μm × 2 μm). In both cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. This is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions

    On the cosmic ray bound for models of extragalactic neutrino production

    Get PDF
    We obtain the maximum diffuse neutrino intensity predicted by hadronic photoproduction models of the type which have been applied to the jets of active galactic nuclei or gamma ray bursts. For this, we compare the proton and gamma ray fluxes associated with hadronic photoproduction in extragalactic neutrino sources with the present experimental upper limit on cosmic ray protons and the extragalactic gamma ray background, employing a transport calculation of energetic protons traversing cosmic photon backgrounds. We take into account the effects of the photon spectral shape in the sources on the photoproduction process, cosmological source evolution, the optical depth for cosmic ray ejection, and discuss the possible effects of magnetic fields in the vicinity of the sources. For photohadronic neutrino sources which are optically thin to the emission of neutrons we find that the cosmic ray flux imposes a stronger bound than the extragalactic gamma ray background in the energy range between 10^5 GeV and 10^11 GeV, as previously noted by Waxman & Bahcall (1999). We also determine the maximum contribution from the jets of active galactic nuclei, using constraints set to their neutron opacity by gamma-ray observations. This present upper limit is consistent with the jets of active galactic nuclei producing the extragalactic gamma ray background hadronically, but we point out future observations in the GeV-to-TeV regime could lower this limit. We also briefly discuss the contribution of gamma ray bursts to ultra-high energy cosmic rays as it can be inferred from possible observations or limits on their correlated neutrino fluxes.Comment: 16 pages, includes 7 figures, using REVtex3.1, accepted for publication in Phys.Rev.D after minor revision

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    High-risk human papillomavirus (HPV) screening and detection in healthy patient saliva samples: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human papillomaviruses (HPV) are a large family of non-enveloped DNA viruses, mainly associated with cervical cancers. Recent epidemiologic evidence has suggested that HPV may be an independent risk factor for oropharyngeal cancers. Evidence now suggests HPV may modulate the malignancy process in some tobacco- and alcohol-induced oropharynx tumors, but might also be the primary oncogenic factor for inducing carcinogenesis among some non-smokers. More evidence, however, is needed regarding oral HPV prevalence among healthy adults to estimate risk. The goal of this study was to perform an HPV screening of normal healthy adults to assess oral HPV prevalence.</p> <p>Methods</p> <p>Healthy adult patients at a US dental school were selected to participate in this pilot study. DNA was isolated from saliva samples and screened for high-risk HPV strains HPV16 and HPV18 and further processed using qPCR for quantification and to confirm analytical sensitivity and specificity.</p> <p>Results</p> <p>Chi-square analysis revealed the patient sample was representative of the general clinic population with respect to gender, race and age (<it>p </it>< 0.05). Four patient samples were found to harbor HPV16 DNA, representing 2.6% of the total (n = 151). Three of the four HPV16-positive samples were from patients under 65 years of age and all four were female and Hispanic (non-White). No samples tested positive for HPV18.</p> <p>Conclusions</p> <p>The successful recruitment and screening of healthy adult patients revealed HPV16, but not HPV18, was present in a small subset. These results provide new information about oral HPV status, which may help to contextualize results from other studies that demonstrate oral cancer rates have risen in the US among both females and minorities and in some geographic areas that are not solely explained by rates of tobacco and alcohol use. The results of this study may be of significant value to further our understanding of oral health and disease risk, as well as to help design future studies exploring the role of other factors that influence oral HPV exposure, as well as the short- and long-term consequences of oral HPV infection.</p

    Epithelial to Mesenchymal Transition of a Primary Prostate Cell Line with Switches of Cell Adhesion Modules but without Malignant Transformation

    Get PDF
    Background: Epithelial to mesenchymal transition (EMT) has been connected with cancer progression in vivo and the generation of more aggressive cancer cell lines in vitro. EMT has been induced in prostate cancer cell lines, but has previously not been shown in primary prostate cells. The role of EMT in malignant transformation has not been clarified. Methodology/Principal Findings: In a transformation experiment when selecting for cells with loss of contact inhibition, the immortalized prostate primary epithelial cell line, EP156T, was observed to undergo EMT accompanied by loss of contact inhibition after about 12 weeks in continuous culture. The changed new cells were named EPT1. EMT of EPT1 was characterized by striking morphological changes and increased invasion and migration compared with the original EP156T cells. Gene expression profiling showed extensively decreased epithelial markers and increased mesenchymal markers in EPT1 cells, as well as pronounced switches of gene expression modules involved in cell adhesion and attachment. Transformation assays showed that EPT1 cells were sensitive to serum or growth factor withdrawal. Most importantly, EPT1 cells were not able to grow in an anchorage-independent way in soft agar, which is considered a critical feature of malignant transformation. Conclusions/Significance: This work for the first time established an EMT model from primary prostate cells. The results show that EMT can be activated as a coordinated gene expression program in association with early steps of transformation. The model allows a clearer identification of the molecular mechanisms of EMT and its potential role in malignant transformation
    corecore