11 research outputs found

    Outcomes and treatment strategies for autoimmunity and hyperinflammation in patients with RAG deficiency

    Get PDF
    BACKGROUND: While autoimmunity and hyperinflammation secondary to recombinase activating gene (RAG) deficiency have been associated with delayed diagnosis and even death, our current understanding is limited primarily to small case series. OBJECTIVE: Understand the frequency, severity, and treatment responsiveness of autoimmunity and hyperinflammation in RAG deficiency. METHODS: In reviewing the literature and our own database, we identified 85 patients with RAG deficiency, reported between 2001 and 2016, and compiled the largest case series to date of 63 patients with prominent autoimmune and/or hyperinflammatory pathology. RESULTS: Diagnosis of RAG deficiency was delayed a median of 5 years from the first clinical signs of immune dysregulation. The majority of patients (55.6%) presented with more than one autoimmune or hyperinflammatory complication, with the most common etiologies being cytopenias (84.1%), granulomas (23.8%), and inflammatory skin disorders (19.0%). Infections, including live viral vaccinations, closely preceded the onset of autoimmunity in 28.6% of cases. Autoimmune cytopenias had early onset (median 1.9, 2.1, and 2.6 years for autoimmune hemolytic anemia (AIHA), immune thrombocytopenia (ITP) and autoimmune neutropenia (AN), respectively) and were refractory to intravenous immunoglobulin, steroids, and rituximab in the majority of cases (64.7%, 73.7%, and 71.4% for AIHA, ITP, and AN, respectively). Evans syndrome specifically was associated with lack of response to first-line therapy. Treatment-refractory autoimmunity/hyperinflammation prompted hematopoietic stem cell transplantation in 20 patients. CONCLUSIONS: Autoimmunity/hyperinflammation can be a presenting sign of RAG deficiency and should prompt further evaluation. Multi-lineage cytopenias are often refractory to immunosuppressive treatment and may require hematopoietic cell transplantation for definitive management

    Outcomes and Treatment Strategies for Autoimmunity and Hyperinflammation in Patients with RAG Deficiency

    Get PDF
    Abstract Background: While autoimmunity and hyperinflammation secondary to recombinase activating gene (RAG) deficiency have been associated with delayed diagnosis and even death, our current understanding is limited primarily to small case series. Objective: Understand the frequency, severity, and treatment responsiveness of autoimmunity and hyperinflammation in RAG deficiency. Methods: In reviewing the literature and our own database, we identified 85 patients with RAG deficiency, reported between 2001 and 2016, and compiled the largest case series to date of 63 patients with prominent autoimmune and/or hyperinflammatory pathology. Results: Diagnosis of RAG deficiency was delayed a median of 5 years from the first clinical signs of immune dysregulation. The majority of patients (55.6%) presented with more than one autoimmune or hyperinflammatory complication, with the most common etiologies being cytopenias (84.1%), granulomas (23.8%), and inflammatory skin disorders (19.0%). Infections, including live viral vaccinations, closely preceded the onset of autoimmunity in 28.6% of cases. Autoimmune cytopenias had early onset (median 1.9, 2.1, and 2.6 years for autoimmune hemolytic anemia (AIHA), immune thrombocytopenia (ITP) and autoimmune neutropenia (AN), respectively) and were refractory to intravenous immunoglobulin, steroids, and rituximab in the majority of cases (64.7%, 73.7%, and 71.4% for AIHA, ITP, and AN, respectively). Evans syndrome specifically was associated with lack of response to first-line therapy. Treatment- refractory autoimmunity/hyperinflammation prompted hematopoietic stem cell transplantation in 20 patients. Conclusions: Autoimmunity/hyperinflammation can be a presenting sign of RAG deficiency and should prompt further evaluation. Multi-lineage cytopenias are often refractory to immunosuppressive treatment and may require hematopoietic cell transplantation for definitive management

    Hypomorphic RAG deficiency: Impact of disease burden on survival and thymic recovery argues for early diagnosis and HSCT.

