385 research outputs found

    Social Capital, Institutions and Collective Action Between Firms

    Get PDF
    This work is based on the hypothesis that explanation of collective action between firms requires partly different variables from that used in explaining collective action between individuals. In order to look at the problem of what determines collective action, a model has been built using alongside social capital, the historical tradition of collective action and the activism of institutional actors as explicative variables of associationism between firms. The empirical results confirm the theoretical hypotheses put forward in the first part of the paper. First, social capital, institutional activism and experience accumulation, all together, enhance the propensity to collective action between firms. Each variable plays a significant role in explaining inter-firm co-operation. Secondly, these variables, however, affect the behaviour of small firms while the large ones appear to follow a different pattern of conduct. Thirdly, the empirical findings seem also to suggest that social capital and institutional proactive initiative produce synergic effects on collective action. The two variables reinforce each other in their effects on co-operation. Finally, the positive correlation between social capital and institutional initiative emerging from the empirical results suggests that an increase in the endowment of social capital tends to rise the level of institutional activity and the other way round.social capital, economic institutions, firms co-operation

    Automatic detection of pathological regions in medical images

    Get PDF
    Medical images are an essential tool in the daily clinical routine for the detection, diagnosis, and monitoring of diseases. Different imaging modalities such as magnetic resonance (MR) or X-ray imaging are used to visualize the manifestations of various diseases, providing physicians with valuable information. However, analyzing every single image by human experts is a tedious and laborious task. Deep learning methods have shown great potential to support this process, but many images are needed to train reliable neural networks. Besides the accuracy of the final method, the interpretability of the results is crucial for a deep learning method to be established. A fundamental problem in the medical field is the availability of sufficiently large datasets due to the variability of different imaging techniques and their configurations. The aim of this thesis is the development of deep learning methods for the automatic identification of anomalous regions in medical images. Each method is tailored to the amount and type of available data. In the first step, we present a fully supervised segmentation method based on denoising diffusion models. This requires a large dataset with pixel-wise manual annotations of the pathological regions. Due to the implicit ensemble characteristic, our method provides uncertainty maps to allow interpretability of the model’s decisions. Manual pixel-wise annotations face the problems that they are prone to human bias, hard to obtain, and often even unavailable. Weakly supervised methods avoid these issues by only relying on image-level annotations. We present two different approaches based on generative models to generate pixel-wise anomaly maps using only image-level annotations, i.e., a generative adversarial network and a denoising diffusion model. Both perform image-to-image translation between a set of healthy and a set of diseased subjects. Pixel-wise anomaly maps can be obtained by computing the difference between the original image of the diseased subject and the synthetic image of its healthy representation. In an extension of the diffusion-based anomaly detection method, we present a flexible framework to solve various image-to-image translation tasks. With this method, we managed to change the size of tumors in MR images, and we were able to add realistic pathologies to images of healthy subjects. Finally, we focus on a problem frequently occurring when working with MR images: If not enough data from one MR scanner are available, data from other scanners need to be considered. This multi-scanner setting introduces a bias between the datasets of different scanners, limiting the performance of deep learning models. We present a regularization strategy on the model’s latent space to overcome the problems raised by this multi-site setting

    Denoising Diffusion Models for Inpainting of Healthy Brain Tissue

    Full text link
    This paper is a contribution to the "BraTS 2023 Local Synthesis of Healthy Brain Tissue via Inpainting Challenge". The task of this challenge is to transform tumor tissue into healthy tissue in brain magnetic resonance (MR) images. This idea originates from the problem that MR images can be evaluated using automatic processing tools, however, many of these tools are optimized for the analysis of healthy tissue. By solving the given inpainting task, we enable the automatic analysis of images featuring lesions, and further downstream tasks. Our approach builds on denoising diffusion probabilistic models. We use a 2D model that is trained using slices in which healthy tissue was cropped out and is learned to be inpainted again. This allows us to use the ground truth healthy tissue during training. In the sampling stage, we replace the slices containing diseased tissue in the original 3D volume with the slices containing the healthy tissue inpainting. With our approach, we achieve comparable results to the competing methods. On the validation set our model achieves a mean SSIM of 0.7804, a PSNR of 20.3525 and a MSE of 0.0113. In future we plan to extend our 2D model to a 3D model, allowing to inpaint the region of interest as a whole without losing context information of neighboring slices.Comment: 12 pages, 5 figures, MICCAI challenge submissio

    A Framework for Searching in Graphs in the Presence of Errors

    Get PDF
    We consider a problem of searching for an unknown target vertex t in a (possibly edge-weighted) graph. Each vertex-query points to a vertex v and the response either admits that v is the target or provides any neighbor s of v that lies on a shortest path from v to t. This model has been introduced for trees by Onak and Parys [FOCS 2006] and for general graphs by Emamjomeh-Zadeh et al. [STOC 2016]. In the latter, the authors provide algorithms for the error-less case and for the independent noise model (where each query independently receives an erroneous answer with known probability p<1/2 and a correct one with probability 1-p). We study this problem both with adversarial errors and independent noise models. First, we show an algorithm that needs at most (log_2 n)/(1 - H(r)) queries in case of adversarial errors, where the adversary is bounded with its rate of errors by a known constant r<1/2. Our algorithm is in fact a simplification of previous work, and our refinement lies in invoking an amortization argument. We then show that our algorithm coupled with a Chernoff bound argument leads to a simpler algorithm for the independent noise model and has a query complexity that is both simpler and asymptotically better than the one of Emamjomeh-Zadeh et al. [STOC 2016]. Our approach has a wide range of applications. First, it improves and simplifies the Robust Interactive Learning framework proposed by Emamjomeh-Zadeh and Kempe [NIPS 2017]. Secondly, performing analogous analysis for edge-queries (where a query to an edge e returns its endpoint that is closer to the target) we actually recover (as a special case) a noisy binary search algorithm that is asymptotically optimal, matching the complexity of Feige et al. [SIAM J. Comput. 1994]. Thirdly, we improve and simplify upon an algorithm for searching of unbounded domains due to Aslam and Dhagat [STOC 1991]
    • …
    corecore