56 research outputs found

    Exploiting the Internet Resources for Autonomous Robots in Agriculture

    Get PDF
    Autonomous robots in the agri-food sector are increasing yearly, promoting the application of precision agriculture techniques. The same applies to online services and techniques implemented over the Internet, such as the Internet of Things (IoT) and cloud computing, which make big data, edge computing, and digital twins technologies possible. Developers of autonomous vehicles understand that autonomous robots for agriculture must take advantage of these techniques on the Internet to strengthen their usability. This integration can be achieved using different strategies, but existing tools can facilitate integration by providing benefits for developers and users. This study presents an architecture to integrate the different components of an autonomous robot that provides access to the cloud, taking advantage of the services provided regarding data storage, scalability, accessibility, data sharing, and data analytics. In addition, the study reveals the advantages of integrating new technologies into autonomous robots that can bring significant benefits to farmers. The architecture is based on the Robot Operating System (ROS), a collection of software applications for communication among subsystems, and FIWARE (Future Internet WARE), a framework of open-source components that accelerates the development of intelligent solutions. To validate and assess the proposed architecture, this study focuses on a specific example of an innovative weeding application with laser technology in agriculture. The robot controller is distributed into the robot hardware, which provides real-time functions, and the cloud, which provides access to online resources. Analyzing the resulting characteristics, such as transfer speed, latency, response and processing time, and response status based on requests, enabled positive assessment of the use of ROS and FIWARE for integrating autonomous robots and the Internet

    Observation of a single protein by ultrafast X-ray diffraction

    Get PDF
    The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory1, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes2. This was first demonstrated on biological samples a decade ago on the giant mimivirus3. Since then a large collaboration4 has been pushing the limit of the smallest sample that can be imaged5,6. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter7 is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale

    3D diffractive imaging of nanoparticle ensembles using an X-ray laser

    Get PDF
    We report the 3D structure determination of gold nanoparticles (AuNPs) by X-ray single particle imaging (SPI). Around 10 million diffraction patterns from gold nanoparticles were measured in less than 100 hours of beam time, more than 100 times the amount of data in any single prior SPI experiment, using the new capabilities of the European X-ray free electron laser which allow measurements of 1500 frames per second. A classification and structural sorting method was developed to disentangle the heterogeneity of the particles and to obtain a resolution of better than 3 nm. With these new experimental and analytical developments, we have entered a new era for the SPI method and the path towards close-to-atomic resolution imaging of biomolecules is apparent

    The management of acute venous thromboembolism in clinical practice. Results from the European PREFER in VTE Registry

    Get PDF
    Venous thromboembolism (VTE) is a significant cause of morbidity and mortality in Europe. Data from real-world registries are necessary, as clinical trials do not represent the full spectrum of VTE patients seen in clinical practice. We aimed to document the epidemiology, management and outcomes of VTE using data from a large, observational database. PREFER in VTE was an international, non-interventional disease registry conducted between January 2013 and July 2015 in primary and secondary care across seven European countries. Consecutive patients with acute VTE were documented and followed up over 12 months. PREFER in VTE included 3,455 patients with a mean age of 60.8 ± 17.0 years. Overall, 53.0 % were male. The majority of patients were assessed in the hospital setting as inpatients or outpatients (78.5 %). The diagnosis was deep-vein thrombosis (DVT) in 59.5 % and pulmonary embolism (PE) in 40.5 %. The most common comorbidities were the various types of cardiovascular disease (excluding hypertension; 45.5 %), hypertension (42.3 %) and dyslipidaemia (21.1 %). Following the index VTE, a large proportion of patients received initial therapy with heparin (73.2 %), almost half received a vitamin K antagonist (48.7 %) and nearly a quarter received a DOAC (24.5 %). Almost a quarter of all presentations were for recurrent VTE, with >80 % of previous episodes having occurred more than 12 months prior to baseline. In conclusion, PREFER in VTE has provided contemporary insights into VTE patients and their real-world management, including their baseline characteristics, risk factors, disease history, symptoms and signs, initial therapy and outcomes

    Development of a combined OCT-Raman probe for the prospective in vivo clinical melanoma skin cancer screening

    Get PDF
    A combined optical coherence tomography (OCT)-Raman probe was designed and built into a spectral domain OCT head, and its performance was evaluated and compared to the most common Raman probe setups, based on a fiber bundle and confocal free space optics. Due to the use of the full field of view of an OCT scanning lens, the combined probe has a superior performance within maximum permissible exposure limits, compared to the other two probes. Skin Raman spectra, recorded in vivo, further prove the feasibility of the OCT-Raman probe for the future in vivo clinical applications in skin cancer screening. © 2017 Author(s)

    Near-Field scanning optical microscopy in cell biology and cytogenetics

    No full text
    Light microscopy has proven to be one of the most versatile analytical tools in cell biology and cytogenetics. The growing spectrum of scientific knowledge demands a continuous improvement of the optical resolution of the instruments. In far-field light microscopy, the attainable resolution is dictated by the limit of diffraction, which, in practice, is about 250 nm for high-numerical-aperture objective lenses. Near-field scanning optical microscopy (NSOM) was the first technique that has overcome this limit up to about one order of magnitude. Typically, the resolution range below 100 nm is accessed for biological applications. Using appropriately designed scanning probes allows for obtaining an extremely small near-field light excitation volume (some tens of nanometers in diameter). Because of the reduction of background illumination, high contrast imaging becomes feasible for light transmission and fluorescence microscopy. The height of the scanning probe is controlled by atomic force interactions between the specimen surface and the probe tip. The control signal can be used for the production of a topographic (nonoptical) image that can be acquired simultaneously. In this chapter, the principle of NSOM is described with respect to biological applications. A brief overview of some requirements in biology and applications described in the literature are given. Practical advice is focused on instruments with aperture-type illumination probes. Preparation protocols focussing on NSOM of cell surfaces and chromosomes are presented

    Variations in Cell Surfaces of Estrogen Treated Breast Cancer Cells Detected by A Combined Instrument for Far-Field and Near-Field Microscopy

    No full text
    The response of single breast cancer cells (cell line T‐47D) to 17ÎČ‐estradiol (E2) under different concentrations was studied by using an instrument that allows to combine far‐field light microscopy with high resolution scanning near‐field (AFM/SNOM) microscopy on the same cell. Different concentrations of E2 induce clearly different effects as well on cellular shape (in classical bright‐field imaging) as on surface topography (atomic force imaging) and absorbance (near‐field light transmission imaging). The differences range from a polygonal shape at zero via a roughly spherical shape at physiological up to a spindle‐like shape at un‐physiologically high concentrations. The surface topography of untreated control cells was found to be regular and smooth with small overall height modulations. At physiological E2 concentrations the surfaces became increasingly jagged as detected by an increase in membrane height. After application of the un‐physiological high E2 concentration the cell surface structures appeared to be smoother again with an irregular fine structure. The general behaviour of dose dependent differences was also found in the near‐field light transmission images. In order to quantify the treatment effects, line scans through the normalised topography images were drawn and a rate of co‐localisation between high topography and high transmission areas was calculated. The cell biological aspects of these observations are, so far, not studied in detail but measurements on single cells offer new perspectives to be empirically used in diagnosis and therapy control of breast cancers

    Invasive und non-invasive Diagnostik humaner Perilymphe

    No full text
    • 

    corecore