    No full text
    Patients with hypomorphic mutations in RAG1 or RAG2 genes present as either Omenn syndrome or atypical combined immunodeficiency with a wide phenotypic range. Hematopoietic stem cell transplantation (HSCT) is potentially curative, but data are scarce. We report on a worldwide cohort of 60 patients with hypomorphic RAG variants who underwent HSCT, 78% of whom experienced infections (29% active at HSCT), 72% had autoimmunity, and 18% had granulomas pretransplant. These complications are frequently associated with organ damage. Eight individuals (13%) were diagnosed by newborn screening or family history. HSCT was performed at a median of 3.4 years (range 0.3-42.9 years) from matched unrelated donors, matched sibling or matched family donors, or mismatched donors in 48%, 22%, and 30% of the patients, respectively. Grafts were T-cell depleted in 15 cases (25%). Overall survival at 1 and 4 years was 77.5% and 67.5% (median follow-up of 39 months). Infection was the main cause of death. In univariable analysis, active infection, organ damage pre-HSCT, T-cell depletion of the graft, and transplant from a mismatched family donor were predictive of worse outcome, whereas organ damage and T-cell depletion remained significant in multivariable analysis (hazard ratio [HR] = 6.01, HR = 8.46, respectively). All patients diagnosed by newborn screening or family history survived. Cumulative incidences of acute and chronic graft-versus-host disease were 35% and 22%, respectively. Cumulative incidences of new-onset autoimmunity was 15%. Immune reconstitution, particularly recovery of naïveCD4+ T cells, was faster and more robust in patients transplanted before 3.5 years of age, and without organ damage. These findings support the indication for early transplantation

    Hypomorphic RAG deficiency: impact of disease burden on survival and thymic recovery argues for early diagnosis and HSCT

    No full text
    © 2022 The American Society of HematologyPatients with hypomorphic mutations in RAG1 or RAG2 genes present as either Omenn syndrome or atypical combined immunodeficiency with a wide phenotypic range. Hematopoietic stem cell transplantation (HSCT) is potentially curative, but data are scarce. We report on a worldwide cohort of 60 patients with hypomorphic RAG variants who underwent HSCT, 78% of whom experienced infections (29% active at HSCT), 72% had autoimmunity, and 18% had granulomas pretransplant. These complications are frequently associated with organ damage. Eight individuals (13%) were diagnosed by newborn screening or family history. HSCT was performed at a median of 3.4 years (range 0.3-42.9 years) from matched unrelated donors, matched sibling or matched family donors, or mismatched donors in 48%, 22%, and 30% of the patients, respectively. Grafts were T-cell depleted in 15 cases (25%). Overall survival at 1 and 4 years was 77.5% and 67.5% (median follow-up of 39 months). Infection was the main cause of death. In univariable analysis, active infection, organ damage pre-HSCT, T-cell depletion of the graft, and transplant from a mismatched family donor were predictive of worse outcome, whereas organ damage and T-cell depletion remained significant in multivariable analysis (hazard ratio [HR] = 6.01, HR = 8.46, respectively). All patients diagnosed by newborn screening or family history survived. Cumulative incidences of acute and chronic graft-versus-host disease were 35% and 22%, respectively. Cumulative incidences of new-onset autoimmunity was 15%. Immune reconstitution, particularly recovery of naïveCD4+ T cells, was faster and more robust in patients transplanted before 3.5 years of age, and without organ damage. These findings support the indication for early transplantation

    The clinical and genetic spectrum of 82 patients with RAG deficiency including a c.256_257delAA founder variant in Slavic countries

