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Summary

Medical images are an essential tool in the daily clinical routine for the detection, diagnosis,
and monitoring of diseases. Different imaging modalities such as magnetic resonance (MR) or
X-ray imaging are used to visualize the manifestations of various diseases, providing physicians
with valuable information. However, analyzing every single image by human experts is a tedious
and laborious task. Deep learning methods have shown great potential to support this process,
but many images are needed to train reliable neural networks. Besides the accuracy of the final
method, the interpretability of the results is crucial for a deep learning method to be established.
A fundamental problem in the medical field is the availability of sufficiently large datasets due
to the variability of different imaging techniques and their configurations.
The aim of this thesis is the development of deep learning methods for the automatic identifica-
tion of anomalous regions in medical images. Each method is tailored to the amount and type
of available data. In the first step, we present a fully supervised segmentation method based on
denoising diffusion models. This requires a large dataset with pixel-wise manual annotations
of the pathological regions. Due to the implicit ensemble characteristic, our method provides
uncertainty maps to allow interpretability of the model’s decisions.
Manual pixel-wise annotations face the problems that they are prone to human bias, hard to ob-
tain, and often even unavailable. Weakly supervised methods avoid these issues by only relying
on image-level annotations. We present two different approaches based on generative models
to generate pixel-wise anomaly maps using only image-level annotations, i.e., a generative ad-
versarial network and a denoising diffusion model. Both perform image-to-image translation
between a set of healthy and a set of diseased subjects. Pixel-wise anomaly maps can be ob-
tained by computing the difference between the original image of the diseased subject and the
synthetic image of its healthy representation. In an extension of the diffusion-based anomaly
detection method, we present a flexible framework to solve various image-to-image translation
tasks. With this method, we managed to change the size of tumors in MR images, and we were
able to add realistic pathologies to images of healthy subjects.
Finally, we focus on a problem frequently occurring when working with MR images: If not
enough data from one MR scanner are available, data from other scanners need to be consid-
ered. This multi-scanner setting introduces a bias between the datasets of different scanners,
limiting the performance of deep learning models. We present a regularization strategy on the
model’s latent space to overcome the problems raised by this multi-site setting.
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Zusammenfassung

Medizinische Bilder sind im klinischen Alltag ein unverzichtbares Instrument für die Erkennung,
Diagnose und Überwachung von Krankheiten. Bildgebende Verfahren wie Magnetresonanz-
(MR) oder Röntgenaufnahmen werden eingesetzt, um die Erscheinungsformen verschiedener
Erkrankungen zu visualisieren und damit Ärzten wertvolle Informationen zu liefern. Die Ana-
lyse jedes einzelnen Bildes durch Experten ist jedoch eine mühsame Aufgabe. Deep-Learning-
Methoden haben ein grosses Potenzial, diesen Prozess zu unterstützen. Allerdings werden sehr
viele Bilder benötigt, um zuverlässige neuronale Netze zu trainieren. Des Weiteren ist auch die
Interpretierbarkeit der Ergebnisse entscheidend für die klinische Anwendung. Ein grundlegen-
des Problem im medizinischen Bereich ist die limitierte Verfügbarkeit von grossen Datensätzen,
da die verschiedenen Bildgebungsverfahren und Konfigurationen nicht einheitlich sind.
Das Ziel dieser Arbeit ist die Entwicklung von Deep-Learning-Methoden zur automatischen
Identifizierung anomaler Regionen in medizinischen Bildern. Jede Methode ist auf die Menge
der verfügbaren Daten und Annotationen zugeschnitten. Zuerst präsentieren wir eine vollständig
überwachte Segmentierungsmethode, die auf denoising Diffusionsmodellen basiert. Dafür wird
ein grosser Datensatz mit pixelweisen manuellen Annotationen der Pathologie benötigt. Da un-
sere Methode implizit Ensembles generiert, können wir Unsicherheitskarten für die Interpretier-
barkeit des Modells berechnen.
Manuelle pixelweise Annotationen sind schwer zu beschaffen und auch anfällig für mensch-
liche Voreingenommenheit. Schwach überwachte Methoden umgehen diese Probleme, indem
sie allein auf Informationen auf Bildebene beruhen. Wir stellen zwei verschiedene Methoden
zur Erstellung von pixelweisen Anomaliekarten vor. Dafür adaptieren wir zwei verschiedene
generative Modelle, nämlich ein generatives adverserielles Netzwerk und ein denoising Diffu-
sionsmodell. Beide führen eine Bild-zu-Bild-Übersetzung zwischen einer Gruppe gesunder und
einer Gruppe kranker Probanden durch. Pixelweise Anomaliekarten werden mit der Differenz
zwischen dem Originalbild des kranken Probanden und dem synthetischen Bild seiner gesun-
den Rekonstruktion berechnet. Als Erweiterung der diffusionsbasierten Methode präsentieren
wir einen flexiblen Ansatz für verschiedene Bild-zu-Bild-Übersetzungsaufgaben. Damit konn-
ten wir die Grösse von Tumoren in MR-Bildern verändern und realistisch aussehende Pathologi-
en zu Bildern von gesunden Probanden hinzufügen. Schlussendlich befassen wir uns mit einem
häufigen Problem bei MR-Datensätzen: Wenn nicht genügend Daten von einem MR-Scanner
verfügbar sind, müssen Bilder von anderen Scannern hinzugefügt werden. So entsteht ein Bias
zwischen den Bildern, welcher die Modelle limitiert. Wir entwickeln eine Methode für dieses
Problem und verbessern die Generalisierbarkeit der Modelle.
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Chapter 1

Introduction

In recent years, the success of machine learning, especially deep learning, has revolutionized the
field of medical image analysis. Novel achievements in computer vision directly influenced the
development of new methods for medical tasks such as classification, semantic segmentation,
or anomaly detection. However, in medical applications, problems such as the limited availabil-
ity of data and labels impose challenges on the training of deep learning methods. Moreover,
medical data can be diverse and heterogeneous, and a bias introduced by different acquisition
methods may limit the generalization quality of machine learning models. Those challenges are
tackled in a very active field of deep learning research to support and improve medical image
analysis in the clinic.

1.1 Motivation

Deep learning-based anomaly detection and segmentation for medical images have the potential
to support physicians in the diagnosis of diseases and to lead the attention to the relevant parts
of the anatomy. The goal of this thesis is to detect visual manifestations of pathology in medical
images and to outline the affected anatomical regions, as illustrated in Figure 1.1.

Figure 1.1: The overall goal of this thesis is to develop deep learning models that learn to identify
the pathological regions in medical images. We aim to provide pixel-wise maps highlighting
anomalous changes.

1



2 Chapter 1. Introduction

If pixel-wise ground truth segmentations of the anomalous region are provided during training
on an extensive database, such a task can be solved with fully supervised segmentation ap-
proaches. While those methods have shown an impressive performance in lesion segmentation
[73, 167], interpretability of the results is often not ensured but would be of great importance
in clinical applications. While neural networks are often referred to as a ”black box,” it is cru-
cial to understand the model’s decisions and gain insight into any uncertainties. Furthermore,
fully supervised segmentation approaches depend on manual pixel-wise annotations, which are
time-consuming to obtain, require expert knowledge, and may even be unavailable. Moreover,
if trained on manual labels, the deep learning models learn to imitate human performance and
are therefore prone to human bias. Another problem occurs if already existing structures show
anomalous deformations. In this case, pixel-wise ground truth segmentations are difficult to pro-
vide since, in the worst case, all anatomical structures are deformed, rendering the whole input
image anomalous. Due to all these downsides of fully supervised methods, weakly supervised
anomaly detection approaches are of great interest: They circumvent these issues by using only
image-level labels instead of pixel-level labels during training. Thereby, they have the potential
to highlight visual manifestations of a disease that were previously not in focus.
Apart from the limited availability of ground truth labels discussed above, the limited availability
of data also imposes problems on the application of deep learning algorithms in medicine. Since
large datasets are hard to obtain due to data privacy or differences in the acquisition protocols or
hardware, data from multi-site studies need to be considered to increase the amount of training
data. This can be problematic due to a bias introduced by different acquisition settings. An
illustration of this problem can be found in Figure 1.2. Here, the pixel intensities for MR images
of the brain acquired with two different MR scanners are shown. The images originate from
the ADNI1 and from the Young Adult Human Connectome Project (HCP) [185] dataset and are

Figure 1.2: Distribution of the pixel intensities for MR images of healthy subjects of the ADNI
and HCP dataset for the same MR sequence. The difference between the two datasets originates
from differences in MR scanner hardware and software.

1Data used in preparation of this thesis were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu).
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acquired using the same field strength and the same MR sequence. The difference between the
two datasets, due to variations in the scanner hardware and software, can clearly be seen in the
histogram. This bias disturbs the automated analysis of MR images and needs to be ignored to
improve the generalization quality of deep learning methods.

1.2 Contribution

”Do I have enough data, and do I have enough labels?” – this might be the fundamental question
every machine learning scientist asks first. In this project, we explore various scenarios related
to the amount and type of available data that may occur in real-world applications. We present
different methods with the overall goal of medical anomaly detection. In Figure 1.3, we present
an overview of the different scenarios. All methods correspond to a chapter number of this the-
sis, each presenting a publication.

Figure 1.3: Overview of the different building blocks of this thesis.
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In the first scenario, a large dataset of MR images of brains containing a tumor is available.
Pixel-wise ground truth is provided for training a model to segment the brain tumor. To tackle
the problem of model interpretability, we present a fully supervised segmentation method based
on diffusion models that also provides pixel-wise variance maps. They can be used to measure
the uncertainty of the predicted segmentation mask. This approach is presented in Chapter 5.
Next, if pixel-wise ground truth is not available, we consider anomaly detection with weak su-
pervision. Given two unpaired sets of images, one showing healthy and one showing diseased
subjects, our algorithm should automatically find the visual manifestations that make the dis-
tributions of the two datasets differ. Our method performs unpaired image-to-image translation
between the two datasets. An anomaly map can then be defined by the difference between the
original image of a patient and its translated synthetic healthy representation. In most previous
presented methods, weakly-supervised approaches are only used to detect lesions. In contrast to
that, the focus of the project presented in Chapter 6 is the detection of deformation of existing
structures rather than lesions. We propose a generative adversarial network (GAN) that detects
pleural effusions in lung X-ray images, which can be interpreted as a deformation of the pleural
space. Furthermore, we design a synthetic dataset with pixel-wise ground truth to evaluate the
performance of such anomaly detection methods.
A significant issue of GANs is their instability and cumbersome training. Therefore, another
class of generative models with much more stable training, the denoising diffusion models, can
be taken for image-to-image translation between healthy and diseased subjects. The recon-
structed images are of very high quality and are only changed in regions showing an anomaly,
resulting in very detailed anomaly maps. The straightforward training process is a significant
advantage over GANs. This approach is presented in Chapter 7.
The same method can also be applied to various image-to-image translation tasks. Applying
gradient guidance during diffusion-based image-to-image translation can perform a great vari-
ety of modifications. We focus on the simulation of the aging process on facial photos, brain
tumor growth, and the generation of anomalous data that could be useful for evaluating other
anomaly detection methods. In Chapter 8, we present this flexible framework as an extension of
Chapter 7.
Only a very limited amount of training data is available for many real-world applications. We
focus on a classification task on MR images and observe that using additional datasets from
other MR scanners can be problematic due to the bias introduced by different scanners. The
classification model tends to learn only the dominant scanner-related features rather than class-
specific ones. This leads to a low generalization quality of the model. This problem is tackled
in the paper presented in Chapter 9, where we introduce a method to ignore the scanner-related
features by adding specific constraints on the latent space. Medical images acquired with dif-
ferent scanners are common in long-term or multi-center studies. Our method shows a major
improvement for this scenario that can be integrated into other tasks.
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1.3 Outline

Since this project comprises work on several medical image datasets, we present the different
imaging modalities used to collect the datasets in Chapter 2 and provide medical background
information on the diseases in focus. In Chapter 3, we provide technical details about deep-
learning models. Common applications of deep learning algorithms in medicine are discussed in
Chapter 4. Chapters 5 to 9 present the five publications that constitute this thesis. In Chapter 5 we
present a fully supervised segmentation method based on denoising diffusion models, providing
pixel-wise uncertainty maps for model interpretability. In Chapters 6 and 7, two approaches
for weakly supervised anomaly detection based on GANs and diffusion models are presented.
Chapter 8 builds on Chapter 7 and extends the idea to other image-to-image translation tasks.
Finally, Chapter 9 presents a possible solution to the problem of limited data availability and
proposes a domain adaptation method for MR harmonization across different MR scanners. We
conclude by discussing the results in Chapter 10.
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Chapter 2

Medical Background

As pathological changes vary significantly from disease to disease, different imaging methods
are required to make them visible. Taking advantage of the physical and chemical properties of
the tissues present in the body, the imaging techniques reveal information about the anatomy of
the subject in focus. Section 2.1 gives a short overview of the imaging modalities used within
the scope of this thesis, whereas the diseases in focus are described in Sections 2.2 to 2.4.

2.1 Medical Imaging Methods

Medical imaging is the technique used to view areas inside the human body for diagnostic or
treatment purposes. Nowadays, the most common modalities used in the clinic are X-ray imag-
ing, computed tomography (CT), magnet resonance imaging, ultrasound, positron emission to-
mography (PET), or single-photon emission computerized tomography [188]. In the following,
the relevant imaging methods for this thesis are discussed in detail.

2.1.1 X-Ray Imaging

X-rays are a form of electromagnetic radiation with a wavelength from 10−8 to 10−12m. As
described in [210], they can be generated in an X-ray tube consisting of a cathode and an an-
ode. A current is passed through the tungsten filament of the cathode and heats it up. Electrons
are expelled from the filament through thermionic emission by the high energy applied. The
electrons that are emitted from the cathode are then accelerated with a high voltage and hit the
anode. 99% of the energy is released as heat, and 1% is emitted as two different types of X-rays:
The Bremsstrahlung is generated through the deceleration of the electron and is emitted perpen-
dicularly to the electron beam. On the other hand, when the electron collides with an inner orbit
electron of an atom of the anode, both are ejected from this atom. Then, characteristic X-rays
are produced when electrons change from a higher atomic orbit to a lower one in this atom. They
result in peaks in the X-ray spectrum [104]. The angle of the target defines the field size of the
generated X-ray beam.
For X-ray imaging, the object to be scanned is placed in-between the X-ray tube and an ana-
log or digital image receptor such as a radiographic film or a silicon detector. This receptor

7



8 Chapter 2. Medical Background

detects X-rays that pass through the object [152]. To reduce the radiation exposure, filters and
collimators are placed before the object to restrict the X-ray beam and filter out low-frequency
X-rays, i.e., harden the X-ray beam. To improve image quality, anti-scatter grids for filtering out
scattered photons are placed after the object to prevent image blur. Sensitivity can be improved
by intensifying screens [52].
Two effects dominate X-ray absorption in the object: Firstly, in the photoelectric effect, the en-
ergy is translated into the emission of electrons. Secondly, the Compton scattering is explained
by the X-ray photon colliding with an electron, resulting in a scattered photon with decreased
energy [152]. The absorption of the X-ray beam is proportional to the physical density of the
tissue. The mass attenuation coefficient describes the absorption properties of different tissue
types, determined by the material’s effective atomic number and mass density [104]. Tissues
with a high mass attenuation coefficient cast a shadow on the image receptor. This results in
an image contrast to tissues with a lower mass attenuation coefficient. The resulting image is a
two-dimensional projection of the three-dimensional object.
As different tissue types in the body differ in density and atomic structure, the mass attenuation
coefficients for typical tissues also vary. As the calcium in bones absorbs X-rays the most, bones
look white in the resulting image. Air absorbs X-rays the least, resulting in black areas on the
image, such as the lungs. Different grayscale values in the image represent fat and soft tissue,
however, soft-tissue contrast is limited [76].
In Figure 2.1, we present exemplary images of the MURA dataset [140]. As can be seen, X-ray
images are a helpful tool for detecting bone fractures. Foreign objects such as screws or plates
can also be visualized very well.

Figure 2.1: Exemplary X-Ray images of the MURA dataset, showing a healthy hand, a broken
humerus, and a forearm that needed to be fixated with plates and screws.

X-ray imaging is widely used as it is cheap, non-invasive, helpful in diagnosis and medical
treatment planning, and can guide the medical personnel during surgery. However, exposure to
ionizing radiation increases the risk of developing cancer [86]. Moreover, certain parts of the
anatomy cannot be well displayed. For example, imaging the brain is challenging, as soft tissues
in general produce little contrast, but also as it is surrounded by bone that absorbs the radiation.
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2.1.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a very commonly used imaging technology, taking ad-
vantage of the physical properties of hydrogen atoms in the human body. Hydrogen atoms
themselves have a small magnetic field induced by the spin of the single proton. In the nor-
mal, relaxed state, those spins are randomly oriented. When a strong external magnetic field is
applied, the protons’ spins align with the direction of the external field. Using radiofrequency
(RF) waves close to the so-called Larmor frequency, the magnetic moments of the protons can
be excited. Those RF pulses can flip the magnetization direction. After the pulse, the spins will
slowly realign to the main magnetic field, releasing energy until they are in their original state.
This is denoted as the relaxation process. The longitudinal relaxation is called T1 relaxation,
whereas the transverse relaxation is referred to as T2 relaxation [160]. Different tissue types
have different relaxation times. During the relaxation process, energy is released in form of RF
waves, which can be recorded [87].
An MR scanner is a large tube consisting of four major components: the main magnet formed by
superconducting coils, gradient coils, RF coils, and a computer system [164]. In most devices
for clinical applications, the main magnet has a field strength of 1.5 T or 3.0 T. This supercon-
ducting magnet consists of a series of coils wound on a cylindrical form within a bath of liquid
helium for cooling. The gradient coils are placed inside the bore of an MR scanner [164]. They
produce an additional magnetic field that varies in its strength along its direction and is super-
imposed on the main magnetic field. This allows for spatial encoding of the MR signal. Three
sets of gradient coils are usually used to encode all three spatial dimensions. While the main
magnetic field is kept constant once it is ramped up, the gradients need to be switched on and off
quickly. The innermost ring of an MR scanner consists of the RF coils, which are used to send
RF pulses and receive the signal back from the patient’s body. The magnetic field produced by
RF coils is perpendicular to the main magnetic field.
The MR sequence is defined by the combination of RF pulses and the gradient field, which is
controlled by the computer system. The collected signals are used to calculate pixel-wise in-
tensities using Fourier transformation, resulting in a three-dimensional output image [164]. An
exemplary T1-weighted MR image of the ADNI dataset is presented in Figure 2.2, where slices
of the 3D volume in the three spatial dimensions are shown. All MR scanner components men-
tioned above contribute to the final image. Unlike in CT imaging, only relative signal intensities
are measured. Consequently, differences in the magnetic field strength [114], hardware compo-

Figure 2.2: Sagittal, coronal, and axial view of an MR scan of the head. Due to the good soft-
tissue contrast, the brain can be visualized in detail.
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nents such as the coils [132], or software versions [40] lead to differences in the output images,
making the analysis of the results prone to bias.
Two essential parameters in the acquisition of MR images are the repetition time TR, i.e., the
time between successive RF pulses, and the echo time TE, which denotes the time between the
delivery of the pulse and the measurement of the signal. The inversion time TI denotes the time
between a 180° inversion pulse and the 90° excitation pulse in an inversion recovery pulse se-
quence [27]. Depending on the chosen TR and TE, we can produce different MR sequences.
By choosing TI accordingly, the signal of a specific tissue type can be suppressed. The result-
ing images show different contrasts and can thereby be used to show different characteristics
of the subject in focus. Figure 2.3 shows the three different MR sequences described below
for the same subject of the BRATS2020 challenge [12, 13, 117]. The images are co-registered,
interpolated to a resolution of 1mm3, and the skull is removed.

