171 research outputs found

    Early predictors of phonological and morphological awareness and the link with reading : evidence from children with different patterns of early deficit

    Get PDF
    This study examines the contribution of early phonological processing (PP) and language skills on later phonological awareness (PA) and morphological awareness (MA), as well as the links among PA, MA, and reading. Children 4–6 years of age with poor PP at the start of school showed weaker PA and MA 3 years later (age 7–9), regardless of their language skills. PA and phonological and morphological strategies predict reading accuracy, whereas MA predicts reading comprehension. Our findings suggest that children with poor early PP are more at risk of developing deficits in MA and PA than children with poor language. They also suggest that there is a direct link between PA and reading accuracy and between MA and reading comprehension that cannot be accounted for by strategy use at the word level

    Forever niche: Why do organically bred vegetable varieties not diffuse?

    Get PDF
    While organic food increased its market share in conventional food retail, virtually all organic vegetables are still conventionally bred. For decades, organically bred vegetable varieties remained a market niche, despite their socio-ecological benefits. This paper conceptualizes actors and activities around organic breeding as a Technological Innovation System (TIS) and analyzes what prevents these varieties from widely diffusing into conventional supermarkets. Investigated systemic barriers relate to knowledge, market formation, investments, and legitimacy. The study is based on interviews with food retailers and (commons-based) breeding initiatives across Germany. Theoretically, the paper adds an innovation system perspective on the diffusion of organically bred varieties, a blind spot in the emerging seed commons debate. Furthermore, it contributes to sustainability transitions literature by introducing a novel empirical topic and reframing the TIS framework to analyze agri-food innovations. Identifying barriers and vicious cycles might support practitioners and policymakers seeking to diffuse this agri-food niche

    Digitale Workshops in der Lehrkräftebildung. Chancen und Grenzen der Interaktion im digitalen Raum

    Get PDF
    Die Autor*innen erörtern Chancen und Herausforderungen der Interaktion im digitalen Raum, exemplifiziert an der digitalen Workshopreihe „Sprachliche Vielfalt mit digitalen Medien fördern, nutzen und gestalten“ (Lehr-Lern-Atelier des Instituts für Sprachen und Mehrsprachigkeit). Die Workshopreihe adressiert den Umgang mit sprachlicher, kultureller und ethnischer Heterogenität und zielt gleichzeitig auf eine Förderung digitalisierungsbezogener Kompetenzen von Lehrkräften ab. Die Autor*innen zeigen auf, wie Selbstlern- und kollaborative Arbeitsphasen sowie innovative Austauschformate – vor dem Hintergrund der Pandemiebedingungen – eine Interaktion zwischen den Teilnehmenden (auch) im digitalen Raum initiieren können. (DIPF/Orig.

    Local immune cell contributions to fracture healing in aged individuals – A novel role for interleukin 22

    Get PDF
    Aging: immune protein's role in delayed bone fracture healing Neutralizing a key cytokine, a signaling protein affecting the immune system could rejuvenate the healing process following prolonged inflammatory responses to bone fractures in elderly patients. Healing patterns vary widely in the elderly following injuries such as bone fractures, and scientists now believe that a patient's individual innate and adaptive immune profile directly affects the healing process. A short-lived pro-inflammatory response is needed to kickstart healthy healing, but a longer-lasting response can be damaging. In experiments on aged mouse models, the team led by Katharina Schmidt-Bleek at the Julius Wolff Institute in Berlin, Germany, demonstrated that high levels of the cytokine interleukin-22 impaired bone regeneration. Elevated interleukin-22 levels resulted from chronically elevated inflammation and inflammaging, prevalent in elderly patients. The team treated the mice to neutralize interleukin-22, which accelerated the healing process. With increasing age, the risk of bone fractures increases while regenerative capacity decreases. This variation in healing potential appears to be linked to adaptive immunity, but the underlying mechanism is still unknown. This study sheds light on immunoaging/inflammaging, which impacts regenerative processes in aging individuals. In an aged preclinical model system, different levels of immunoaging were analyzed to identify key factors that connect immunoaged/inflammaged conditions with bone formation after long bone fracture. Immunological facets, progenitor cells, the microbiome, and confounders were monitored locally at the injury site and systemically in relation to healing outcomes in 12-month-old mice with distinct individual levels of immunoaging. Bone tissue formation during healing was delayed in the immunoaged group and could be associated with significant changes in cytokine levels. A prolonged and amplified pro-inflammatory reaction was caused by upregulated immune cell activation markers, increased chemokine receptor availability and a lack of inhibitory signaling. In immunoaged mice, interleukin-22 was identified as a core cell signaling protein that played a central role in delayed healing. Therapeutic neutralization of IL-22 reversed this specific immunoaging-related disturbed healing. Immunoaging was found to be an influencing factor of decreased regenerative capacity in aged individuals. Furthermore, a novel therapeutic strategy of neutralizing IL-22 may successfully rejuvenate healing in individuals with advanced immune experiences

    Histological assessment of paxgene tissue fixation and stabilization reagents

    Get PDF
    Within SPIDIA, an EC FP7 project aimed to improve pre analytic procedures, the PAXgene Tissue System (PAXgene), was designed to improve tissue quality for parallel molecular and morphological analysis. Within the SPIDIA project promising results were found in both genomic and proteomic experiments with PAXgene-fixed and paraffin embedded tissue derived biomolecules. But, for this technology to be accepted for use in both clinical and basic research, it is essential that its adequacy for preserving morphology and antigenicity is validated relative to formalin fixation. It is our aim to assess the suitability of PAXgene tissue fixation for (immuno)histological methods. Normal human tissue specimens (n = 70) were collected and divided into equal parts for fixation either with formalin or PAXgene. Sections of the obtained paraffin-embedded tissue were cut and stained. Morphological aspects of PAXgene-fixed tissue were described and also scored relative to formalin-fixed tissue. Performance of PAXgene-fixed tissue in immunohistochemical and in situ hybridization assays was also assessed relative to the corresponding formalin-fixed tissues. Morphology of PAXgene-fixed paraffin embedded tissue was well preserved and deemed adequate for diagnostics in most cases. Some antigens in PAXgene-fixed and paraffin embedded sections were detectable without the need for antigen retrieval, while others were detected using standard, formalin fixation based, immunohistochemistry protocols. Comparable results were obtained with in situ hybridization and histochemical stains. Basically all assessed histological techniques were found to be applicable to PAXgene-fixed and paraffin embedded tissue. In general results obtained with PAXgene-fixed tissue are comparable to those of formalin-fixed tissue. Compromises made in morphology can be called minor compared to the advantages in the molecular pathology possibilities

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    corecore