    Get PDF
    Background: Variants in recombination-activating genes (RAG) are common genetic causes of autosomal recessive forms of combined immunodeficiencies (CID) ranging from severe combined immunodeficiency (SCID), Omenn syndrome (OS), leaky SCID, and CID with granulomas and/or autoimmunity (CID-G/AI), and even milder presentation with antibody deficiency. Objective: We aim to estimate the incidence, clinical presentation, genetic variability, and treatment outcome with geographic distribution of patients with the RAG defects in populations inhabiting South, West, and East Slavic countries. Methods: Demographic, clinical, and laboratory data were collected from RAG-deficient patients of Slavic origin via chart review, retrospectively. Recombinase activity was determined in vitro by flow cytometry-based assay. Results: Based on the clinical and immunologic phenotype, our cohort of 82 patients from 68 families represented a wide spectrum of RAG deficiencies, including SCID (n = 20), OS (n = 37), and LS/CID (n = 25) phenotypes. Sixty-seven (81.7%) patients carried RAG1 and 15 patients (18.3%) carried RAG2 biallelic variants. We estimate that the minimal annual incidence of RAG deficiency in Slavic countries varies between 1 in 180,000 and 1 in 300,000 live births, and it may vary secondary to health care disparities in these regions. In our cohort, 70% (n = 47) of patients with RAG1 variants carried p.K86Vfs*33 (c.256_257delAA) allele, either in homozygous (n = 18, 27%) or in compound heterozygous (n = 29, 43%) form. The majority (77%) of patients with homozygous RAG1 p.K86Vfs*33 variant originated from Vistula watershed area in Central and Eastern Poland, and compound heterozygote cases were distributed among all Slavic countries except Bulgaria. Clinical and immunological presentation of homozygous RAG1 p.K86Vfs*33 cases was highly diverse (SCID, OS, and AS/CID) suggestive of strong influence of additional genetic and/or epigenetic factors in shaping the final phenotype. Conclusion: We propose that RAG1 p.K86Vfs*33 is a founder variant originating from the Vistula watershed region in Poland, which may explain a high proportion of homozygous cases from Central and Eastern Poland and the presence of the variant in all Slavs. Our studies in this cohort of RAG1 founder variants confirm that clinical and immunological phenotypes only partially depend on the underlying genetic defect. As access to HSCT is improving among RAG-deficient patients in Eastern Europe, we anticipate improvements in survival

    Outcomes and Treatment Strategies for Autoimmunity and Hyperinflammation in Patients with RAG Deficiency

    No full text
    Background: Although autoimmunity and hyperinflammation secondary to recombination activating gene (RAG) deficiency have been associated with delayed diagnosis and even death, our current understanding is limited primarily to small case series. Objective: Understand the frequency, severity, and treatment responsiveness of autoimmunity and hyperinflammation in RAG deficiency. Methods: In reviewing the literature and our own database, we identified 85 patients with RAG deficiency, reported between 2001 and 2016, and compiled the largest case series to date of 63 patients with prominent autoimmune and/or hyperinflammatory pathology. Results: Diagnosis of RAG deficiency was delayed a median of 5 years from the first clinical signs of immune dysregulation. Most patients (55.6%) presented with more than 1 autoimmune or hyperinflammatory complication, with the most common etiologies being cytopenias (84.1%), granulomas (23.8%), and inflammatory skin disorders (19.0%). Infections, including live viral vaccinations, closely preceded the onset of autoimmunity in 28.6% of cases. Autoimmune cytopenias had early onset (median, 1.9, 2.1, and 2.6 years for autoimmune hemolytic anemia, immune thrombocytopenia, and autoimmune neutropenia, respectively) and were refractory to intravenous immunoglobulin, steroids, and rituximab in most cases (64.7%, 73.7%, and 71.4% for autoimmune hemolytic anemia, immune thrombocytopenia, and autoimmune neutropenia, respectively). Evans syndrome specifically was associated with lack of response to first-line therapy. Treatment-refractory autoimmunity/hyperinflammation prompted hematopoietic stem cell transplantation in 20 patients. Conclusions: Autoimmunity/hyperinflammation can be a presenting sign of RAG deficiency and should prompt further evaluation. Multilineage cytopenias are often refractory to immunosuppressive treatment and may require hematopoietic cell transplantation for definitive management. © 2019 The Author
    corecore