T1-weighted A T1-weighted image is obtained with a short TR and a short TE [27]. The
spins of the hydrogen nuclei in fat quickly realign and therefore fat appears bright on a T1-
weighted image. The longitudinal magnetization realignment for water is much slower. Thus,
water has a low signal and appears dark. Contrast enhancement can be achieved after bolus
injection of gadolinium-based contrast agents, which shorten the T1 relaxation time [60]. In
[121], a technique for three-dimensional magnetization-prepared rapid gradient-echo imaging
(3D MP-RAGE) is proposed. With this sequence, the image quality and contrast between gray
and white matter are improved compared with the T1-weighted spin-echo sequence [19] and
thus the classification of cortical lesions in MS is improved [125].

T2-weighted A T2-weighted image is acquired using a long repetition time between RF pulses
and a long signal recovery time. Water has a longer T2 relaxation time than fat. Therefore,
compartments filled with water such as the cerebrospinal fluid (CSF) appear bright [23].

FLAIR Using the Fluid Attenuated Inversion Recovery (FLAIR) sequence, the signal from
CSF is suppressed by using a long inversion time (TI). As for the T2-weighted images, TE and
TR are chosen very long. Consequently, water appears dark compared to the T2 contrast, while
abnormalities remain bright [9]. This is helpful for the evaluation of gliomas [183] and MS
lesions [11].

Figure 2.3: Illustration of the T1-weighted, T2-weighted and FLAIR sequences for the same
slice of the same brain.
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2.2 Pleural Effusions

The lungs are covered by a thin two-layered membrane called pleura. The thin space between
the outer and the inner pleura is called the pleural cavity, which is filled with pleural fluid [26].
The vacuumous pleural cavity enables the expansion of the lungs, supports breathing by trans-
mitting chest movements to the lungs, and the pleural fluid allows the layers to glide along each
other during respiration [38]. In a healthy state, the production and resorption of pleural fluid
are at equilibrium. Pleural effusions are defined as excess fluids in the pleural cavity due to
increased production and/or decreased resorption. Transudative pleural effusions, caused by an
imbalance in hydrostatic and oncotic pressure, are mainly caused by heart failure, cirrhosis, or
nephrotic diseases [75]. On the other hand, exudative pleural effusions are fluid accumulations
due to damage of the pleural surfaces or the capillaries. The main causes are pneumonia, cancer,
gastrointestinal diseases, or tuberculosis [101]. Pulmonary embolism can be the cause of both
types of pleural effusions. Symptoms include dyspnea, chest pain, and coughing [102]. Besides
the effects of the underlying disease, pleural effusions may lead to lung damage, pleural thick-
ening due to scarring, and empyema [124]. For diagnosis of pleural effusions, chest radiography
is the most common technique [84], besides CT scans or ultrasound imaging. While effusions of
a minimal volume of 200mL can be seen with the postero-anterior view using X-ray imaging, a
lateral view reveals effusions of volume 50mL or larger [75].
For the treatment of pleural effusion, the underlying cause must be cured. The effusion can be
drained through therapeutic thoracentesis or tube thoracostomy if respiratory problems occur.
The creation of pleural sclerosis performed with sclerosing agents may prevent the recurrence
of pleural effusions [84, 137]. In Figure 2.4, we give exemplary X-ray images of the CheXpert
dataset [72] of a healthy subject and two diseased subjects with a right-sided and a bilateral
pleural effusion, respectively.

Figure 2.4: Lung X-ray images showing a healthy subject, a subject with a right-sided pleural
effusion, and a subject with a bilateral pleural effusion.

2.3 Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system [35], and with
2.8 million people suffering from MS worldwide, it is one of the most common neurological
disorders [92]. Due to inflammatory attacks, the myelin sheath and the underlying axons are
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damaged, leading to brain and spinal cord lesions [90]. Once the inflammation subsides, a
scarring of the myelin insulation is likely. This scar tissue in multiple areas leads to the name
multiple sclerosis [90]. The damage of the myelin insulation leads to disruption of the passing
of the electrical signals along the axons, resulting in a disorder of sensory and motor functions.
Primary symptoms include blurry vision, numbness, tingling, bladder dysfunction, and fatigue.
With the progression of the disease, the effects usually worsen, leading to muscle stiffness,
spasms, breathing problems, speech difficulties, bowel or bladder incontinence, and a higher
risk of depression [36]. While life expectancy is about 6 to 7 years lower compared to the
healthy population [153], quality of life is strongly affected [178].
One can distinguish between four types of MS [109]. The clinically isolated syndrome (CIS)
is a single episode of symptoms due to inflammation and demyelination that lasts longer than
24 hours [119]. If the symptomatic phases recur, this is the relapsing-remitting MS (RRMS),
where a recovery phase follows inflammatory demyelination. RRMS is the most common dis-
ease course [178]. After 8-12 years, most RRMS patients transition to secondary progressive
MS (SPMS) with continuous neurological decline. A less common type is the primary progres-
sive MS, where the disease worsens progressively without any remission phases [178].
Up to date, the causes of MS incidence are still unknown. However, a combination of hereditary
and environmental factors increases the prevalence [96]. Viral infections, microbial infections,
stress, lack of vitamin D, obesity, or smoking are known to increase the incidence of MS [129].
Two out of three patients are female, and young adults are disproportionally affected by MS, as
the global average age of MS diagnosis is only 32 [92]. There is also a strong geographical gra-
dient, showing that MS is more common in countries further away from the equator [92]. While
MS is not inherited, there are genetic risk factors leading to an increased incidence in relatives
of MS patients [129].
The diagnosis of MS can be challenging, and other diseases need to be ruled out. Tests include
neurological examinations, MR scans showing local demyelination, lumbar puncture, evoked
potential tests, or blood tests [21]. While there is no cure for MS, treatment can include disease-
modifying therapies to reduce the number of relapses, steroids or plasma exchange during MS
attacks, or symptom control through physiotherapy or medications [83]. The criteria for an MS
diagnosis usually follow the McDonalds criteria, extensively using MRI evidence to check the
occurrence of lesions at different times in different parts of the central nervous system [177].

Figure 2.5: FLAIR and MP-RAGE images of an MS patient from the LMSLS challenge. On the
right, the manually segmented lesion mask is presented, showing that the lesions are scattered
over the brain.
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In Figure 2.5, brain MR images of an exemplary MS patient of the Longitudinal Multiple-
Sclerosis Lesion Segmentation (LMSLS) challenge [24] are presented. The MP-RAGE and
FLAIR sequences are shown, as well as the manually segmented lesion mask.

2.4 Glioma

A glioma is the most common type of primary tumor occurring in the brain and the spinal cord
and originates from glial cells. Research has shown that complex genetic, chromosomal, and
epigenetic changes cause this outbreak of cancer [120]. Glioma types include astrocytomas,
ependymoma, and oligodendrogliomas. Grade IV tumors, according to the World Health Or-
ganization’s (WHO) classification system, are called glioblastomas [192]. They account for
60–70% of all gliomas [78], with a 5-year survival rate of only 6% [180].
In 2016, the WHO proposed a new classification scheme for tumors of the central nervous sys-
tem, taking molecular alterations and histology into account [106]. This approach improved the
homogeneity of the clinical outcomes of the different subgroups of gliomas and reduced mis-
classification.
Tumor incidence depends on risk factors such as ethnicity, age, sex, geographic location, expo-
sure to radiation, and genetic factors. The survival rate varies with the tumor subtype, age, and
sex [120]. Depending on the size and location of the tumor, common symptoms include nausea,
balance difficulties, seizures, vision problems, confusion, memory loss, and personality changes
[70]. For glioma diagnosis, neurological tests and imaging methods such as PET, CT, and MR
imaging can be used to identify the affected brain regions and tumor size. The exact tumor type
can be defined by histology with a tissue biopsy [192].
Glioma treatment options include tumor resection, radiation therapy, chemotherapy, and experi-
mental clinical trials. However, there is a significant impact on the quality of life [191].
Figure 2.6 shows a brain MR image of the BRATS2020 challenge where the skull was removed.
Four different MR sequences visualize different tumor characteristics present in the brain. A
manual pixel-wise labelmask of the tumor is provided in the last image.

Figure 2.6: All four MR sequences and the tumor segmentation mask of an exemplary subject
of the BRATS2020 dataset.
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Chapter 3

Deep Learning

Artificial Intelligence (AI) is a very broadly used term nowadays, with various definitions. A
century before the first computer was invented, Ada Lovelace wrote that Charles Babbage’s
Analytical Engine ”might act upon other things besides numbers [. . . ] the Engine might compose
elaborate and scientific pieces of music of any degree of complexity or extent” [107]. In 1950,
Alan Turing asked himself whether machines can think [179]. Later on, AI was defined as the
”study of the computations that make it possible to perceive, reason and act” [193], or as ”the
science and engineering of making intelligent machines” [115].
Machine Learning is a subfield of AI that focuses on data-driven learning. Machine learning
models automatically extract patterns from raw data during a training process. A classic example
of such a model is the perceptron proposed by Rosenblatt [148, 149]. It is a basic neural network
with learnable parameters that can be used to solve linear classification tasks.
Deep Learning is a subfield of machine learning that experienced a wave of success after 2010.
With increasing computational power and the widespread availability of graphics processing
units (GPUs), the practical employment of ideas and theories of the middle of the 20th century
[116, 149] could finally be realized. Initially inspired by the function of a human brain, deep

Figure 3.1: A deep learning architecture with a sequence of hidden layers. Each layer fi repre-
sents a function defined by a set of learnable parameters θi.

15
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learning methods are based on neural networks, where multiple layers are stacked to a deep
architecture. Based on a sequence of perceptrons, the multilayer perceptron (MLP) was the first
approach with a deep architecture. This allows the MLP to approximate non-linear functions.
In Figure 3.1, a basic example of such a deep architecture is presented. Each layer represents a
function fi that is defined over its learnable weights or parameters θi. The network Fθ consists
of a sequence of layers {fi}ni=1 with parameters θ = {θi}ni=1, such that the output of one layer
serves as input for the next layer. The input can have various formats such as images, text, audio
signals, or even videos. With the series of hidden layers, the model can extract complex features
of the input data and combine them to the desired output. In general, the goal is to find an
optimal parameter configuration θ∗ such that the neural network Fθ approximates an unknown
function G. Both functions Fθ and G map the input space X to the output space Y:

Fθ : X −→ Y, G : X −→ Y (3.1)

For a given input x, the output is defined by

y = Fθ(x) = fn(fn−1(...(f2(f1(x)))...). (3.2)

The goal is to adapt the learnable parameters θ such that y matches a ground truth label
ỹ = G(x) ∈ Y for any input x ∈ X .

3.1 Training Procedure

The training of a deep neural network Fθ is defined by the iterative optimization process pre-
sented in Figure 3.2. Given some training data point x, the learnable weights θ must be updated
such that y = Fθ(x) matches ỹ = G(x). Therefore, a loss function L is defined for comparison
of y and ỹ, dependent on the task. Following the idea of gradient descent, the parameters θ are
optimized using the gradient ∇θL(y, ỹ).

Figure 3.2: Illustration of the training process of a neural network Fθ. The goal is to find the
optimal parameter configuration θ∗ that minimizes the loss objective L.



3.1. Training Procedure 17

3.1.1 Loss functions

As shown in Figure 3.2, the loss function L evaluates how well the model Fθ matches the target
function G by commonly providing a scalar value. The model parameters are optimized to
minimize this loss term. Therefore, the loss functions are specifically designed to best support
the learning of the task. We present four examples that are widely used.

Mean Absolute Error The mean absolute error (MAE) is defined by the absolute distances
between the output y = Fθ(x) and the target label ỹ = G(x). P denotes the dimension of ỹ
and y: For regression tasks such as age prediction, y and ỹ are scalar values, such that P = 1.
For image reconstruction tasks, this loss is applied pixel-wise, and P is the number of pixels in
y and ỹ.

LMAE(y, ỹ) =
1

P

P∑
j=1

|yj − ỹj | . (3.3)

Mean Squared Error The mean squared error (MSE) is defined similarly to the MAE, but the
squared distance between y and ỹ is taken into account. This ensures that output values far from
the target contribute more to the loss function.

LMSE(y, ỹ) =
1

P

P∑
j=1

(
yj − ỹj

)2
. (3.4)

Cross-entropy Loss For a classification task between C classes, a classification network pre-
dicts scores yk for all classes k ∈ {1, ..., C}. To compute an output probability value between 0
and 1 for each class, the output of the model is passed through a softmax function, such that the
sum of all probabilities

∑C
k=1 pk,j = 1 at each entry j ∈ {1, ..., P}:

pc,j =
exp(yc,j)∑C
k=1 exp(yk,j)

, for c ∈ {1, ..., C}, j ∈ {1, ..., P}. (3.5)

The cross-entropy loss is then defined as

LCE(p1, ..., pC , ỹ) = −
P∑

j=1

C∑
k=1

1k=ỹj log pk,j . (3.6)

Dice Loss As an alternative to the cross-entropy loss (3.6), the Dice loss can be defined to
maximize the soft Dice coefficient. This loss is a widespread objective for semantic image
segmentation, where the predicted label p and the ground truth label ỹ have image dimension
with a number of pixels P :

LDice(p1, ..., pC , ỹ) = 1− 1

C

C∑
k=1

2 ∗
∑P

j=1 pk,j ỹk,j∑P
j=1 p

2
k,j +

∑P
j=1 ỹ

2
k,j

. (3.7)
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3.1.2 Parameter Optimization

Given a training dataset T = {x1, ...., xn}, the optimization problem is given by

θ∗ = argmin
θ

n∑
i=1

L(Fθ(xi), G(xi)). (3.8)

The overall goal is to find the optimal parameter configuration θ∗ such that the output of the
neural network Fθ(x) matches an unknown target function G(x).
This minimization problem is tackled with gradient-based learning. Gradient descent, also
known as steepest descent, is a first-order iterative optimization algorithm for finding a local
minimum of a differentiable function. In the best case, the function to be optimized is convex,
guaranteeing convergence to the global minimum. In the iterative optimization process, the new
parameter configuration θt+1 is computed given the current state θt:

θt+1 = θt − γ∇θL, (3.9)

where the gradient ∇θL is the partial derivative

∇θL =
( ∂L
∂θ1

,
∂L
∂θ2

, ...,
∂L
∂θq

)
for all learnable model parameters θ = {θ1, ..., θq}. (3.10)

The so-called learning rate is denoted by γ, which is the step size in the direction of the steep-
est descent. As the neural network Fθ consists of many interconnected layers and activation
functions, the backpropagation algorithm [151], based on the chain rule, is applied to efficiently
compute the gradient with respect to all parameters θ of the network.
Taking the whole training dataset into account for gradient descent, using (3.9) leads to a high
computational cost. To circumvent this issue, the gradient is estimated using only a small set
of samples, i.e., a mini-batch Bt = {x1, ..., xm} of size m randomly sampled from the training
set for every optimization step t [54]. Stochastic gradient descent is defined by applying (3.9),
where the loss L is computed only taking the mini-batch Bt into account.
Building on stochastic gradient descent [146], many optimization methods have been proposed,
among which the Adam optimizer [93] or Root Mean Squared Propagation (RMSprop) [62] are
popular.

3.1.3 Supervision Schemes

Depending on the type of ground truth information that is provided during training, one can
distinguish between unsupervised, weakly-supervised, semi-supervised, fully-supervised and
self-supervised learning. In unsupervised learning, no labels ỹ are given, and the learning can be
performed based on clustering or dimension reduction methods [143]. The other extreme is full
supervision, where the manual ground truth is given in full detail for all inputs. In medical appli-
cations, this could, for example, be the hand-segmented pixel-wise ground truth label of a tumor
for an MR image. However, those labels require expert knowledge and are time-consuming to
obtain. Moreover, there is variability between human raters, which injects a bias into the labels.
A model trained with full supervision learns to imitate human performance. To circumvent these
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issues, weakly supervised methods only require labels containing less information. In the medi-
cal field, this could be image-level labels indicating whether the subject in focus suffers from a
specific disease or not.
Semi-supervised learning is a mixture of supervised and unsupervised methods, where the labels
are only provided for a part of the training set [37, 150]. This opens the possibility of enlarging
the dataset with unannotated data.
Self-supervised learning can be seen as an autonomous form of supervised learning, where the
labels are auto-generated rather than human-made. A generalizable representation is learned
from unlabelled data by solving a supervised proxy task, which is often unrelated to the target
task [2, 64].

3.2 Components of Neural Networks

Building on the initial idea of the MLPs, modern deep neural networks are composed of dif-
ferent functions in each layer, optimized for memory consumption, gradient flow, and stabilized
training. A standard building block consists of a convolutional or fully connected layer, followed
by a normalization layer and an activation function. We present the different components in the
following subsections.

3.2.1 Convolutional Layers

For image processing, the multilayer perceptron has its downsides. All model parameters are
interconnected, which leads to a very high computational cost. To decrease the number of pa-
rameters, [97] proposed convolutional neural networks (CNNs). This approach is inspired by
the idea that nearby pixels are correlated and describe a local feature. A combination of such
local features can describe an object. The hidden layers no longer connect all parameters with
each other, but a window is defined that only takes a subspace of the input into account. This
window is called the kernel.
By sliding the kernel over the whole input, all input information is considered. An overview
of the sliding window approach of the kernel is given in Figure 3.3. The kernel framed in red
consists of learnable weights wi,j . This kernel is slided over the input image I with a given
stride s. A convolution defines the kernel operation. For a two-dimensional input image I with
kernel K and stride s, the convolution is given by

S(i, j, s) = (I ∗K)(i, j) =
∑
m

∑
n

I(is−m, js− n)K(m,n). (3.11)

The output of the layer is given by S, of which the stride and the kernel dimension define the
dimension. S is the so-called feature map and serves as input for the next layer of the neural net-
work. Image dimensions are preserved if s = 1. Other choices of s ∈ N lead to downsampling
of the image dimensions. 1D or 3D convolutions follow the same principle.
Since the parameters of the kernel are shared for all locations of the input image, similar features
that appear in different parts of the input are extracted. By repeating this process over multiple
layers, the model can extract complex features by locally combining the features of the previous
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Figure 3.3: Illustration of the convolution kernel, which is slided over the input image I . In this
example, the stride s is 2, and the kernel is of dimension 3× 3.

layer. With this setup, three key concepts help optimize the machine learning model: sparse con-
nectivity due to a relatively small number of weights in the kernels, equivariant representations
with respect to translation, and parameter sharing [54]. By learning the weights of the kernel, a
CNN learns an internal representation of an automatically selected input feature.
For each convolutional layer, there is a number of input channels a, and a number of output
channels b. In Figure 3.4, the procedure for multiple input channels ci for i ∈ {1, ..., a} and
multiple output channels Sj for j ∈ {1, ..., b} is presented. The number of kernels in this layer
is defined by b, and each kernel Kj has a channels {Kj,i}ai=1. The convolution (3.11) is com-
puted between Ki,j and ci for all i ∈ {1, ..., a}. The results are summed up over i ∈ {1, ..., a}
to compute the output feature map Sj .

3.2.2 Fully Connected Layers

In fully connected layers, all entries of one layer are connected to all entries of the next layer. For
an input vector x ∈ Rn and an output vector y ∈ Rm, all entries of x and y are interconnected
with

yk =

n−1∑
i=1

wi,kxi + w0,k, for k ∈ {1, ...,m}, (3.12)

where the weight matrix W ∈ Rm×n consist of learnable weights wi,k. Since interconnecting
all entries of x and y with learnable weights requires a high computation power, usually fully
connected layers are combined with convolutional layers in modern neural networks for image
processing.
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Figure 3.4: Illustration of the convolutional layer. In this example, the number of input channels
a equals 3, whereas the number of kernels and therefore the number of output channels b equals
2.

3.2.3 Normalization Layers

The output of the convolutional or fully connected layer is passed to a normalization layer. A
typical example is batch normalization. This normalization reduces the internal covariate shift
and speeds up the training process [71]. It also has a regularizing effect, resulting in a better
generalization quality of the model. When a batch B = {x1, ..., xm} of size m of images is
passed through the model, the resulting output values are denoted as Fθ(B) = {y1, ...ym}.
Then, the batch normalization layer computes

BN(yi) = γ
yi − µB

σB
+ β ∀ i ∈ {1, ...,m}, (3.13)

where µB = 1
m

m∑
i=1

yi, σ2
B = 1

m

m∑
i=1

(yi−µB)
2, and γ and β are parameters learned by the model.

However, especially when dealing with 3D data and limited computation power, only small
batch sizes are possible. Therefore, other normalization strategies such as instance [182], layer
[10], or group normalization [200] are also regularly used. In Figure 3.5, an overview of those
four common normalization layers is visualized. The color indicates over which dimension
the layer is normalized to a zero mean and unit variance by applying (3.13) over the colored
values. For specific applications such as style transfer, adaptive instance normalization [69] can
be implemented to support the training.

3.2.4 Activation Functions

Since the functionality of the human brain inspired the first deep neural networks, the initial
idea was to simulate the action potential firing in a neuron [141]. Therefore, the Heaviside
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Figure 3.5: Illustration of four common normalization layers. The orange color indicates the
dimensions over which the normalization function is applied.

function, a binary step function, was already used by the initial formulation of the perceptron
[148]. If no activation function is applied, each layer will represent a linear function. This would
hinder the mapping of more complex relations. Therefore, non-linear functions are inserted after
the normalization layers, the so-called activation functions. To circumvent the problems of the
zero gradient and non-differentiability in zero, other activation functions were defined [165]. In
Figure 3.6, besides the Heaviside function, we plot some frequently used non-linear activation
functions: the sigmoid, the hyperbolic tangent (Tanh), the rectified linear unit (ReLU), the leaky
ReLU, and the softplus functions.
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Figure 3.6: Illustration of common activation functions.
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3.2.5 Dropout Layers

When a model is trained on a relatively small dataset, it tends to overfit on this training data,
resulting in a poor generalization quality on unseen test data. Dropout was introduced for reg-
ularization of the model to prevent this overfitting [175]. During training, random parameters
of the model are ignored, which approximates training a large number of neural networks with
different architectures in parallel. While dropout is commonly included after fully connected
layers, there is also work that proposes to apply them after convolutional layers [133]. As an
alternative to masking random model parameters, dropout can also be applied to the channels of
the feature maps [22].

3.2.6 Downsampling and Upsampling Layers

In many convolutional architectures for image processing, the dimensions of the feature maps
S are changed between subsequent layers. An overview of such an architecture is presented in
Figure 3.7.

Figure 3.7: Illustration of a typical network architecture for classification, regression, segmen-
tation or reconstruction tasks. Each convolutional or linear block consists of a convolutional or
fully connected layer respectively, followed by a normalization layer and an activation function.

First, the image dimensions are reduced to extract lower-level features. At the same time, the
number of channels is increased to ensure that the model has enough learnable parameters to
extract the features of interest. This architecture is called an encoder. Downsampling can be
achieved with strided convolutions of stride larger than 1, such that the output image dimensions
are smaller than the input image dimensions. Another option is placing pooling layers after
the convolutional layers. Popular pooling functions are average or maximum pooling, where
multiple input values are summarized to one output value. The output of the encoder is the low-
dimensional latent space or feature space.
For classification or scalar regression tasks, the latent space is passed through a sequence of
linear layers, until a scalar prediction is reached. This is illustrated in the upper branch of
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Figure 3.7. For segmentation, reconstruction, or image-to-image translation tasks, the encoder
is completed with a decoder such that the output image and the input image are of the same size.
This is shown in the lower branch of Figure 3.7. The decoder consists of convolutional blocks,
followed by upsampling layers. For upsampling, nearest neighbor upsampling or transposed
convolutions are regularly used [46, 105].

3.3 Generative Models

The term generative models refers to neural networks that learn to generate new data instances.
By learning the data distribution of an original dataset O, the models learn to imitate this dis-
tribution and generate samples that plausibly could be part of the original dataset O. Deep
generative modelling can be divided into variational autoencoders (VAEs), autoregressive mod-
els, normalizing flows, energy-based models and generative adversarial nets (GANs) [18].
A VAE [94] is an autoencoder whose latent space distribution is regularised during the training,
allowing us to generate new data by sampling from the latent space. A downside of VAEs are
the blurry output images due to the training with an MSE loss. Autoregressive models such
as PixelRNN [186] or DRAW [56] implicitly define a distribution over a sequence, whereby in
each step the next sequence value is predicted given the past values. This can be used for image
generation by predicting one pixel value after another. Normalizing flows [145] aim to map
a simple distribution to a complex one. This mapping uses invertible functions, resulting in a
deterministic transformation. However, they come at a high computational cost. Energy-based
models [98] represent probability distributions over data by assigning an unnormalized proba-
bility scalar to each input data point. Denoising diffusion models [63, 172] are a subclass of
energy-based models, described in detail in Section 3.3.2. GANs are presented in Section 3.3.1.

3.3.1 Generative Adversarial Networks

GANs [55] are based on a game-theory approach and have shown an impressive performance
in image generation [20, 85]. Two separate networks, i.e., the generator Gθ with parameters
θ and the discriminator Dϕ with parameters ϕ, play an adversarial game. The goal of Gθ is
to generate fake images that could plausibly originate from the original dataset O, whereas the
goal of Dϕ is to distinguish between fake images and real images. In the initial formulation, a
generator network consists of a decoder, which generates a fake image out of a random vector
z ∼ N (0, I). The generator aims to match the distribution of generated images pG with the
distribution pO of the original dataset O, such that the discriminator cannot decide whether a
given image is real or fake. The goal is to find the optimal parameter configuration θ∗, ϕ∗ to
optimize the GAN objective v(Gθ, Dϕ), given by

v(Dϕ, Gθ) = Ex∼pO [logDϕ(x)] + Ez∼N (0,I)[log(1−Dϕ(Gθ(z)))]. (3.14)

The generator and discriminator are trained iteratively. The generator Gθ aims to minimize the
objective function (3.14), while Dϕ aims to maximize it. The payoff in this zero-sum game
for each player is defined as ±v(Gθ, Dϕ), where the generator gets the positive payoff and the
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discriminator a negative one. During parameter optimization, we use stochastic gradient descent
to update the parameters θ of the generator:

∇θV (Gθ, Dϕ) = ∇θ [log (1−Dϕ(Gθ(z)))] , for z ∼ N (0, I). (3.15)

As the discriminator gets a negative payoff −v(Gθ, Dϕ), we use gradient ascent to its parameters
ϕ of the discriminator:

∇ϕV (Gθ, Dϕ) = ∇ϕ [logDϕ(x) + log(1−Dϕ(Gθ(z)))] , for z ∼ N (0, I), x ∈ O. (3.16)

Ideally, the generator and discriminator converge the Nash equilibrium, i.e., to a stable solution
where the players cannot improve their loss objective anymore. This corresponds to a minimiza-
tion of the Jensen-Shannon divergence between pG and pO [55]. The optimum is reached when
pG gets very close to pO, and the optimal value for the discriminator reaches 0.5, meaning that
the discriminator cannot distinguish between fake and real images any longer.
A major challenge of GANs is the training process due to the adversarial training, where con-
vergence cannot be guaranteed [156]. Moreover, it was shown that GANs do not always have
a Nash equilibrium [50]. The training was improved in DCGAN [139]. Implemented changes
include replacing fully connected layers with convolutional layers, implementing upsampling
convolutions, changing the activation functions, and adding batch normalization to the gener-
ator and the discriminator. Mode collapse, non-convergence, and gradient instability remain
significant issues despite those improvements.
Wasserstein GANs [7] propose a new loss objective whose mathematical properties improve
the gradient stability and prevent a mode collapse. The Wasserstein or Earth Mover’s distance
between pO and pG is defined by

W (pO, pG) = inf
γ∼Π(pO,pG)

E(x,y)∼γ [∥x− y∥], (3.17)

where Π(pO, pG) is the set of all possible joint probability distributions between pO and pG.
Using the Kantorovich-Rubinstein duality, the new loss objective aims to minimize a reasonable
and efficient approximation W̃ of the Earth-Mover Distance W :

W̃ (pO, pG) = sup
∥Dϕ∥L≤1

Ex∼pO [Dϕ(x)]− Ex∼pG [Dϕ(x)], (3.18)

meaning that the discriminator Dϕ must be 1-Lipschitz continuous. Using these improvements,
the GAN objective (3.14) changes to

min
G

max
∥Dϕ∥L≤1

Ex∼pO [Dϕ(x)]− Ez∼N (0,I)[Dϕ(Gθ(z))]. (3.19)

The loss functions for the discriminator LD and for the generator LG are given by

LD = W (pO, pG) = sup
∥Dϕ∥L≤1

(
−Ex∼pO [Dϕ(x)] + Ez∼N (0,I)[Dϕ(Gθ(z))]

)
, (3.20)

LG = −Ez∼N (0,I)[Dϕ(Gθ(z))]. (3.21)
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To ensure that the discriminator lies within the space of 1-Lipschitz functions, [58] proposes a
gradient penalty loss, changing the loss objective for the discriminator to

LD = Ez∼N (0,I)[Dϕ(Gθ(z))]− Ex∼pO [Dϕ(x)] + Ex̂∼px̂ [(∥▽x̂Dϕ(x̂)∥2 − 1)2], (3.22)

where the distribution px̂ is sampled uniformly along straight lines between pairs of points sam-
pled from pO and pG.
As proposed in Pix2Pix [74], GANs can also be used for image-to-image translation. This idea
was adapted in various methods such as StarGAN [33] or CycleGAN [208]. The architecture of
the generator is changed to a U-Net, such that an input image x ∈ Rh×w is mapped to a fake im-
age G(x) ∈ Rh×w, where h and w denote the image dimensions. The discriminator is changed
to a patch-discriminator, such that only image patches are considered for the classification into
real or fake.

3.3.2 Denoising Diffusion Models

While first presented in [172], diffusion models had a huge success in 2021, when it could be
shown that they are able to beat GANs on image synthesis [42]. Denoising diffusion probabilistic
models (DDPMs) [63] are based on a parameterized Markov chain. During the diffusion process,
for many time steps T , noise is added to an image x until the signal is destroyed. This results in
a series of noisy images {x0, x1, ..., xT }, where the noise level is steadily increased from 0 (no
noise) to T (maximum noise). For image generation, we start from noise xT ∼ N (0, I), and
remove small amounts of noise in all time steps t ∈ {T, ..., 1}, until we get a fake image x0. By
taking small amounts of Gaussian noise as diffusion, the forward noising process q for a given
image x ∈ O is defined by the Markov chain

q(x1:T |x0) :=
T∏
t=1

q(xt|xt−1), with q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (3.23)

with forward process variances β1, . . . , βT , and the identity matrix I. We further define
αt := 1− βt and αt :=

∏t
s=1 αs. With the reparametrization trick, we can directly write xt

as a function of x0:
xt =

√
αtx0 +

√
1− αtϵ, with ϵ ∼ N (0, I). (3.24)

The reverse process is defined by the joint distribution pθ(x0:T ). The starting point is random
Gaussian noise p(xT ) = N (xT ; 0, I). Each step of the reverse process is given by a learned
Gaussian transition

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), with pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)),

(3.25)
where the mean µθ(xt, t) and the variance Σθ(xt, t) of pθ are predicted by the diffusion model.
The diffusion model is trained to find the reverse process pθ that minimizes the variational
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upper bound on the negative log likelihood:

− log pθ(x0) ≤ Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
=: Lvlb (3.26)

As derived in [172], (3.26) can be written in terms of the Kullback-Leibler divergence DKL,
meaning that we aim to match pθ(xt−1|xt) and q(xt−1|xt, x0) ∀t:

Lvlb = Eq[DKL
(
q(xT |x0) ∥ pθ(xT )

)︸ ︷︷ ︸
LT

+

T∑
t=2

DKL
(
q(xt−1|xt, x0) ∥ pθ(xt−1|xt)

)︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

].

(3.27)
LT is constant and can therefore be ignored during the training. L0 is approximated with an
independent discrete decoder derived from N (x0;µθ(x1, 1),Σθ(x1, 1)), as proposed in [63].
The variance Σθ can be fixed to Σθ(xt, t) = σ2

t I , for σ2
t = βt or σ2

t = β̃t = 1−ᾱt−1

1−ᾱt
βt, as

proposed in [63]. Alternatively, the diffusion model can be trained to predict the interpolation
vector v between βt and β̃t:

Σθ(xt, t) = exp(v log βt + (1− v) log β̃t). (3.28)

By defining µ̃t(xt, x0) :=
√
ᾱt−1βt

1−ᾱt
x0 +

√
ᾱt(1−ᾱt−1)

1−ᾱt
xt and exploiting the fact that we compare

two Gaussian distributions, the loss objective is given by the MSE loss

Lt−1 = Ex0,ϵ∼N (0,I)

[ 1

2σ2
t

∥µ̃t(xt, x0)− µθ(xt, t)∥2
]
+ C. (3.29)

By reparametrizing

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)
)

(3.30)

for a more stable training, the loss function simplifies to

Lt−1 = Ex0,ϵ∼N (0,I)

[
β2
t

2σ2
tαt(1− ᾱt)

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2], for t ∈ {2, .., T}.

(3.31)
The model follows the architecture of a U-Net with self-attention layers and predicts ϵθ(xt, t)
from xt for any step t ∈ {1, ..., T}. Information about the time step t is added at every block of
the U-Net through a learned embedding. During training, a random time step t is chosen, and
the model is updated with the loss objective (3.31).

Sampling Process

During sampling, the goal is to generate a synthetic image out of random noise. This synthetic
image should follow the training data distribution. Given xt and the output of the U-Net model
ϵθ(xt, t), we can compute the slightly denoised image xt−1 using

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
+
√
1− ᾱt−1 − σ2

t ϵθ(xt, t) + σtϵ, (3.32)
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where ϵ ∼ N (0, I). During sampling, we start from noise xT ∼ N (0, I), apply (3.32) for
t ∈ {T, ..., 1}, until we get a fake image x0. In Figure 3.8, such a denoising process is presented
for a diffusion model trained on the CheXpert dataset [72] of X-ray images of the lungs. This
generation process can be conditioned on an input image [32, 154] or on a class label [127]. The
advantage of denoising diffusion models is the straightforward training process: Only a U-Net
needs to be trained with an MSE loss. This is much more stable than the adversarial training of
GANs. A drawback are the long sampling times, since we iteratively need to go through T time
steps to generate one image.

Figure 3.8: Denoising process for the generation of a synthetic image x0 out of Gaussian noise.

In (3.32) the choice of σt defines the type of the generative process [173]. By choosing σt
accordingly, we can distinguish between the stochastic sampling process described in the DDPM
approach, and the deterministic sampling process proposed in the denoising diffusion implicit
model (DDIM) formulation [173]. The two approaches are described below.

DDPM Sampling Scheme If we choose σt =
√
(1− ᾱt−1)/(1− ᾱt)

√
1− ᾱt/ᾱt−1, we can

rewrite(3.32) as

xt−1 =
1

√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t)

)
+ σtϵ, with ϵ ∼ N (0, I). (3.33)

We can see in (3.33) that the sampling has a random component ϵ, which leads to a stochastic
sampling process. Consequently, by starting from the same initial xT twice and going through
(3.33) for t ∈ {T, ..., 1}, we get different output images x0.

DDIM Sampling Scheme In DDIMs, however, we set σt = 0 in (3.32) , which results in a de-
terministic sampling process. The loss objective (3.31) for training is still valid. The connection
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to ordinary differential equations (ODEs) can be seen when we rewrite (3.32) as

xt−1√
ᾱt−1

=
xt√
ᾱt

+

(√
1− ᾱt−1

ᾱt−1
−
√

1− ᾱt

ᾱt

)
ϵθ(xt, t). (3.34)

This can be interpreted as the Euler approximation of an ODE. Given infinitely small steps t, the
reversed ODE can then be solved with

xt+1√
ᾱt+1

=
xt√
ᾱt

+

(√
1− ᾱt+1

ᾱt+1
−
√

1− ᾱt

ᾱt

)
ϵθ(xt, t). (3.35)

The encoding scheme presented in (3.35) enables us to go back and forth in the noising and
denoising process without losing information. Starting from an original image x = x0 and
applying (3.35) for t ∈ {0, ..., T − 1}, we can obtain encodings xT of x. In the second step,
applying (3.34) on xT for t ∈ {T, ..., 1} results in the original image x. This combination of
encoding and decoding can be used for image interpolation [173]. Furthermore, by applying
changes to the training process, DDIMs were adapted image-to-image translation tasks using
this iterative deterministic noising and denoising process [103, 136].

Classifier guidance Classifier guidance is introduced in [42]. Let pΦ(y|xt, t) be a classifica-
tion model trained on the set of noisy images {x0, ..., xT }. Then, the gradient of the classifier
∇xt log pϕ(y|xt, t) is used to guide the sampling process towards a desired class label y. In case
of the DDPM sampling scheme, xt−1 is retrieved by sampling

xt−1 ∼ N (µθ(xt, t) + sΣθ(xt, t)∇xt log pϕ(y|xt),Σθ(xt, t)), (3.36)

where the gradient ∇xt log pϕ(y|xt, t) is amplified with a constant gradient scale s. In the case
of the DDIM sampling scheme, we apply the score-based conditioning trick proposed in [174],
and compute an updated epsilon prediction ϵ̂:

ϵ̂(xt) := ϵθ(xt)− s
√
1− ᾱt∇xt log pϕ(y|xt), (3.37)

resulting in an updated sampling scheme

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵ̂(xt)√
ᾱt

)
+
√
1− ᾱt−1ϵ̂(xt). (3.38)

An overview for this sampling process using classifier guidance is illustrated in Figure 3.9.
Starting from random noise xT ∼ N (0, I), for every time step t ∈ {T, ..., 1}, xt is passed
through the two separate networks of the diffusion model and the classification model. By
applying (3.36) or (3.38) to predict xt−1, the image generation is guided towards a desired
class y.
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Figure 3.9: Workflow of classifier guidance during the sampling process. In every time step t,
the gradient of the classification network is combined with the output of the diffusion model to
predict xt−1.



Chapter 4

Deep Learning in Medical Image
Analysis

Medical images are an essential part of the clinical diagnostic pipeline. With the increasing
number of images, automatic processing of the images is essential in order not to slow down this
pipeline. Different automatic image analysis applications are used to support physicians. Image
segmentation allows the highlighting of anatomical structures to support their fast identification.
Anomaly detection does not highlight specific anatomical structures but parts of the image that
differ from the norm. The generated anomaly maps support the detection of pathologies that
might not be in focus in the first place. With the increasing number of different imaging modal-
ities, domain adaption has become a fundamental tool for developing novel analysis methods
across different acquisition settings.

4.1 Segmentation

Image segmentation is the task of subdividing an input image into regions such that similar parts
of the image are grouped in the same segment. This results in a pixel-wise segmentation mask.
Let I be an image with pixel space Ω = {xi,j}m,n

i,j=1, where I maps every coordinate in Ω to a
pixel value in R:

I : Ω → R. (4.1)

Given an image region R ⊆ Ω, a boolean function b(R, I) checks whether the image region
I(R) fulfills some desired segmentation property. The segmentation is then defined by a parti-
tion Ω = ∪k

i=1Ωi, such that

Ωi ∩ Ωj = ∅ for i ̸= j, (4.2)

b(Ωi, I) = True ∀ i ∈ {1, ..., k}, (4.3)

b(Ωi ∪ Ωj , I) = False if i ̸= j. (4.4)

This task has been applied on a wide range of medical applications for segmenting anatomical
structures or lesions [112]. An example is provided in Figure 4.1, where an MR image of the
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BRATS2020 dataset is composed of the background segment, the tumor segment, and the seg-
ment showing healthy brain tissue.

Figure 4.1: Exemplary segmentation mask of a brain MR image. The three segments include
the background pixels, the areas showing healthy brain tissue, as well as the pixels belonging to
the tumor.

The task of segmentation can be described as a pixel-wise classification. Traditional methods in-
clude histogram-based methods [138], thresholding [95], clustering [34], region growing [131],
edge detection [157], mathematical morphology [29], atlas-based [80], or graph partitioning
methods [47]. Using deep learning, U-Net architectures [147] have shown an outstanding per-
formance in generating the pixel-wise segmentation mask out of an input image [73]. A U-Net
consists of an encoder and a decoder that are interconnected with skip connections at various
levels. A visualization of such an architecture is given in Figure 4.2. In addition to the low-

Figure 4.2: U-Net architecture for a segmentation task of a brain MR image. Since there are three
classes to segment (background, tumor, and healthy tissue), the output of the model consists of
three channels for one-hot encoding of the all classes.
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dimensional features extracted by the downsampling process, skip connections add high-level
information to the decoder by skipping the low-level feature extraction blocks. In this way, accu-
rate shapes can be reconstructed. The model has multiple output channels for one-hot encoding
of the different class labels [142].
State-of-the-art is given by nnU-Net [73], where the model automatically configures itself. This
self-configuring optimization for any new task includes preprocessing, network architecture,
training, and post-processing. Other segmentation methods use multi-dimensional gated recur-
rent units [6, 65], which are based on bi-directional recurrent neural networks. Thereby, all
spatial dimensions are treated as the temporal sequence, and the segmentation prediction for one
voxel is made based on the predictions of the previous voxels. Using a region-based segmenta-
tion approach, mask R-CNN [61] is a widely used approach also in the medical field [4, 166].
DeepLab [30] proposes an encoder-decoder architecture based on dilated convolutions and fully
connected conditional random fields. This approach was applied to medical tasks such as col-
orectal polyps or gastric cancer [189, 202]. As an alternative to convolutional neural networks,
vision transformers [45] can be adapted for segmentation tasks [176]. The advantage thereby is
that global image context is passed through the network at every layer [176].
Popular loss functions for training are the pixel-wise cross-entropy loss or the soft Dice loss
described in Section 3.1.1. A significant issue is that many pixel-wise labels are required during
training, which is not always possible. To circumvent this issue, semi-supervised segmentation
approaches were proposed [100, 110], which opens the possibility of adding unannotated data.
Another issue is that the generated segmentation masks provide no information about the
model’s decisions. Therefore, methods for pixel-wise uncertainty estimation for the predicted
segmentation masks were proposed [79, 122]. One can distinguish between epistemic uncer-
tainty, i.e., uncertainty in the model parameters, and aleatoric uncertainty, which captures am-
biguity and noise in the input data [89]. Common approaches are using the softmax entropy,
Monte Carlo dropout during testing, ensembling multiple models, modeling the aleatoric un-
certainty using an additional loss term, or using an auxiliary network for uncertainty prediction
[79]. We present another approach for interpretable, fully supervised segmentation in Chapter 5.

4.2 Anomaly Detection

Deep learning is a valuable tool for outlier detection, i.e., finding instances that form an excep-
tion to a general rule or pattern. In this sense, an outlier - or anomaly - is defined as a deviation
from the normal behaviour [3]. In real-world applications, anomaly detection algorithms are
used for fraud detection, network intrusion detection, or event detection in sensory networks
[171]. Traditional techniques include statistical modeling, nearest neighbor methods, clustering,
histogram analysis, or principal component analysis [123]. In our medical setting, the normal
data is given by a dataset of images of healthy subjects. Images of patients showing a pathology
should be identified as outliers. Moreover, this thesis focuses on pixel-level anomaly detection,
i.e., highlighting the image regions that show pathological change. We distinguish between two
scenarios presented in Figure 4.3.
In scenario A, a network is only trained on the normal control group H. At test time, a new
data point is identified as an outlier if it does not follow the expected distribution, i.e., shows
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Figure 4.3: In scenario A, we aim to find data instances that do not fit the normal control group
H. An image x not matching the distribution of H is detected as outlier. The image regions that
contribute to the abnormality of x are encircled in red. In scenario B, a disease-specific dataset
P is added during training to detect the visual manifestations that make H and P differ from
each other.

some pathology. One of the main challenges is that samples from the normal control group
H can be very diverse due to numerous subject-specific characteristics and differences in the
acquisition settings. The model should have the capacity to represent the diverse nature of H
[51]. Density estimation methods first estimate the probability distribution of the normal images
or image features. An unseen image is an outlier if it does not meet the estimated distribution.
In one-class classification approaches, the goal is to define a decision boundary of the normal
dataset in the feature space. Self-supervised classification approaches aim to learn the visual
representation of the input image using an auxiliary task [205], which can be used for outlier de-
tection. Reconstruction-based methods allow pixel-wise comparison between input and output
images for pixel-level anomaly detection. As a representative example, we present autoencoders
in more detail in Section 4.2.1.
In scenario B, two datasets are at hand: Dataset H contains images of healthy controls, whereas
dataset P contains images of patients suffering from a specific disease. Using weakly supervised
methods, the model learns the difference in distribution between H and P . Unlike scenario A,
however, this anomaly detection focuses on the specific disease present in P and is not trained
to detect any outlier. In Section 4.2.2, we present some weakly supervised GAN approaches for
anomaly detection that take advantage of this data setup. Furthermore, a binary classification
network can be trained to distinguish between the datasets H and P . Pixel-level anomaly scores
can be gained from gradient-based methods, where backpropagated gradients reveal information
about the main difference between P and H [205]. This approach is described in Section 4.2.3.
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4.2.1 Autoencoders

In scenario A, autoencoders learn to efficiently compress input data to a meaningful low-
dimensional representation and reconstruct the input image from this reduced representation. A
classical autoencoder architecture is presented in Figure 3.7. An encoder E transforms the input
information into a low-dimensional feature representation of the normal data H, and a decoder
D reconstructs the input image. Once an outlier is passed through the network, the autoencoder
will fail to reconstruct this abnormal input, resulting in a high difference between input and
output. An example is given in Figure 4.4, where a convolutional autoencoder is trained on the
MNIST dataset [39] of handwritten digit images showing the number 8. The loss is given by the
MSE loss between the input and reconstructed images. During evaluation, unseen images are
passed through the model. If the input image shows the number 8, i.e., is a sample of the normal
dataset, the reconstruction error is low. However, if we pass an image of another number, e.g.,
a 5, through the model, the autoencoder fails to create a good reconstruction, resulting in a high
error. This error can be defined as the pixel-level or image-level anomaly score. A drawback of
autoencoders is the blurry output images, which result in inaccurate pixel-wise error maps.

Figure 4.4: Exemplary autoencoder for anomaly detection. The autoencoder is trained on the
MNIST dataset on images showing the number 8. During evaluation, the processing of an image
showing the number 5 leads to a high reconstruction error, indicating an outlier.

Variational Autoencoders (VAEs) [94] differ from autoencoders in their loss objective and have
been applied on a wide range of medical anomaly detection tasks [108, 113, 209]. Instead of
encoding the latent space representation of an input x, the encoder learns a latent distribution
N (µ, σ). The sampled latent space representation z ∼ N (µ, σ) is then passed through the de-
coder. The reconstruction loss is amended with the Kullback-Leibler divergence DKL between
the sampled distribution N (µ, σ) and the target latent distribution N (0, I),

LV AE(x) = Ez∼N (µ,σ)

[
∥x−D(E(z))∥2

]︸ ︷︷ ︸
reconstruction loss

+DKL

(
N (µ, σ) ∥ N (0, I)

)︸ ︷︷ ︸
KL divergence

. (4.5)

During the evaluation, this class of models can be used as generative models by sampling
z ∼ N (µ, σ) and retrieving an output image D(z). For anomaly detection, the Kullback-
Leibler divergence DKL can be taken as an anomaly score for an unseen data point [108, 187].
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4.2.2 Anomaly Detection with GANs

In their initial formulation presented in Section 3.3.1, GANs are purely generative models with
a strong ability to model the training data distribution. If the generator follows an encoder-
decoder-architecture that takes images as input, they can be adapted to anomaly detection tasks
[43, 161, 201]. In scenario A, with the adversarial training between generator and discriminator,
the encoder of the generator learns a latent space representation of the normal data H. AnoGAN
[161], and GANomaly [1] use this training scheme to generate pixel-wise anomaly maps based
on the reconstruction error. In a data setup like in scenario B, we can perform image-to-image
translation between the two sets H and P using GANs. Inspired by CycleGAN [208], cycle-
consistent translation from normal to anomalous data and vice versa can be used for anomaly
detection [15, 155]. Since the anomaly map is defined by the difference between the input im-
age of the set P and its translation to the set H, it is crucial that only pathological regions are
changed during image-to-image translation. Another GAN implementation that needs data of
both H and P is VAGAN [14], where an additive map is learned to translate anomalous images
to images of healthy subjects. The additive map was used to highlight anomalous changes in
MR images of the brain of patients who have Alzheimer’s disease. In Figure 4.5, the workflows
of CycleGAN and VAGAN are visualized.
Similarly, Fixed-Point-GAN [168] builds on CycleGAN also relies on generating an additive
map for the input image and proposes additional identity-preserving constraints. With this ap-
proach, brain lesions and pulmonary embolisms could be localized. PathoGAN [5] adapts the
cycle-consistent image-to-image translation of CycleGAN. For MR images of the brain, an in-
painting of healthy-looking tissue is generated in image regions showing a tumor. Thereby, a
segmentation mask highlighting the anomalous changes is implicitly learned during the training
process.
In Chapter 6, we present another approach for scenario B based on CycleGAN. In contrast to
VAGAN or Fixed-Point-GAN, our method is not restricted to the generation of an additive map
and has therefore the flexibility to change various image features.

Figure 4.5: Overview of CycleGAN and VAGAN approaches. The generator GH aims to gener-
ate images of normal subjects, whereas the generator GP aims to generate images of anomalous
subjects. The discriminators DH and DP distinguish between fake and real images of the sets
H and P respectively.
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4.2.3 Gradient-based Anomaly Detection

In scenario B, the gradients of a classification model between H and P can be used for anomaly
detection. Saliency maps [169] take the pixel-wise gradient of the prediction with respect to the
input image. These saliency maps highlight pixels that contribute to the model’s decision and
can be interpreted as a pixel-wise anomaly map [8]. Class activation maps [207] were proposed
for the interpretability of CNNs. At a given layer k of this network, a global average pooling
layer is introduced to compute the importance wi of the feature maps Si,k at that layer. The sum
of the feature maps Si,k, weighted by wi, defines the class activation map Ck:

Ck =
∑
i

Si,kwi. (4.6)

By upsampling Ck to the size of the input image, the image regions that contribute to the clas-
sification of the input image are highlighted. Since the upsampling results in blurry heatmaps,
Grad-CAM [163] uses higher-level feature maps and proposes the sum over the gradient of the
classifier with respect to the feature maps Si,k as the weight wi. This opens the possibility of
visualizing the activation maps at different feature levels k of the classifier. To illustrate this ap-
proach, we train a binary classification network following the VGG16 architecture [170] on the
BRATS2020 dataset to distinguish between slices containing a tumor and slices without tumor.
In Figure 4.6 we present the results for the class activation map and the saliency map for a slice
showing a tumor. The regions that lead to the classification score ”diseased” are highlighted in
the class activation map. We observe that the region showing the tumor is covered. However,
due to the strong upsampling, the heatmap is blurry. The saliency map is more detailed but does
not cover the whole tumor. Despite these downsides, those approaches represent an essential
building block of more advanced methods, for example, in the gradient guidance of diffusion
models presented in Chapter 7.

Figure 4.6: Visualization of the class activation map and saliency map using a binary classifica-
tion model between slices with or without tumor on the BRATS2020 dataset.

4.3 Domain Adaptation

In general machine learning algorithms, it is assumed that the training data follows an underly-
ing distribution, which is the same for the test data. However, in many real-world scenarios, the
test data may vary in numerous aspects. Examples include the exact acquisition settings, outer
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influence, or differences in the subjects such as an age shift in the population. Therefore, a model
optimized on the training set loses some of its performance if applied to a test set that follows a
related but different distribution. In the scope of domain adaptation, a model learns a main task
from a source domain. The goal is to develop methods that perform well on a different target
domain by overcoming the distribution shift between the source and the target domain. Thereby,
the generalization quality of the model is improved. In Figure 4.7, such a domain shift between
source and target domain is visualized for the main task of binary classification between squares
and circles.

Figure 4.7: The problem of domain adaptation tackles the issue of a distribution shift between
the source dataset and the target dataset. The goal is a generalizable model that has a good
performance regarding the main task on both domains.

We define the source domain Ds = {xi,s, yi,s|i ∈ {1, ..., n}}, where xi,s is the input data and
yi,s the corresponding label, which follow a source domain distribution ps(x, y). The target
domain is defined by Dt = {xi,t, yi,t|i ∈ {1, ...,m}}, following a target domain distribution
pt(x, y). Generally, we can distinguish between supervised, semi-supervised and unsupervised
domain adaptation. While the target labels yi,t are known during training in supervised domain
adaptation (SDA), only a few target samples are labeled in semi-supervised domain adaptation.
Unsupervised domain adaptation (UDA) describes the field where no labeled data from the target
domain is available for training. Furthermore, domain adaptation can be either homogeneous,
i.e., the input feature spaces are the same across the domains, or heterogeneous, i.e., the feature
spaces and their dimensionalities may differ [190].
In medical applications, domain adaptation is an inevitable step to achieving consistency over
different datasets. Since data may be acquired at multiple sites with different acquisition set-
tings and patients, it is challenging to collect large homogeneous datasets to train deep learning
models [57]. A first important application field is histopathological imaging, where the images
must be stained before image analysis tasks are applied. As samples may have been prepared at
different laboratories, this results in heterogeneous staining characteristics because of slight dif-
ferences in incubation times and the protocol. The variations in stain color considerably reduce
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the performance of deep learning models [25, 144]. Other approaches focus on cross-modality
domain adaptation, e.g., learning a task on CT images and applying it to MR images as the target
domain [28, 77, 134].
Regarding MRI, inhomogeneous datasets due to the scanner bias described in Section 2.1.2 are
likely to occur. Therefore, MR harmonization is an important topic and has been tackled in
various ways [48, 135, 199]. Several SDA approaches have been proposed for MR image clas-
sification or segmentation [66, 88, 184] by fine-tuning the pre-trained model parameters on the
target dataset, or with multi-task learning [111]. Some UDA approaches show that extensive
data augmentation of MR can improve segmentation results [17, 118, 128, 206].
Generally, the domain adaptation problem can be addressed with divergence, adversarial, or
reconstruction-based methods.

Divergence-based methods Divergence-based methods [82, 203] aim to minimize some di-
vergence measure between the source and the target domain distributions ps and pt, and thereby
bridge the domain shift. To reduce the domain discrepancy, contrastive loss terms are applied to
push images with the same task-related characteristics close to each other while placing images
with different characteristics far from each other in the feature space. Given an input image x,
we consider a similar image xp and an image xn that differs from x in any aspect related to the
main task. We denote xp as a positive sample and xn as a negative sample. The learned feature
representation f(x) should be close to f(xp) and far from f(xn). The initial contrastive loss
objective [59] is given by

Lcon(x, z) = 1z=xp∥f(x)− f(z)∥2 + 1z=xn max(0,m− ∥f(x)− f(z)∥2), (4.7)

where m denotes a margin that defines a radius around f(x) in the feature space. This idea
was extended to the triplet loss [162], where the image x as well as a positive sample xp and a
negative sample xn are taken into account:

Ltriplet(x, xp, xn) = max
(
∥f(x)− f(xp)∥2 − ∥f(x)− f(xn)∥2 +m, 0

)
, (4.8)

In state-of-the-art domain adaptation methods, the same idea of clustering the feature space is ap-
plied, but more elaborate loss terms are used, such as the maximum mean discrepancy (MMD)
[82], Kullback-Leibler divergence [126], cosine similarity [31] or the contrastive domain dis-
crepancy (CDD) [49]. We adapt this idea of using contrastive loss terms to align the feature
space in Chapter 9.

Adversarial-based methods In adversarial-based methods [53, 81, 181], a model provides
feature representations of the input images and is trained to solve a given main task. An addi-
tional discriminator network is trained to distinguish between the source and the target domain
based on those feature representations. Like in GANs, iterative adversarial training is performed
until the discriminator can no longer distinguish between the domains. Consequently, domain-
invariant features are extracted by the model. This is useful to train an MR classification, seg-
mentation, or regression task while training the discriminator network to distinguish between the
MR scanners. With the adversarial training, MR harmonization can be achieved [44, 130, 159].
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Reconstruction-based methods Reconstruction-based methods [67, 204] focus on image-to-
image translation between the domains. Images of the target domain are translated to the source
domain before a specific task is applied. For this approach, autoencoders or GANs can be used.
The challenges are that the generated images should be of high quality and correspond to the
input image without adding or losing information.
If paired data is available, pairwise image-to-image translation methods can be taken into ac-
count. Deepharmony [41] uses paired data to change the contrast of MR images from one
scanner to another with a modified U-Net. This approach is illustrated in Figure 4.8, where the
task is to translate 1.5T MR images to 3T MR images. The output shows the desired increase in
contrast but also a smoothing of the image. However, paired datasets are not often available for
training. GANs [68, 99, 158] follow a similar idea and aim to generate new images to overcome
the domain shift without relying on paired data.

Figure 4.8: Domain translation from the source domain to the target domain with Deepharmony.
In this setup, paired data is required.



Chapter 5

Diffusion Models for Implicit Image
Segmentation Ensembles

In the following paper, we present a novel approach for fully supervised image segmentation.
The generation of the segmentation mask is based on denoising diffusion probabilistic models
and takes advantage of their stochastic sampling process. In this way, an ensemble of segmenta-
tion masks can be generated for every input image. Consequently, taking the mean and the vari-
ance map over the ensemble of segmentation mask, we improve the segmentation performance
and automatically generate a pixel-wise uncertainty evaluation. This approach is evaluated on
the BRATS2020 dataset for brain tumor segmentation.
The manuscript was written in joint first authorship with Robin Sandkühler, who had the initial
idea for this approach. The workload was divided such that the development of the method was
a shared contribution. Julia Wolleb performed the code implementation and the experiments.
The initial draft was written by Julia Wolleb and revised by Robin Sandkühler.

Publication. The following paper was accecpted at the conference Medical Imaging with Deep
Learning (MIDL), July 2022, Zurich, Switzerland. The manuscript was published as part of the
conference proceedings [197]. The code for this framework is open-source1.

1https://gitlab.com/cian.unibas.ch/Diffusion-based-Segmentation
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Abstract

Diffusion models have shown impressive performance for generative modelling of images. In
this paper, we present a novel semantic segmentation method based on diffusion models. By
modifying the training and sampling scheme, we show that diffusion models can perform
lesion segmentation of medical images. To generate an image-specific segmentation, we
train the model on the ground truth segmentation, and use the image as a prior during
training and in every step during the sampling process. With the given stochastic sampling
process, we can generate a distribution of segmentation masks. This property allows us to
compute pixel-wise uncertainty maps of the segmentation, and allows an implicit ensemble
of segmentations that increases the segmentation performance. We evaluate our method
on the BRATS2020 dataset for brain tumor segmentation. Compared to state-of-the-art
segmentation models, our approach yields good segmentation results and, additionally,
detailed uncertainty maps.

Keywords: Diffusion models, segmentation, uncertainty estimation

1. Introduction

Semantic segmentation is an important and well-explored area in medical image analysis
(Rizwan I Haque and Neubert, 2020). The automated segmentation of lesions in medical
images with machine learning has shown good performances (Isensee et al., 2021) and is
ready for clinical application to support diagnosis (Sharrock et al., 2021). In medical ap-
plications, it is of high interest to measure the uncertainty of a given prediction, especially
when used for further treatments like radiation therapy.
In this work, we focus on the BRATS2020 brain tumor segmentation challenge (Menze
et al., 2014; Bakas et al., 2017, 2018). This dataset provides four different MR sequences
for each patient (namely T1-weighted, T2-weighted, FLAIR and T1-weighted with contrast
enhancement), as well as the pixel-wise ground truth segmentation. An exemplary image
can be found in Appendix A.
We propose a novel segmentation method based on a Denoising Diffusion Probabilistic
Model (DDPM) (Ho et al., 2020), which can provide uncertainty maps of the produced
segmentation mask. An overview of the workflow for an image of the BRATS2020 dataset
is shown in Figure 1. We train a DDPM on the segmentation masks and add the original
brain MR image as an image prior to induce the anatomical information. As sampling with

∗ Contributed equally

© 2022 J. Wolleb, R. Sandkühler, F. Bieder, P. Valmaggia & P.C. Cattin.
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Figure 1: Workflow for the implicit generation of segmentation ensembles and uncertainty
maps with diffusion models. The input image consists of four different MR se-
quences. Going n times through the sampling process of the diffusion model with
different Gaussian noise, n different segmentation masks are generated.

DDPMs has a stochastic element in each sampling step, we can generate many different seg-
mentation masks for the same input image and the same pretrained model. This ensemble
of segmentations allows us to compute the pixel-wise variance maps, which visualizes the
uncertainty of the generated segmentation. Moreover, the ensembling of the segmentations
in a mean map boosts the segmentation performance.
We compare ourselves against state-of-the-art segmentation algorithms, and visually com-
pare our variance map against common uncertainty maps. The code is publicly available
at https://gitlab.com/cian.unibas.ch/Diffusion-based-Segmentation.

Related Work In medical image segmentation, a common method is the application of
a U-Net (Ronneberger et al., 2015) or SegNet (Badrinarayanan et al., 2017) to predict the
segmentation mask for every input image. This approach was successfully applied for many
different tasks (Habijan et al., 2019; Kumar et al., 2019; Xiao et al., 2020). The state of
the art is given by nnU-Nets (Isensee et al., 2021), where the best architecture and hyper-
parameters are automatically chosen for every specific dataset.
Uncertainty quantification is of high interest in deep learning research (Abdar et al., 2021),
which is often done using Bayesian neural networks (Kendall et al., 2017; Mitros and
Mac Namee, 2019; Gal and Ghahramani, 2016). We can differentiate between epistemic
uncertainty, which refers to uncertainty in the model parameters, and aleatoric uncertainty,
which refers to uncertainty in the data. As stated in (Kendall and Gal, 2017), the epistemic
uncertainty of a segmentation model can be approximated with Monte Carlo Dropout,
whereas the aleatoric uncertainty can be modeled with Maximum-A-Posteriori inference.
Those methods were also applied on various medical tasks (Wang et al., 2019; Nair et al.,
2020; DeVries and Taylor, 2018), including brain tumor segmentation (Sagar, 2020; Jungo
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and Reyes, 2019; Mehta et al., 2020). Other approaches presented stochastic segmentation
networks to model aleatoric uncertainty (Monteiro et al., 2020), or proposed a probabilistic
U-Net to learn a distribution over segmentations (Kohl et al., 2018, 2019).
During the last year, DDPMs have gained a lot of attention due to their astonishing perfor-
mance in image generation (Dhariwal and Nichol, 2021). Images are generated by sampling
from Gaussian noise. This sampling scheme follows a stochastic process, and therefore
sampling from the same noisy image does not result in the same output image. A differ-
ent sampling scheme was introduced by Denoising Diffusion Implicit Models (DDIM)(Song
et al., 2020), where sampling is deterministic and can be done by skipping multiple steps.
Moreover, meaningful interpolation between images can be achieved. DDPM was further
improved by (Nichol and Dhariwal, 2021) and (Dhariwal and Nichol, 2021), where changes
in the loss objective, architecture improvements, and classifier guidance during sampling
improved the output image quality.
While some new work applies diffusion models on tasks such as image-to-image transla-
tion (Sasaki et al., 2021), style transfer (Choi et al., 2021), or inpainting tasks (Saharia
et al., 2021), so far there is only very little work about semantic segmentation. Recently,
one approach to perform semantic segmentation with a diffusion model was proposed by
(Baranchuk et al., 2022). A DDPM is trained to reconstruct the image that should be
segmented. Then, a multilayer perceptron for classification is applied on the features of
the model, which results in a segmentation mask for the original image. In contrast to this
method, we train a DDPM directly to generate the segmentation mask. Simultaneously
and independent from us, (Amit et al., 2021) developed an image segmentation method
similar to ours. However, they use a separate encoder for the image and the segmentation.
Training a larger model may be difficult for medical image analysis due to possible large
input images such as 3D data. Our method uses only one encoder to encode the image
information and the segmentation mask.

2. Method

The goal is to train a DDPM to generate segmentation masks. We follow the idea and
implementation proposed in (Nichol and Dhariwal, 2021). The core idea of diffusion models
is that for many timesteps T , noise is added to an image x. This results in a series of
noisy images x0, x1, ..., xT , where the noise level is steadily increased from 0 (no noise) to
T (maximum noise). The model follows the architecture of a U-Net and predicts xt−1 from
xt for any step t ∈ {1, ..., T}. During training, we know the ground truth for xt−1, and the
model is trained with an MSE loss. During sampling, we start from noise xT ∼ N (0, I),
sample for T steps, until we get a fake image x0.
The complete derivations of the formulas below can be found in (Ho et al., 2020; Nichol and
Dhariwal, 2021). The main components of diffusion models are the forward noising process
q and the reverse denoising process p. Following (Ho et al., 2020), the forward noising
process q for a given image x at step t is given by

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI), (1)

where I denotes the identity matrix and β1, ..., βT are the forward process variances. The
idea is that in every step, a small amount of Gaussian noise is added to the image. Doing
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this for t steps, we can write

q(xt|x0) := N (xt;
√
αtx0, (1− αt)I), (2)

with αt := 1 − βt and αt :=
∏t

s=1 αs. With the reparametrization trick, we can directly
write xt as a function of x0:

xt =
√
αtx0 +

√
1− αtϵ, with ϵ ∼ N (0, I). (3)

The reverse process pθ is learned by the model parameters θ and is given by

pθ(xt−1|xt) := N
(
xt−1;µθ(xt, t),Σθ(xt, t)

)
. (4)

As shown in (Ho et al., 2020), we can then predict xt−1 from xt with

xt−1 =
1
√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t)

)
+ σtz, with z ∼ N (0, I), (5)

where σt denotes the variance scheme that can be learned by the model, as proposed in
(Nichol and Dhariwal, 2021). We can see in Equation 5 that sampling has a random com-
ponent z, which leads to a stochastic sampling process. Note that ϵθ is the U-Net we train,
with input xt =

√
αtx0 +

√
1− αtϵ. The noise scheme ϵθ(xt, t) that will be subtracted from

xt during sampling according to Equation 5 has to be learned by the model. This U-Net is
trained with the loss objectives given in (Nichol and Dhariwal, 2021).
We now modify this idea to use diffusion models for semantic segmentation. A visualization
of the workflow is given in Figure 2 for the task of brain tumor segmentation.

Figure 2: The training and sampling procedure of our method. In every step t, the anatom-
ical information is induced by concatenating the brain MR images b to the noisy
segmentation mask xb,t.

Let b be the given brain MR image of dimension (c, h, w), where c denotes the number of
channels, and (h,w) denote the image height and image width. The ground truth segmen-
tation of the tumor for the input image b is denoted as xb, and is of dimension (1, h, w). We

4
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train a DDPM for the generation of segmentation masks. In the classical DDPM approach,
xb would be the only input we need for training, which would result in an arbitrary segmen-
tation mask x0 when we sample from noise during inference. In contrast to that, the goal in
our proposed method is not to generate any segmentation mask, but we want a meaningful
segmentation mask xb,0 for a given image b. To achieve this, we add additional channels
to the input: We induce the anatomical information present in b by adding it as an image
prior to xb. We do this by concatenating b and xb, and define X := b ⊕ xb. Consequently,
X has dimension (c+ 1, h, w).
During the noising process q, we only add noise to the ground truth segmentation xb:

xb,t =
√
αtxb +

√
1− αtϵ, with ϵ ∼ N (0, I), (6)

and we define Xt := b⊕ xb,t. Equation 5 is then altered to

xb,t−1 =
1
√
αt

(
xb,t −

1− αt√
1− αt

ϵθ(Xt, t)

)
+ σtz, with z ∼ N (0, I) (7)

and results in a slightly denoised xb,t−1 of dimension (1, h, w). During inference, we follow
the procedure presented in Algorithm 1, which is a stochastic process. Therefore, sampling
twice for the same brain MR image b does not result in the same segmentation mask predic-
tion xb,0. Exploiting this property, we can implicitly generate an ensemble of segmentation
masks without having to train a new model. This ensemble can then be used to boost the
segmentation performance.

Algorithm 1: Sampling Procedure

Input: b, the original brain MRI
Output: xb,0, the predicted segmentation mask
sample xb,T ∼ N(0, I);
for t← T to 1 do

Xt ← b⊕ xb,t;

xb,t−1 ← 1√
αt

(
xb,t − 1−αt√

1−αt
ϵθ(Xt, t)

)
+ σtz, with z ∼ N (0, I) ;

end

3. Dataset and Training Details

We evaluate our method on the BRATS2020 dataset. As described in Section 1, images of
four different MR sequences are provided for each patient, which are stacked to 4 channels.
We slice the 3D MR scans in axial slices. Since tumors rarely occur on the upper or lower
part of the brain, we exclude the lowest 80 slices and the uppermost 26 slices. For intensity
normalization, we cut the top and bottom one percentile of the pixel intensities. We crop
the images to a size of (4, 224, 224). The provided ground truth labels contain four classes,
which are background, GD-enhancing tumor, the peritumoral edema, and the necrotic and
non-enhancing tumor core. We merge the three different tumor classes into one class and
therefore define the segmentation problem as a pixel-wise binary classification. Our training
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set includes 16,298 images originating from 332 patients, and the test set comprises 1,082
images with non-empty ground truth segmentations, originating from 37 patients. No data
augmentation is applied.
The hyperparameters for our DDPM models are described in the appendix of (Nichol and
Dhariwal, 2021). We choose a linear noise schedule for T = 1000 steps. The model is
trained with the hybrid loss objective, with a learning rate of 10−4 for the Adam optimizer,
and a batch size of 10. The number of channels in the first layer is chosen as 128, and we
use one attention head at resolution 16. We train the model for 60,000 iterations on an
NVIDIA Quadro RTX 6000 GPU, which takes around one day. The training details for the
comparing methods can be found in Appendix B.

4. Results and Discussion

During evaluation, we take an image b from the test set, follow Algorithm 1 and produce
a segmentation mask. This mask is thresholded at 0.5 to obtain a binary segmentation. In
Table 1, the Dice score, the Jaccard index, and the 95 percentile Hausdorff Distance (HD95)
are presented. We achieve good results with respect to all those metrics.
For every image of the test set, we sample 5 different segmentation masks. This implicitly
defines an ensemble by averaging over the 5 masks and thresholding it at 0.5. We report
the results for this ensemble in the second line of Table 1. We see that already an ensemble
of 5 increases the performance of our approach.
In the last column of Table 1, we count the cases where the model produces an empty
segmentation mask. This results in a Dice of zero, and HD95 cannot be computed. If we
disregard those cases, we report the HD95 score, and the average Dice score and Jaccard
index are reported in square brackets in Table 1.
As baseline, we report the segmentation scores for the nnU-Net and SegNet. By default,
nnU-Net is an ensemble of a 5-fold cross validation. We also implement Bayesian SegNet
with Monte Carlo dropout as proposed in (Kendall et al., 2017). By sampling five times
during inference, we can again make an ensemble of the generated segmentation masks.
The scores for this ensemble are reported in the last line of Table 1.
The generation of one sample with our method takes 48 seconds, while the computation of
the segmentation mask with SegNet takes 13 ms. To speed up the sampling process, we
will consider sampling with the DDIM approach in future work.
For visualization of the uncertainty maps, we select three exemplary images b1, b2, and
b3 from the test set. More examples are presented in Appendix C. To generate detailed

Table 1: Segmentation scores of our method and nnU-Net on different metrics.

Method Dice HD95 Jaccard empty
Ours (1 sampling run) 0.866 [0.892] 6.052 0.795 [0.819] 31
Ours (ensemble of 5 runs) 0.881 [0.909] 5.178 0.819 [0.845] 34
nnU-Net (ensemble of 5-fold cross-val.) 0.891 [0.905] 5.004 0.831 [0.845] 17
SegNet (1 run) 0.839 [0.867] 7.190 0.761 [0.786] 34
Bayesian SegNet (ensemble of 5 runs) 0.838 [0.841] 13.707 0.747 [0.749] 3
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Figure 3: Examples of the produced mean and variance maps for 100 sampling runs.

uncertainty maps, we sample 100 segmentation masks for each of the images, and compute
the pixel-wise variance. In Figure 3, we present one channel of the original brain MR
image b, the ground truth segmentation, two different sampled segmentation masks, as well
as the mean and variance map. We can clearly identify the areas where the model was
uncertain. Moreover, by thresholding the mean map at 0.5, we can produce the ensembled
segmentation mask. In Table 2, we report the segmentation scores and for this ensemble
mask, as well as the average scores for the 100 samples. We see that the ensemble can boost
the performance for the examples b1, b2 and b3.

Table 2: Segmentation scores for the 100 samples of the examples presented in Figure 3.

Average Ensemble
Example Dice HD95 Jaccard Dice HD95 Jaccard

b1 0.969 2.360 0.939 0.981 1.000 0.962
b2 0.869 18.503 0.769 0.885 18.468 0.783
b3 0.932 5.227 0.872 0.952 4.474 0.907

In Figure 4, we plot the number of samples in the ensemble against the Dice score for
the three examples b1, b2, and b3. We can see that already an ensemble of five samples
improves the performance, and then the curve flattens. In (Amit et al., 2021), a similar
experiment was performed on a different data set. Independently from each other, we got
the same findings. In Figure 5, we compare our variance maps against the ones of the
Bayesian SegNet with Monte Carlo (MC) dropout for 100 samples, as well as the aleatoric
uncertainty maps for SegNet, computed as proposed in (Kendall and Gal, 2017).
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Figure 4: Performance of the ensemble with respect to the number of samples for the ex-
amples b1, b2, and b3, presented in Figure 3.
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Figure 5: Comparison of the different uncertainty maps for the three examples.

5. Conclusion

We presented a novel approach for biomedical image segmentation based on DDPMs. Using
the stochastic sampling process, our method allows implicit ensembling of different segmen-
tation masks for the same input brain MR image, without having to train a new model.
We could show that ensembling those segmentation masks increases the performance of the
model with respect to different segmentation scores. Moreover, we can generate uncertainty
maps by computing the variance of the different segmentation masks. This is of great in-
terest in clinical applications, when we want to measure the uncertainty of the decision of
the model. For future work, we plan to investigate the segmentation of the different tumor
classes provided by the BRATS2020 challenge. Furthermore, we plan to use the DDIM
scheme to speed up the sampling process.
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Appendix A. Exemplary Image of BRATS2020

Figure 6: Exemplary image of the BRATS2020 dataset, with four different MR sequences
and the ground truth segmentation.

Appendix B. Implementation Details

We provide implementation details of the comparing methods.

• SegNet: We train the SegNet as proposed in (Badrinarayanan et al., 2017), with a
learning rate of 10−4 for the Adam optimizer and a batch size of 20. Training is
performed with the binary cross-entropy loss and is stopped after 100 epochs.

• Bayesian SegNet: We adapt the SegNet architecture, and place the dropout layers
with a dropout probability of p = 0.5 as proposed in (Kendall et al., 2017). The
training schedule is kept the same as for SegNet.

• nnU-Net: We take over all hyperparameter settings as proposed in their official im-
plementation, which can be found at https://github.com/MIC-DKFZ/nnUNet.

• Aleatoric Uncertainty Estimation: We keep the training settings for SegNet. The only
change we need to make to the SegNet architecture is to double the number of out-
put channels, such that we get both a prediction and a variance map. We follow the
aleatoric loss implementation as proposed in (Jungo and Reyes, 2019), which can be
found at https://github.com/alainjungo/reliability-challenges-uncertainty.

Appendix C. Further Examples

In Figure 7, we provide the mean and variance maps of three more exemplary images b4,
b5, and b6 of the test set.

12

MIDL 2022 53



Diffusion-Based Segmentation

Original Image b Ground Truth Sample 1 Sample 2

0.0

0.2

0.4

0.6

0.8

1.0

Mean Map

0.00

0.05

0.10

0.15

0.20

0.25

Variance Map

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.05

0.10

0.15

0.20

0.25

b6

b5

b4

Figure 7: Additional examples of the produced mean and variance maps for 100 sampling
runs.
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Chapter 6

DeScarGAN: Disease-Specific Anomaly
Detection with Weak Supervision

In this paper, we present a weakly supervised anomaly detection algorithm that is based on gen-
erative adversarial networks. We perform image-to-image translation between a set of images of
patients and a set of healthy controls. By translating an image of a patient to a fake image of a
healthy subject, the difference map highlights anomalous changes. We propose an architecture
with weight sharing, skip connections and add an identity loss to ensure that only anomalous
image regions are changed. This results in a detailed anomaly map. We focus on diseases where
the anomaly exhibits a deformation of existing structures, which is different from detecting le-
sions. For the evaluation, we design a synthetic dataset that simulates such deformations and
provides pixel-wise ground truth. We apply our method to the CheXpert dataset to detect pleural
effusions in X-ray images of the lungs.

Publication. The following paper was presented at the 23d International Conference on Medi-
cal Image Computing and Computer Assisted Intervention (MICCAI), October 2020, which was
held virtually. It was published as part of the conference proceedings [198]. The code is publicly
available1.

1https://gitlab.com/cian.unibas.ch/DeScarGAN
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DeScarGAN: Disease-Specific Anomaly
Detection with Weak Supervision

Julia Wolleb, Robin Sandkühler, and Philippe C. Cattin

Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
julia.wolleb@unibas.ch

Abstract. Anomaly detection and localization in medical images is a
challenging task, especially when the anomaly exhibits a change of exist-
ing structures, e.g., brain atrophy or changes in the pleural space due to
pleural effusions. In this work, we present a weakly supervised and detail-
preserving method that is able to detect structural changes of existing
anatomical structures. In contrast to standard anomaly detection meth-
ods, our method extracts information about the disease characteristics
from two groups: a group of patients affected by the same disease and
a healthy control group. Together with identity-preserving mechanisms,
this enables our method to extract highly disease-specific characteristics
for a more detailed detection of structural changes. We designed a specific
synthetic data set to evaluate and compare our method against state-of-
the-art anomaly detection methods. Finally, we show the performance
of our method on chest X-ray images. Our method called DeScarGAN
outperforms other anomaly detection methods on the synthetic data set
and by visual inspection on the chest X-ray image data set.

Keywords: Anomaly detection · Weak supervision · Disease-specific

1 Introduction

For medical applications, it is of great interest to find an automated way to
show visual manifestations of a disease. In the past, artificial neural networks
have shown a great performance in the task of image segmentation. As the man-
ual generation of pixel-wise annotations is time consuming and requires expert
knowledge, the training data is limited in number or even unavailable. Further-
more, the manually generated labels are affected by human bias. Using only
image-level class labels for training of the networks overcomes those issues. In
this paper, we propose a new disease-specific and weakly supervised method for
anomaly detection and localization. The task we aim to solve is to highlight
the pathological changes in an image of a diseased subject, as well as the clas-
sification into diseased and healthy subjects. This can improve diagnosis, lead
the attention to relevant parts of the anatomy and provide a starting point for
further studies.

Classical anomaly detection algorithms are trained only on healthy sub-
jects and detect abnormal parts of images as outliers. Variational Autoencoders
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(VAEs) can be used to detect lesions in the brain [4, 25]. Beside VAEs, Genera-
tive Adversarial Networks (GANs) [8] are used for anomaly detection in medical
images [7]. VAGAN [3] proposes the generation of an additive map to make an
image of a diseased subject appear healthy. PathoGAN [2] provides a weakly
supervised segmentation algorithm for brain tumors based on image-to-image
translation. StarGAN [5] follows a similar idea as CycleGAN [24] and simpli-
fies the architecture to only one generator and one discriminator. This idea can
be used for anomaly detection by taking the difference between original and
translated images. Fixed-Point GAN (FP-GAN) [20] improves StarGAN by pre-
serving features that should not be changed during translation, outperforming
f-Anogan [18] and others [1] in brain lesion detection. The problem of combining
GANs with a classification network is tackled by semi-supervised GANs [15,17].
Class activation maps [19,23] visualize the features of the input image that lead
to the classification score, but limitations in the resolution lead to blurry maps.
Another approach is the generation of saliency maps [13, 21] by computing the
gradient of the classification score with regard to the input image.
We are interested in cases where the anomaly occurs in the form of deforma-
tions of existing structures, e.g., atrophy, rather than in lesions. Both VAGAN
and FP-GAN are designed to only generate an additive map rather than a com-
plete new image. We claim that this restriction to additive maps may hinder the
methods from showing deformations. What is more, VAGAN is not designed to
perform classification and assumes that the class label for each input image is
provided in advance. VAEs are only trained on the healthy control group and
may not be able to point out the characteristics of a specific disease, due to
natural variations in the data. Our method for detection of structural changes
in anatomical regions, further called DeScarGAN, is designed to address these
issues.

Our method performs image-to-image translation between a set of healthy
and a set of diseased subjects in order to find the visual manifestations that
make the distributions of the two datasets differ from each other. We introduce
a novel disease-specific architecture with skip connections, a splitting of the net-
works into weight-sharing subnetworks and an identity loss as identity-preserving
mechanisms. This ensures that the difference between the generated healthy and
the real input image is accurate enough to highlight the regions of interest, re-
sulting in more detailed maps of the characteristics of the disease than previous
methods.
We point out that compared to classical anomaly detection, we train only on
one specific disease and extract information about its characteristics. With this
approach, changes of already existing structures can be detected in a detailed
manner, which is different from the presence or absence of lesions.
We evaluate our method on a synthetic dataset designed for this task. Fur-
thermore, we apply it on the Chexpert dataset [12] of X-ray images of lungs
in order to detect pleural effusions. Our method outperforms state-of-the-art
anomaly detection algorithms in showing deformations of already existing struc-
tures. Furthermore, it provides better classification results than standard clas-
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sification algorithms. With the addition of visually highlighting the regions
of interest, the attention is led to the relevant parts of the image, making a
step towards interpretable machine learning. The code is publicly available at
https://github.com/JuliaWolleb/DeScarGAN.

2 Method

Let F = {x | x : R2 → R} be a set of medical images from the same imaging
modality showing the same anatomical structures, with P ⊂ F the set of images
of patients affected by a specific disease and H ⊂ F the set of images of a healthy
control group. The aim of our method is, given a new image of unknown class,
to detect regions in the image that show the same characteristics as the images
in P and to assign a class label.
Let p be the class of the images in P and h the class of the images in H, with
c, c̄ ∈ {h, p} and c 6= c̄. The main idea is to translate a real image rc of either
class c to an artificial image ac̄ of class c̄. The pathological region is then defined
as the difference d := ah − rc between the artificial healthy image ah and the real
input image rc of class c. Thus we perform image-to-image translation between
the unpaired sets P and H. A diagram showing the workflow of our method is
given in Figure 1. Given any image rc, the generator both generates an artificial
image ac of the same class c and an artificial image ac̄ of class c̄. To ensure that
rc and ah only differ in the pathological region, we add the identity loss Lid and
the reconstruction loss Lrec for cycle consistency.

Fig. 1. Workflow of our method. The components of the loss functions for the discrim-
inator are shown in green, the ones for the generator in orange.

The generator consists of two branches, its architecture is shown in Figure 2.
We refer to the generator Gp : F → P for generating images of class p and gen-
erator Gh : F → H for generating images of class h.
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Fig. 2. The architecture of the generator network. Every box stands for a convolutional
layer with the stated output size (image width × image height, feature channels) and
kernelsize 3, followed by a batch normalization layer and a ReLU activation function.

The skip connections of the generator ensure that the artificial image main-
tains the detailed structures of the input image. This is a way to alter only the
necessary features, thus making the difference map d more accurate. The skip
connection in the uppermost layer turned out to be too restrictive to perform
the translation to another class. By omitting this skip connection, we enable the
generator to perform structural changes.

The discriminator network has the task to both classify images into healthy
and diseased subjects and to distinguish between real and artificial images.
Therefore, it consists of three subnets that share parameters, as shown in Fig-
ure 3. Dp : P → R distinguishes between real and artificial images of class p,
Dh : H → R does the same for class h and Dcls : F → R is the network for clas-
sification, following the structure of a VGG net [22]. The branching of the gener-
ator and discriminator gives a higher range of flexibility compared to StarGAN,
which turned out to be beneficial for image-to-image translation.

Fig. 3. The architecture of the discriminator with three subnets Dp, Dh and Dcls that
share parameters. Every box stands for a convolutional layer with kernelsize 3 and with
the stated output size, followed by a ReLU activation function.

With the notation from above, Dc can be Dp or Dh interchangeably, and
Dc̄ denotes the discriminator for the contrary class. The same applies for the
generator G.

2.1 Loss functions

Adversarial Loss The generator aims to generate images that the discrim-
inator cannot distinguish from real images. Following the idea of Wasserstein
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GANs [9], we add a gradient penalty loss and define the adversarial loss for the
discriminator as

Ladv,d = −Erc,c[(Dc(rc))] + Erc,c̄[Dc̄(Gc̄(rc)] + λgpEx̂,c[(‖ ∇x̂Dc(x̂c) ‖2 −1)2],
(1)

where x̂c is given by x̂c = trc + (1− t)ac with t ∼ U([0, 1]). The adversarial loss
for the generator is defined as

Ladv,g = −Erc,c̄[Dc̄(Gc̄(rc)]. (2)

Identity Loss Considering an input image rc, we aim for identity between rc
and Gc(rc). Therefore, the identity loss for the generator is defined as

Lid = Erc,c[‖ rc −Gc(rc) ‖2]. (3)

Classification Loss The classification subnet Dcls of the discriminator has to
correctly classify rc to belong to class c. The objective function for the discrim-
inator is described as

Lcls,d = Erc,c[−logDc
cls(rc)], (4)

where the term Dc
cls(rc) describes the computed probability score that rc belongs

to class c. The generator aims for classification of an artificial image ac̄ = Gc̄(rc)
to belong to class c̄. Therefore, the classification loss for the generator is defined
as

Lcls,g = Erc,c̄[−logDc̄
cls(Gc̄(rc))]. (5)

Reconstruction Loss When an input image rc of class c is translated into an
image ac̄ = Gc̄(rc) of class c̄, we aim for cycle consistency when translating ac̄
back to class c. This is achieved by adding a reconstruction loss term for the
generator, given by

Lrec = Erc,c[‖ rc −Gc(Gc̄(rc)) ‖2]. (6)

Total Loss Objective The overall loss function for the generator is defined as

Lg = λadv,gLadv,g + λrecLrec + λidLid + λcls,gLcls,g, (7)

and for the discriminator as

Ld = λadv,dLadv,d + λcls,dLcls,d. (8)
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3 Synthetic Dataset

The purpose of weakly supervised algorithms is to overcome the need for pixel-
wise labels and the human bias within these labels. In order not to be affected
by this human bias, we designed a synthetic data set for the evaluation of our
method. Two ellipses e1 and e2 are present in the image, one larger than the other
and both with variable contour thickness, origin and orientation. The background
is structured in concentric waves with two variable origins and variable wave
length; this provides a higher level of complexity. Images of the healthy group
H keep this structure. If the image is deformed such that the smaller ellipse e1

shrinks to an even smaller ellipse, the background is also deformed. Images with
this characteristics belong to the diseased group P. Implementation details are
provided in the supplementary material.
In Figure 4, exemplary images of the two sets H and P are shown. The pixel-wise
ground truth (GT ) is known by definition. We generate a training set of 2000
images of each class, and a validation and a test set with 200 images of each
class.

(a) (b) (c) 1

-1

Fig. 4. Images (a) and (b) show exemplary images of the sets H and P respectively.
Image (c) corresponds to the ground truth given by the difference (a) - (b).

4 Results and Discussion

We compare our method against StarGAN, FP-GAN, the VAE proposed in [4]
and VAGAN. To train our model, we use the Adam optimizer [14] with β1 = 0.5,
β2 = 0.999, and a learning rate of 10−4. For every update of the parameters
of the generator, we update the discriminator 5 times. We manually choose
the hyperparameters λadv,d = 20, λgp = 10, λid = λrec = 50, λadv,g = λcls,g = 1,
and λcls,d = 5. The number of trained parameters is 8528262 for the generator
and 18170180 for the discriminator.

4.1 Synthetic Dataset

As a measure for the pixel-wise error for the anomaly detection task, we choose
the Dice score, AUROCpix [10] for pixel-wise classification, the Mean Square
Error (MSE) and the Structural Similarity Index (SSIM) between d and GT ,
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and finally the MSE between an input image rh ∈ H and the corresponding
artificial image ah. For the calculation of the Dice score and the AUROCpix, we
perform a thresholding based on the average Otsu [16] threshold value on the GT
images. The results are shown in Table 1. All methods classify the images almost
perfectly on the test set, so we omit those results. VAGAN is not designed to
take an image rh ∈ H as input, but we still report the result for completeness.

Table 1. Results on the synthetic dataset.

Dice AUROCpix MSE(d,GT ) (var) SSIM MSE(rh, ah) (var)

StarGAN 0.710 0.962 0.0229 (0.128) 0.888 0.0025 (0.002)
FP-GAN 0.766 0.975 0.0160 (0.004) 0.917 0.0027 (0.003)
VAGAN 0.442 0.954 0.1321 (0.132) 0.869 0.0036 (0.002)
VAE 0.288 0.809 0.0734 (0.071) 0.668 0.0316 (0.031)
DeScarGAN 0.853 0.988 0.0086(0.002) 0.954 0.0018 (0.001)

In Figure 5, exemplary real images rp ∈ P of the synthetic dataset with the
corresponding artificial images ah ∈ H of the different methods are shown. Our
method provides the most accurate difference map d. The results of FP-GAN
are good as well, but the method fails to generate a proper unshrunken ellipse
e1. VAE and VAGAN fail to generate an accurate image of class h, resulting in
a difference map not close to the ground truth. For visualization, we omit the
StarGAN method since it is outperformed by its extension FP-GAN.

Input rp Output ah
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Fig. 5. Visualization of the results of our DeScarGAN, FP-GAN, VAGAN and VAE
for two samples of the synthetic dataset.
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4.2 Chexpert Dataset

For the Chexpert dataset introduced in [12], we used a training set of 14179
images of healthy subjects and 16776 images of subjects that suffer from pleural
effusions. The test and validation set each consist of 200 images for each class.

Table 2. Classification results and MSE(rh, ah) on the Chexpert dataset.

Accuracycls Kappa score AUROCimage MSE(rh, ah) (var)

StarGAN 0.853 0.705 0.923 0.0534 (0.095)
FP-GAN 0.875 0.750 0.939 0.0060 (0.007)
VAGAN × × × 0.0638 (0.065)
VAE × × × 0.0231 (0.030)
Densenet169 0.893 0.785 0.951 ×
Dcls 0.890 0.780 0.949 ×
DeScarGAN 0.898 0.795 0.953 0.0035 (0.003)

For classification, we compare DeScarGAN against the classification results
of StarGAN, FP-GAN, Densenet169 [11] and the classifier Dcls without the GAN
mechanism. The result for the image-level classification is measured in classifi-
cation accuracy, the Cohen’s kappa score [6] and the AUROC score. Further, we
measure the MSE between real images rh ∈ H and artificial images ah ∈ H. The
scores are summarized in Table 2.
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Fig. 6. Comparison of our DeScarGAN against FP-GAN, VAGAN and VAE for two
samples of the Chexpert dataset.
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DeScarGAN achieves better classification results than the pure classification
networks Dcls and Densenet169, indicating that the GAN mechanism supports
the classification network. The results of the different methods are visualized in
Figure 6. We observe that the VAE fails to detect pleural effusions. Although FP-
GAN detects similar regions as our method, the generated maps appear blurry
and mark regions outside the thorax. The additive map of VAGAN also outlines
parts of the arms and upper chest as abnormal. Our method generates the most
detailed difference map, not highlighting any regions outside the pleural space.

5 Conclusion

We proposed DeScarGAN, a method to generate disease-specific, detailed maps
that show pathological changes of existing anatomical structures. The novelty
of our method is the introduction of a new architecture with skip connections,
a splitting of the networks into weight-sharing subnetworks and an identity loss
as identity-preserving mechanisms. This setup enables the detection of deforma-
tions of existing anatomical structures, e.g., atrophy or changes in the pleural
space due to pleural effusions.
When comparing our DeScarGAN against state-of-the-art anomaly detection al-
gorithms, we outperform FP-GAN, VAE, StarGAN and VAGAN on a synthetic
dataset. Although FP-GAN provides good results by generating additive maps,
DeScarGAN generates a complete new image and provides more precise maps
that reliably outline the regions of pathological changes.
When applying our model on the Chexpert lung X-ray dataset with pleural
effusions, our classification scores are better than state-of-the-art classification
networks. The generated maps detect anomalies in a detailed manner and lead
the attention to the relevant parts of the anatomy. This approach has the po-
tential to bridge the gap between the knowledge about the presence of a disease
and setting the focus of a longitudinal study observing the region of interest.

Acknowledgement. This work was supported by Novartis FreeNovation.
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Supplementary Material to DeScarGAN

Julia Wolleb, Robin Sandkühler, and Philippe C. Cattin

1 Generation of the Synthetic Dataset

Table 1. Equations used for the generation of the synthetic dataset. The images are
of size 256 × 256, and the image coordinates run from 0 to 255. The ellipses have a
rotation angle φ and a contour thickness g. If the two ellipses intersect, the image is
excluded from the dataset. The images of the healthy group H show the two ellipses
e1 and e2, the background is given by the circles c1 and c2. The images of the diseased
group P are generated by deforming a healthy image with the given deformation field.

name formula parameters

ellipse e1 (a cos(θ) +m1, b sin(θ) +m2) = 1
m1,m2 ∼ U([50, 200]), ∀θ ∈ [0, 2π),
a ∼ N (40, 1), b ∼ N (20, 1),
φ ∼ U([0, 2π]), g ∼ N (5, 0.7)

ellipse e2 (a cos(θ) +m1, b sin(θ) +m2) = 1
m1,m2 ∼ U([50, 200]), ∀θ ∈ [0, 2π),
a ∼ N (70, 1), b ∼ N (35, 1),
φ ∼ U([0, 2π]), g ∼ N (5, 0.7)

circle c1 (t cos θ +m1, t sin θ +m2) = sin(tf)h
∀t ∈ [0, 255], ∀θ ∈ [0, 2π),
h∼ U([0.2, 0.4]), f ∼ U([0.2, 0.35]),
m1,m2 ∼ U([50, 200])

circle c2 (t cos θ +m1, t sin θ +m2) = sin(tf)h
∀t ∈ [0, 255], ∀θ ∈ [0, 2π),
h ∼ U([0.2, 0.4]), f ∼ U([0.35, 0.5]),
m1 and m2 of e2

deformation
field

∇
(

1

(2π ∗ 0.192)
e
−
(

(x−m1)2

(2∗0.192)
+

(y−m2)2

(2∗0.192)

))
m1 and m2 of e1
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(a) (b) (c)

Fig. 1. Image (a) shows an exemplary image of the set H. Image (b) shows the defor-
mation field used to transform image (a) into image (c) of the diseased group P. For
the dataset, either image (a) or image (c) is chosen, such that the sets H and P remain
unpaired.
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Chapter 7

Diffusion Models for Medical Anomaly
Detection

Since the training of GANs is cumbersome and unstable, we replace the GAN in the weakly
supervised anomaly detection approach proposed in Chapter 6 with a denoising diffusion model.
Given two datasets, one containing images of healthy controls and one containing images of
patients, the goal is to translate images of patients into synthetic images of healthy controls. The
diffusion model is trained to generate realistic-looking images. A separate binary classification
model is trained to distinguish between healthy and diseased subjects. By using the iterative
deterministic noising and denoising scheme of denoising diffusion implicit models, an input
image can be encoded in noise and translated to the desired output class using gradient guidance.
Thereby, only the anomalous image regions are changed, rendering a very detailed difference
map between an input image of a patient and the output image of a healthy subject.
We evaluate our approach on the CheXpert dataset for detecting pleural effusions and on the
BRATS2020 dataset for brain tumor detection.

Publication. The following paper is accepted at the 25th International Conference on Medical
Image Computing and Computer Assisted Intervention (MICCAI), September 2022, Singapore.
The manuscript was published as part of the conference proceedings [194]. The code for this
framework is open-source1.

1https://gitlab.com/cian.unibas.ch/diffusion-anomaly
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Diffusion Models for Medical Anomaly Detection

Julia Wolleb, Florentin Bieder, Robin Sandkühler, Philippe C. Cattin

Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
julia.wolleb@unibas.ch

Abstract. In medical applications, weakly supervised anomaly detec-
tion methods are of great interest, as only image-level annotations are
required for training. Current anomaly detection methods mainly rely
on generative adversarial networks or autoencoder models. Those mod-
els are often complicated to train or have difficulties to preserve fine
details in the image. We present a novel weakly supervised anomaly de-
tection method based on denoising diffusion implicit models. We combine
the deterministic iterative noising and denoising scheme with classifier
guidance for image-to-image translation between diseased and healthy
subjects. Our method generates very detailed anomaly maps without
the need for a complex training procedure. We evaluate our method on
the BRATS2020 dataset for brain tumor detection and the CheXpert
dataset for detecting pleural effusions.

Keywords: Anomaly detection · Diffusion models · Weak supervision.

1 Introduction

In medical image analysis, pixel-wise annotated ground truth is hard to obtain,
often unavailable and contains a bias to the human annotators. Weakly super-
vised anomaly detection has gained a lot of interest in research as an essential
tool to overcome the aforementioned issues. Compared to fully supervised meth-
ods, weakly supervised models rely only on image-level labels for training. In
this paper, we present a novel pixel-wise anomaly detection approach based on
Denoising Diffusion Implicit Models (DDIMs) [25]. Figure 1 shows an overview

Fig. 1. Proposed sampling scheme for image-to-image translation between a diseased
input image and a healthy output image. The anomaly map is defined as the difference
between the two.
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of the proposed method. We assume two unpaired sets of images for the training,
the first containing images of healthy subjects and the second images of subjects
affected by a disease. Only the image and the corresponding image-level label
(healthy, diseased) are provided during training.
Our method consists of two main parts. In the first part, we train a Denois-
ing Diffusion Probabilistic Models (DDPM)[10] and a binary classifier on a
dataset of healthy and diseased subjects. In the second part, we create the ac-
tual anomaly map of an unseen image. For this, we first encode the anatomical
information of an image with the reversed sampling scheme of DDIMs. This is
an iterative noising process. Then, in the denoising process, we use the deter-
ministic sampling scheme proposed in DDIM with classifier guidance to gen-
erate an image of a healthy subject. The final pixel-wise anomaly map is the
difference between the original and the synthetic image. With this encoding
and denoising procedure, our method can preserve many details of the input
image that are not affected by the disease while re-painting the diseased part
with realistic looking tissue. We apply our algorithm on two different medical
datasets, i.e., the BRATS2020 brain tumor challenge [16, 2, 3], and the CheX-
pert dataset [11], and compare our method against standard anomaly detec-
tion methods. The source code and implementation details are available at
https://gitlab.com/cian.unibas.ch/diffusion-anomaly.

Related Work In classical anomaly detection, autoencoders [29, 13] are trained
on data of healthy subjects. Any deviations from the learned distribution then
lead to a high anomaly score. This idea has been applied for unsupervised
anomaly detection in medical images [30, 6, 14], where the difference between
the healthy reconstruction and the anomalous input image highlight pixels that
are perceived as anomalous. Other approaches focus on Generative Adversarial
Networks (GANs) [9] for image-to-image translation [24, 5, 27].
However, training of GANs is challenging and requires a lot of hyperparameter
tuning. Furthermore, additional loss terms and changes to the architecture are
required to ensure cycle-consistent results. In [19, 1], the gradient of a classifier
is used to obtain anomaly maps. Recently, transformer networks [21] were also
successfully applied on brain anomaly detection [20]. Non-synthesis based meth-
ods such as density estimation, feature modeling or self-supervised classification
also provide state-of-the-art techniques for anomaly detection [28]. In [15], a
new thresholding method is proposed for anomaly segmentation on the BRATS
dataset.
Lately, DDPMs were in focus for there ability to beat GANs on image synthesis
[8]. In the flow of this success, they were also applied on image-to-image transla-
tion [23, 7], segmentation [4], reconstruction [22] and registration[12]. As shown
in [25], DDIMs are closely related to score-based generative models [26], which
can be used for interpolation between images. However, there is no diffusion
model for anomaly detection so far to the best of our knowledge.
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2 Method

A typical example for image-to-image translation in medicine is the transforma-
tion of an image of a patient to an image without any pathologies. For anomaly
detection it is crucial that only pathological regions are changed, and the rest
of the image is preserved. Then, the difference between the original and the
translated image defines the anomaly map. Our detail-preserving image-to-image
translation is based on diffusion models. We follow the formulation of DDPMs
given in [10, 17]. In Algorithm 1, we present the workflow of our approach.
The general idea of diffusion models is that for an input image x, we generate a
series of noisy images {x0, x1, ..., xT } by adding small amounts of noise for many
timesteps T . The noise level t of an image xt is steadily increased from 0 to
T . A U-Net ϵθ is trained to predict xt−1 from xt according to (5), for any step
t ∈ {1, ..., T}. During training, we know the ground truth for xt−1, and the model
is trained with an MSE loss. During evaluation, we start from xT ∼ N (0, I) and
predict xt−1 for t ∈ {T, ..., 1}. With this iterative denoising process, we can gen-
erate a a fake image x0. The forward noising process q with variances β1, ..., βT

is defined by
q(xt|xt−1) := N (xt;

√
1− βtxt−1, βtI). (1)

This recursion can be written explicitly as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, with ϵ ∼ N (0, I). (2)

with αt := 1 − βt and ᾱt :=
∏t

s=1 αs. The denoising process pθ is learned by
optimizing the model parameters θ and is given by

pθ(xt−1|xt) := N
(
xt−1;µθ(xt, t), Σθ(xt, t)

)
. (3)

The output of the U-Net is denoted as ϵθ, and the MSE loss used for training is

L := ||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||22, with ϵ ∼ N (0, I). (4)

As shown in [25], we use the DDPM formulation to predict xt−1 from xt with

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
+
√
1− ᾱt−1 − σ2

t ϵθ(xt, t) + σtϵ, (5)

with σt =
√
(1− ᾱt−1)/(1− ᾱt)

√
1− ᾱt/ᾱt−1. DDPMs have a stochastic ele-

ment ϵ in each sampling step (5). In DDIMs however, we set σt = 0, which results
in a deterministic sampling process. As derived in [25], (5) can be viewed as the
Euler method to solve an ordinary differential equation (ODE). Consequently,
we can reverse the generation process by using the reversed ODE. Using enough
discretization steps, we can encode xt+1 given xt with

xt+1 = xt+
√
ᾱt+1

[(√
1

ᾱt
−

√
1

ᾱt+1

)
xt +

(√
1

ᾱt+1
− 1−

√
1

ᾱt
− 1

)
ϵθ(xt, t)

]
.

(6)
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By applying (6) for t ∈ {0, ..., T − 1}, we can encode an image x0 in a noisy
image xT . Then, we recover the identical x0 from xT by using (5) with σt = 0
for t ∈ {T, ..., 1}.
For anomaly detection, we train a DDPM on a dataset containing images of
healthy and diseased subjects. For evaluation, we define a noise level L ∈ {1, ..., T}
and a gradient scale s. Given an input image x, we encode it to a noisy image
xL using (6) for t ∈ {0, ..., L − 1}. With this iterative noising process, we can
induce anatomical information of the input image. During the denoising process,
we follow (5) with σt = 0 for t ∈ {L, ..., 1}. We apply classifier guidance as in-
troduced in [8] to lead the image generation to the desired healthy class h. For
this, we pretrain a classifier network C on the noisy images xt for t ∈ {1, ..., T},
to predict the class label of x. During the denoising process, the scaled gradient
s∇xt

logC(h|xt, t) of the classifier is used to update ϵθ(xt, t). This iterative nois-
ing and denoising scheme is presented in Algorithm 1. We generate an image x0

of the desired class h that preserves the basic structure of x. The anomaly map
is then defined by the difference between x and x0. The choice of the noise level
L and the gradient scale s is crucial for the trade-off between detail-preserving
image reconstruction and freedom for translation to a healthy subject.

Algorithm 1 Anomaly detection using noise encoding and classifier guidance
Input: input image x, healthy class label h, gradient scale s, noise level L
Output: synthetic image x0, anomaly map a
for all t from 0 to L− 1 do

xt+1 ← xt +
√
ᾱt+1

[(√
1
ᾱt
−

√
1

ᾱt+1

)
xt +

(√
1

ᾱt+1
− 1−

√
1
ᾱt
− 1

)
ϵθ(xt, t)

]
end for
for all t from L to 1 do

ϵ̂← ϵθ(xt, t)− s
√
1− ᾱt∇xt logC(h|xt, t)

xt−1 ←
√
ᾱt−1

(
xt−

√
1−ᾱt ϵ̂√
ᾱt

)
+
√
1− ᾱt−1ϵ̂

end for
a←

∑
channels

∣∣x− x0

∣∣
return x0, a

3 Experiments

The DDPM is trained as proposed in [17] without data augmentation. We choose
the hyperparameters for the DDPM model as described in the appendix of [8],
for T = 1000 sampling steps. The model is trained with the Adam optimizer
and the hybrid loss objective described in [17], with a learning rate of 10−4, and
a batch size of 10. By choosing the number of channels in the first layer as 128,
and using one attention head at resolution 16, the total number of parameters is
113,681,160 for the diffusion model and 5,452,962 for the classifier. We train the
class-conditional DDPM model for 50,000 iterations and the classifier network

MICCAI 2022 73



Diffusion Models for Medical Anomaly Detection 5

for 20,000 iterations, which takes about one day on an NVIDIA Quadro RTX
6000 GPU. We used Pytorch 1.7.1 as software framework. The CheXpert and
the BRATS2020 dataset are used for the evaluation of our method.

CheXpert This dataset contains lung X-ray images. For training, we choose
14,179 subjects of the healthy control group, as well as 16,776 subjects suffering
from pleural effusions. The images are of size 256×256 and normalized to values
between 0 and 1. The test set comprises 200 images of each class.

BRATS2020 This dataset contains 3D brain Magnetic Resonance (MR) images
of subjects with a brain tumor, as well as pixel-wise ground truth labels. Every
subject is scanned with four different MR sequences, namely, T1-weighted, T2-
weighted, FLAIR, and T1-weighted with contrast enhancement. Since we focus
on a 2D approach, we only consider axial slices. Each slice contains the afore-
mentioned four channels, is padded to a size of 256 × 256, and normalized to
values between 0 and 1. Since tumors mostly occur in the middle of the brain,
we exclude the lowest 80 slices and the uppermost 26 slices. A slice is considered
healthy if no tumor is found on the ground truth label mask. All other slices get
the image-level label diseased. Our training set includes 5,598 healthy slices, and
10,607 diseased slices. The test set consists of 1,082 slices containing a tumor,
and 705 slices without.

Input InputOutput OutputAnomaly Map Anomaly Map

O
u
rs

D
D

P
M

F
P
-G

A
N

V
A

E

Fig. 2. Results for two X-ray images of the CheXpert dataset for L = 500 and s = 100.
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4 Results and Discussion

For the evaluation of our method, we compare our method to the Fixed-Point
GAN (FP-GAN) [24], and the variational autoencoder (VAE) proposed in [6].
As an ablation study, we add random noise for L steps to the input image us-
ing and perform the sampling using the DDPM sampling scheme with classifier
guidance. In all experiments, we set s = 100 and L = 500. In Figure 2, we show
two exemplary patient images of the CheXpert dataset, and apply all comparing
methods to generate the corresponding healthy image. We observe that com-
pared to the other methods, our approach generates realistic looking images
and preserves all the details of the input image, which leads to a very detailed
anomaly map. The other methods either change other parts image, or are not
able to find an anomaly. Figure 3 shows the results for all four MR sequences for
an exemplary image of the BRATS2020 dataset. More examples can be found in
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Fig. 3. Results for an image of the BRATS2020 dataset for L = 500 and s = 100.

MICCAI 2022 75



Diffusion Models for Medical Anomaly Detection 7

the supplementary material. Of all methods, only the VAE tries to reconstruct
the right ventricle. Comparing our results to the results of DDPM, we see that
encoding information in noise using the deterministic noising process of DDIM
brings the advantage that all details of the input image can be reconstructed.
In contrast, we see that sampling with the DDPM approach changes the basic
anatomy of the input image. The computation of a complete image translation
takes about 158s. This longish running time is mainly due to the iterative image
generation process. We could speed up this process by choosing a smaller L, or
by skipping timesteps in the DDIM sampling scheme. However, we observed that
this degrades the image quality.
In [15], using the reconstruction error as anomaly score has received some criti-
cism. It was shown that a simple method based on histogram equalization could
outperform neural networks and state that reconstruction quality does not cor-
relate well with the Dice score. As an alternative, anomaly scores of other types
of methods, i.e., the log-likelihood of density estimation models, will be explored
in future work.

Hyperparameter Sensitivity Our method has two major hyperparameters,
the classifier gradient scale s and the noise level L. We performed experiments to
evaluate the sensitivity of our method to changes of s and L. On the BRATS2020
dataset, we have pixel-wise ground truth labels, which enable us to calculate the
Dice score and the Area under the receiver operating statistics (AUROC) for
diseased slices. For the Dice score, we use the average Otsu thresholding [18] on
the anomaly maps. In Figure 4, we show the average Dice and AUROC scores on
the test set with respect to the gradient scale s for different noise levels L. The
scores for the comparing methods FP-GAN and VAE are shown in horizontal
bars in Figure 4.
Figure 5 shows an exemplary FLAIR image. We fix L = 500 and show the sam-
pled results for various values of s. If we choose s too small, the tumor cannot be
removed. However, if we choose s too large, additional artefacts are introduced
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Fig. 4. Average Dice and AUROC scores on the test set for different s and L.
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to the image. Those artefacts are mainly at the border of the brain, and lead to
a decrease in the Dice score. In Figure 6, we fix s = 100, and show the sampled
results for the same image for varying noise levels L. If L is chosen too large,
this results in a destruction of the images. If L is chosen too small, the model
does not have enough freedom to remove the tumor from the image.
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Fig. 5. Illustration of the effect of the gradient scale s for a fixed noise level L = 500.
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Fig. 6. Illustration of the effect of the noise level L, for a fixed gradient scale s = 100.

Translation of a Healthy Subject If an input image shows a healthy subject,
our method should not make any changes to this image. In Figure 7, we evaluate
our approach on a healthy slice of the BRATS dataset. We get a very detailed
reconstruction of the image, resulting in an anomaly map close to zero.

5 Conclusion

In this paper, we presented a novel weakly supervised anomaly detection method
by combining the iterative DDIM noising and denoising schemes, and classifier
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Fig. 7. Results of the presented method for an image without a tumor. The difference
between the input image and the synthetic image is close to zero.

guidance. No changes were made to the loss function or the training scheme of the
original implementations, making the training on other datasets straightforward.
We applied our method for anomaly detection on two different medical datasets
and successfully translated images of patients to images without pathologies.
Our method only performs changes in the anomalous regions of the image to
achieve the translation to a healthy subject. This improves the quality of the
anomaly maps. We point out that we achieve a detail-consistent image-to-image
translation without the need of changing the architecture or training procedure.
We achieve excellent results on the BRATS2020 and the CheXpert dataset.
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tion initiative and the Uniscientia Foundation (project #147-2018).
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Supplementary Material

1 Additional Results on the CheXpert Dataset
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Fig. 1. Additional results of our method for diseased subjects, for L = 500 and s = 100.

2 Additional Results on the Brats2020 Dataset
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Fig. 2. Results of our method for a healthy subject, for L = 500 and s = 100.
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Fig. 3. Additional results of our method for diseased subjects, for L = 500 and s = 100.
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Chapter 8

The Swiss Army Knife for
Image-to-Image Translation:
Multi-Task Diffusion Models

In Chapter 7, image-to-image translation is performed based on a binary classification model
that distinguishes between healthy and diseased subjects. The following manuscript presents an
extension of this idea, and we perform image-to-image translation based on a regression task and
a segmentation task. We train a denoising diffusion model and a separate task-specific model on
the same dataset. By adding the gradient of the task-specific model, we demonstrate that image-
to-image translation using denoising diffusion implicit models and gradient guidance leads to
an output image with the desired characteristics. Other features such as the background are
preserved in great detail. We evaluate our method with an age regression task on facial photos,
simulate tumor growth and inpaint tumors in brain MR images of healthy subjects at a desired
location. The proposed framework is flexible and can be applied to various tasks without the
need to retrain the diffusion model.
This technical report was written in joint first authorship with Robin Sandkühler, who had the
initial idea for this approach. The method was developed based on an equal discussion, and the
code implementation and the experiments were performed by Julia Wolleb.

Technical Report This manuscript has been submitted to arxiv.org1.

1https://arxiv.org/pdf/2204.02641v1.pdf

83

arxiv.org
https://arxiv.org/pdf/2204.02641v1.pdf


The Swiss Army Knife for Image-to-Image Translation:
Multi-Task Diffusion Models

Julia Wolleb⋆, Robin Sandkühler⋆, Florentin Bieder, Philippe C. Cattin

Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
julia.wolleb@unibas.ch

Abstract. Recently, diffusion models were applied to a wide range of image anal-
ysis tasks. We build on a method for image-to-image translation using denoising
diffusion implicit models and include a regression problem and a segmentation
problem for guiding the image generation to the desired output. The main ad-
vantage of our approach is that the guidance during the denoising process is done
by an external gradient. Consequently, the diffusion model does not need to be
retrained for the different tasks on the same dataset. We apply our method to
simulate the aging process on facial photos using a regression task, as well as
on a brain magnetic resonance (MR) imaging dataset for the simulation of brain
tumor growth. Furthermore, we use a segmentation model to inpaint tumors at
the desired location in healthy slices of brain MR images. We achieve convincing
results for all problems.

Keywords: Diffusion models · Image-to-image translation · Regression · Seg-
mentation.

1 Introduction

For many applications, it is of great interest to perform image-to-image translation
such that the output image is changed in some regions to the desired characteristics
and unchanged in other regions, e.g., the image background. Most approaches rely on

Fig. 1. Proposed scheme for image-to-image translation for the example of age regression.

⋆ equal contribution
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generative adversarial nets (GANs) [8] or variational autoencoders [17]. However, the
adversarial training of GANs can be difficult and requires a lot of hyperparameter tuning.
Furthermore, a big challenge is that only image features related to the desired output
characteristics should be changed. To circumvent those issues, we propose an approach
based on Denoising Diffusion Probabilistic Models (DDPMs)[9] and the sampling scheme
of Denoising Diffusion Implicit Models (DDIMs) [24].
In [26], we performed image-to-image translation between different classes by training
a DDPM, and using the DDIM noising and denoising scheme and classifier guidance
during sampling. We build on this approach and present a method for image-to-image
translation for variable tasks. Figure 1 shows an overview of the proposed approach.
First, we separately train a DDPM as well as an external task-specific model on the
same dataset. In this work, this external model is a regression or a segmentation model.
The case of a classification model is already described in [26]. Image-to-image translation
is performed only during the sampling process. For this, we first encode the information
about the input image with the iterative noising process of DDIMs. During the denoising
process using the DDIM sampling scheme, we inject the gradient of the task-specific
model in each sampling step. By scaling this gradient, the generation of the output
image is guided towards the desired output.
For the regression problem, we apply our algorithm to a dataset of facial images [7] for
age prediction, where image generation is guided towards a desired age. An example for
this is given in Figure 2, where we translate photos of two exemplary people of age 40
to photos showing the same person at various other ages. Moreover, we use a regression
task on the BRATS2020 challenge [15,1,2] for the simulation of brain tumor growth.
The segmentation problem is applied to the BRATS2020 dataset for the translation of
images of healthy subjects to images containing a brain tumor at a location that we can
freely choose.

Fig. 2. Results of our method for the age regression task on facial photos. The original images
framed in red show exemplary subjects of age 40. With our approach, they are translated to
images matching a desired age value i ∈ {10, 20, 60, 80}.
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Related Work In computer vision, image-to-image translation towards specific image
attributes has been a task of great interest and includes style transfer [14], relighting or
colorization tasks [21], and changing facial attributes such as hair color or gender [5].
The translation of images to subjects of another age has been explored by using autoen-
coders [12] based on facial landmarks, or by adapting GANs [10,23]. A big challenge of
those approaches is that only task-related features should be changed, and the rest of
the image remains consistent with the input image.
Lately, DDPMs were in focus due to their success in tasks such as image genera-
tion [6], image-to-image translation [22,4], segmentation [3,27], reconstruction [20] and
registration[11]. In [19], denoising diffusion models were used for multivariate probabilis-
tic time series forecasting. In [13], the gradient of image-text or image matching scores
are used to guide the generation of synthetic images.
The presented method is based on our previous work [26], where image-to-image trans-
lation was performed based on a binary classification problem. This approach used clas-
sifier guidance during the sampling process, such that the training of the DDPM is not
changed and a pretrained model can be used. The big advantages are the straightforward
training process, and the fact that only features related to the classification problem are
changed. The rest of the image is preserved.
In [18], diffusion autoencoders were proposed for meaningful representation learning.
They encode image information in a latent space and use a conditional DDIM to ma-
nipulate the image attributes. Very recently, [25] proposed the training of two diffusion
models for translations between arbitrary pairs of source-target domains. In contrast to
our method, those approaches depend on a manipulation of the latent space, and the
diffusion models need to be retrained for each application. For our method, the same
diffusion model can be used for various applications, as the guidance towards the desired
attributes is done only during the sampling process by an external gradient.

2 Method

The goal is to perform image-to-image translation such that the output image matches
task-specific criteria. Thereby, it is important that only features related to the task are
changed, and all other features are preserved. Our method follows [26], where the task-
specific criteria is given by a binary classifier. In this work, we adapt this method with
a regression model as described in Algorithm 1, as well as with a segmentation model,
as described in Algorithm 2.
We implement a DDPM according to [9,16]. For an input image x, we add small
amounts of noise for many steps T , such that we get a series of increasingly noisy
images {x0, x1, ..., xT }. A diffusion model is given by a U-Net ϵθ, which is trained with
the MSE loss to predict xt−1 from xt. During sampling, a synthetic image x0 can be
generated from xT ∼ N (0, I) by predicting xt−1 from xt for t ∈ {T, ..., 1} using (3).
During training, we can explicitly write the forward noising process as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, with ϵ ∼ N (0, I). (1)

Here, we define αt := 1 − βt and ᾱt :=
∏t

s=1 αs, where β1, ..., βT denote the forward
process variances. This noisy image xt given in (1) serves as input for the U-Net ϵθ,
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which is trained using the MSE loss

L := ||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||22, with ϵ ∼ N (0, I). (2)

We can then predict xt−1 from xt with

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
+
√

1− ᾱt−1 − σ2
t ϵθ(xt, t) + σtϵ. (3)

In DDIMs, we set σt = 0, which results in a deterministic sampling process. Equation
(3) can be interpreted as the Euler method to solve the ordinary differential equation
(ODE) described in [24]. By solving the reversed ODE, we can reverse the generation
process. Consequently, using enough discretization steps, we can encode xt+1 given xt

with

xt+1 = xt +
√
ᾱt+1

[(√
1

ᾱt
−

√
1

ᾱt+1

)
xt +

(√
1

ᾱt+1
− 1−

√
1

ᾱt
− 1

)
ϵθ(xt, t)

]
. (4)

For image-to-image translation, we define a noise level L ∈ {1, ..., T}, as proposed in
[26]. By applying (4) for t ∈ {0, ..., L− 1}, we can encode an image x0 in a noisy image
xL. With this deterministic, iterative noising process, the information of the input image
x is stored in xL.
In addition to the diffusion model, we train a separate task-specific network on our set
of noisy images {x0, x1, ..., xT }. During the denoising process, we follow (3) with σt = 0
for t ∈ {L, ..., 1}, and add the gradient of the task-specific network in every step during
sampling to lead the image generation to the desired output characteristics. The case of
classification was already presented in [26]. In Sections 2.1 and 2.2, we investigate the
tasks of regression and segmentation.

2.1 Regression

The regression model R follows the architecture of the encoder of the diffusion model,
and is trained with the MSE loss. The iterative noising and denoising scheme for image-
to-image translation for a regression problem is presented in Algorithm 1. We encode an
image x in a noisy image xL, and define a desired value i. During the denoising process,
the gradient ∇xtR(xt, t) of the regression model is used to update ϵθ(xt, t). The sign
of the gradient defines the direction in which the generation process is influenced, e.g.,
whether the subject is made younger or older.
To guide the image generation to the desired value i for the regression task, we define
the gradient scale st = i−R(xt, t), such that the influence of the gradient gets smaller
if the predicted value is close to the desired value. If the predicted value surpasses i, the
sign of st is changed, and the denoising process is guided back in the other direction.
An additional gradient scale c is constant over time and can be used to further amplify
the gradient, as we explored in [26].
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Algorithm 1 Regression guidance
Input: input image x, desired value i, noise level L, constant gradient scale c
Output: synthetic image x0

x0 ← x
for all t from 0 to L− 1 do

xt+1 ← xt +
√
ᾱt+1

[(√
1
ᾱt
−

√
1

ᾱt+1

)
xt +

(√
1

ᾱt+1
− 1−

√
1
ᾱt
− 1

)
ϵθ(xt, t)

]
end for
for all t from L to 1 do

st ← i−R(xt, t)
ϵ̂← ϵθ(xt, t)− stc

√
1− ᾱt∇xtR(xt, t)

xt−1 ←
√
ᾱt−1

(
xt−

√
1−ᾱt ϵ̂√
ᾱt

)
+
√
1− ᾱt−1ϵ̂

end for
return x0

2.2 Segmentation

The algorithm for segmentation guidance can be found in Algorithm 2. The iterative
noise encoding scheme stays the same as in Section 2.1. However, instead of a regression
network, we train a segmentation network S on the noisy images {x0, x1, ..., xT } with
the cross-entropy loss. The architecture of the segmentation model follows the U-Net
architecture of the diffusion model. We further define a desired label mask z, and compute
the binary cross-entropy loss H between the output of the segmentation network S(xt, t)
and a desired label mask z. We can then guide the image generation towards an image
that matches z by using the gradient ∇xtH during the denoising process. As already
proposed in Section 2.1, a constant gradient scale c can be applied to amplify this
gradient.

Algorithm 2 Segmentation guidance
Input: input image x, desired label mask z, noise level L, constant gradient scale c, number
of pixels P
Output: synthetic image x0

x0 ← x
for all t from 0 to L− 1 do

xt+1 ← xt +
√
ᾱt+1

[(√
1
ᾱt
−

√
1

ᾱt+1

)
xt +

(√
1

ᾱt+1
− 1−

√
1
ᾱt
− 1

)
ϵθ(xt, t)

]
end for
for all t from L to 1 do

H ← − 1
P

P∑
j=1

(
zj logS(xt, t)j + (1− zj) log(1− S(xt, t)j)

)
ϵ̂← ϵθ(xt, t)− c

√
1− ᾱt∇xtH

xt−1 ←
√
ᾱt−1

(
xt−

√
1−ᾱt ϵ̂√
ᾱt

)
+
√
1− ᾱt−1ϵ̂

end for
return x0
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3 Experiments

The DDPM is trained as proposed in [16] without any data augmentation. We choose
T = 1000, L = 400. The other hyperparameters for the DDPM are described in the
appendix of [6]. The model is trained with the Adam optimizer and the hybrid loss
objective described in [16], with a learning rate of 10−4, and a batch size of 10. The
number of channels in the first layer is chosen as 128, and using one attention head at
resolution 16. The regression model has a depth of 4 and uses attention heads at the
resolution of 8, 16 and 32. We set the number of channels in the first layer to 32 for the
BRATS2020 dataset, and to 128 for the dataset of facial photos. Training was performed
on an NVIDIA Quadro RTX 6000 GPU, with Pytorch 1.7.1 as software framework.

Facial Photos The dataset of facial photos shows people aged between 1 and 100. The
training dataset comprises 185,631 images of size 3 × 128 × 128. The test set includes
47,568 images. All images are normalized to values between 0 and 1. The diffusion model
is trained for 500,000 iterations, due to the high variability in the data. The regression
model is trained for 80,000 iterations. The number of parameters is 85,606,150 for the
diffusion model, and 67,061,121 for the regression model. Image-to-image translation for
one image takes 73 s for the age regression task.

BRATS2020 The BRATS2020 dataset of 3D brain Magnetic Resonance (MR) images
of subjects with a brain tumor is described in [26]. We only consider 2D axial slices. For
each slice, four different MR sequences as well as the pixel-wise ground truth segmen-
tation of the tumor is given. The images are of size 4 × 256 × 256, where each channel
shows one of the four MR sequences, namely T1-weighted, T2-weighted, FLAIR, and
T1-weighted with contrast enhancement (T1ce). All images are normalized to values
between 0 and 1. For the regression problem, the relative tumor size is calculated as the
ratio between the tumor size and the brain size for each slice. Our training set includes
16,205 slices, whereas there are 1,787 images in the test set. We train the diffusion model
for 50,000 iterations, the regression and segmentation models for 20,000 iterations. The
number of model parameters is 113,681,160 for the diffusion and the segmentation model,
and 5,452,833 for the regression model. Image-to-image translation for one image takes
84 s for the regression task and 102 s for the segmentation task.

4 Results and Discussion

4.1 Age Regression on Facial Photos

In Figure 3, we present exemplary images of the test set, as well as the output of our
model, if we set st = 1 ∀t. This results in aging of the subjects. In Figure 4, we present
further examples, as well as the output of our model, if we set st = −1 ∀t. We see that
the output images show younger subjects, whereas the background and other features
such as hair and clothes are preserved. For this dataset, we choose c = 5.
As described in Section 2.1, we set st = i − R(xt, t) if we wish to generate an image of
the desired age i. In Figure 2, we show the aging process for two subjects of age 40, and
set the desired age values to i ∈ {10, 20, 60, 80}.
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Fig. 3. Results of our method for st = 1. The positive gradient makes the subjects older.

Fig. 4. Results of our method for st = −1. The negative gradient makes the subjects younger.

4.2 Regression on the Relative Tumor Size

We train a regression model on the BRATS2020 dataset described in Section 3. The
value for each slice is defined as the ratio of the area of the ground truth segmentation
mask and the area of the brain. Like in Section 4.1, we can make the tumor grow or
shrink by changing the sign of the gradient. In Figure 5, we present the input and output
images for all four MR sequences for st = 1. The output shows images with an enlarged
tumor. This can also be seen on the difference map in the last column, where the abso-
lute difference between the input and the output image, summed over all 4 channels, is
presented. On the other hand, Figure 6 shows the output of our method for st = −1,
resulting in a smaller tumor. On the BRATS2020 dataset, we choose c = 1000.
Just like in the age regression problem, we can influence the tumor size by providing a de-
sired value i. In Figure 7, we show the results for various desired values i ∈ {0, 0.05, 0.1, 0.2},
where the original value is 0.08. All four MR sequences as well as the absolute difference
map between the input and the output image are provided.
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Fig. 5. Results of our method for st = 1, which results in an enlarged tumor.

Fig. 6. Results of our method for st = −1, which leads to a smaller tumor.

4.3 Tumor Generation using Segmentation Models

We train a fully supervised segmentation model on the BRATS2020 dataset for brain
tumor segmentation. For image-to-image translation, we aim to translate an image show-
ing a healthy slice into a slice containing a tumor. For this, we define a pixel-wise label
mask where we want the model to insert a tumor.
In the first row of Figure 8, we present the input image showing a healthy slice, as well
as the desired label mask in red. The output image shows a brain MR image containing
a fake tumor. By considering the difference between the input and output image, we see
that this fake tumor was drawn in the desired area. For these experiments, we set c = 5.
This approach could be helpful for the generation of artificial data for the training of
anomaly detection methods.
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Fig. 7. Results of our method for st = i−R(xt, t) and i ∈ {0, 0.05, 0.1, 0.2}. The original image
framed in red has a ratio of 0.08. The difference maps in the last column highlight the regions
that are changed during image-to-image translation.

5 Conclusion

In this paper, we present an image-to-image translation method based on DDIMs for dif-
ferent specific tasks using gradient guidance. In addition to a classical DDPM, a separate
network for the specific task is trained. We show that our method can translate images
to an output matching a desired value or label mask of a regression or segmentation
problem. The resulting images are only altered in features related to that desired char-
acteristics, and the rest of the image is preserved. The big advantage of this approach
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Fig. 8. Results for the segmentation task on the BRATS2020 dataset. The label mask is shown
in the last column in red, together with one channel of the input image as a reference in the
background. The difference map shows that a tumor was inpainted in the desired area.

is that the same diffusion model can be used for multiple tasks, i.e., classification, seg-
mentation or regression.
We applied our method to a dataset of facial photos for age regression, and on the
BRATS2020 dataset for brain tumor growth. By using the segmentation task, we are
able to insert brain tumors in healthy slices of the BRATS2020 dataset. This can be
useful for the generation of artificial training data for anomaly detection methods. We
achieve convincing results on both datasets for both tasks. Future work includes speeding
up the sampling process, and the extension to 3D data.
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Chapter 9

Learn to Ignore: Domain Adaptation
for Multi-Site MRI Analysis

In this work, we focus on the problem of limited availability of large image datasets in medical
applications. This is especially the case for MR data, where different MR scanners introduce
a bias that limits the performance of machine learning models. We train a binary classification
model on brain MR images to distinguish between healthy controls and MS patients. Such a
classification network is needed in more advanced weakly supervised anomaly detection meth-
ods such as the ones presented in Chapters 6 and 7. Due to the use of different scanners and
acquisition protocols, only a small dataset acquired with the same settings is at hand to train the
model, leading to a poor generalization quality. To overcome this issue, we add data from other
scanners. However, if an additional dataset does not include all classes of the task, the learning
of the classification model can be biased to the device or place of acquisition.
In the following paper, we introduce specific additional constraints on the latent space, which
can be included in any classification network. With this setup, the model learns to ignore the
scanner-related features present in the images while learning disease-specific features relevant
to the classification task. This work presents a step towards developing robust deep learning
methods across different MR scanners.

Publication. The proposed approach is accepted at the 25th International Conference on Med-
ical Image Computing and Computer-Assisted Intervention (MICCAI), September 2022, Singa-
pore. The manuscript was published as part of the conference proceedings [195]. The code for
this framework is open-source1.

1https://gitlab.com/cian.unibas.ch/L2I
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Abstract. The limited availability of large image datasets, mainly due
to data privacy and differences in acquisition protocols or hardware, is
a significant issue in the development of accurate and generalizable ma-
chine learning methods in medicine. This is especially the case for Mag-
netic Resonance (MR) images, where different MR scanners introduce a
bias that limits the performance of a machine learning model. We present
a novel method that learns to ignore the scanner-related features present
in MR images, by introducing specific additional constraints on the la-
tent space. We focus on a real-world classification scenario, where only
a small dataset provides images of all classes. Our method Learn to Ig-
nore (L2I) outperforms state-of-the-art domain adaptation methods on a
multi-site MR dataset for a classification task between multiple sclerosis
patients and healthy controls.

Keywords: domain adaptation, scanner bias, MRI

1 Introduction

Due to its high soft-tissue contrast, Magnetic Resonance Imaging (MRI) is a
powerful diagnostic tool for many neurological disorders. However, compared to
other imaging modalities like computed tomography, MR images only provide
relative values for different tissue types. These relative values depend on the
scanner manufacturer, the scan protocol, or even the software version. We refer
to this problem as the scanner bias. While human medical experts can adapt
to these relative changes, they represent a major problem for machine learning
methods, leading to a low generalization quality of the model. By defining dif-
ferent scanner settings as different domains, we look at this problem from the
perspective of domain adaptation (DA) [3], where the main task is learned on a
source domain. The model then should perform well on a different target domain.
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1.1 Related Work

An overview of DA in medical imaging can be found at [13]. One can gener-
ally distinguish between unsupervised domain adaptation (UDA) [1], where the
target domain data is unlabeled, or supervised domain adaptation (SDA) [28],
where the labels of the target domain are used during training.
The problem of scanner bias is widely known to disturb the automated analysis
of MR images [22], and a lot of work already tackles the problem of multi-site MR
harmonization [11]. Deepharmony [7] uses paired data to change the contrast of
MRI from one scanner to another scanner with a modified U-Net. Generative
Adversarial Networks aim to generate new images to overcome the domain shift
[24]. These methods modify the intensities of each pixel before training for the
main task. This approach is preferably avoided in medical applications, as it
bears the risk of removing important pixel-level information required later for
other tasks, such as segmentation or anomaly detection.
Domain-adversarial neural networks [12] can be used for multi-site brain lesion
segmentation [18]. Unlearning the scanner bias [9] is an SDA method for MRI
harmonization and improves the performance in age prediction from MR im-
ages. The introduction of contrastive loss terms [20,30,25] can also be used for
domain generalization [19,23,10]. Disentangling the latent space has been done
for MRI harmonization [4,8]. Recently, heterogeneous DA [2] was also of interest
for lesion segmentation [5].

1.2 Problem Statement

All DA methods mentioned in Section 1.1 have in common that they must learn
the main task on the source domain. However, it can happen that the bias present
in datasets of various origins disturbs the learning of a specific task. Figure 1
on the left illustrates the problem and the relation of the different datasets on
a toy example for the classification task between hexagons and rectangles. Due
to the high variability in data, often only a small and specific dataset is at hand
to learn the main task: Dataset 1 forms the target domain with only a small
number of samples of hexagons and pentagons. Training on this dataset alone
yields a low generalization quality of the model. To increase the number of train-
ing samples, we add Dataset 2 and Dataset 3. They form the source domain. As

Fig. 1. Quantity charts for the datasets in the source and target domain. The chart
on the left illustrates the problem, and the chart on the right shows the real-world
application on the MS dataset.
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these additional datasets come from different origins, they differ from each other
in color. Note that they only provide either rectangles (Dataset 3) or hexagons
(Dataset 2). The challenge of such a setup is that during training on the source
domain, the color is the dominant feature, and the model learns to distinguish
between green and red rather than counting the number of vertices. Classical DA
approaches then learn to overcome the domain shift between source and target
domain. However, the model will show poor performance on the target domain:
The learned features are not helpful, as all hexagons and rectangles are blue in
Dataset 1.
This type of problem is highly common in the clinical environment, where differ-
ent datasets are acquired with different settings, which corresponds to the colors
in the toy example. In this project, the main task is to distinguish between mul-
tiple sclerosis (MS) patients and healthy controls. The quantity chart in Figure 1
on the right visualizes the different allocations of the MS dataset. Only the small
in-house Study 1 provides images of both MS patients and healthy subjects ac-
quired with the same settings. To get more data, we collect images from other
in-house studies. As in the hospital mostly data of patients are collected, we add
healthy subjects from public datasets, resulting in the presented problem.
In this work, we present a new supervised DA method called Learn to Ignore
(L2I), which aims to ignore features related to the scanner bias while focus-
ing on disease-related features for a classification task between healthy and
diseased subjects. We exploit the fact that the target domain contains im-
ages of subjects of both classes with the same origin, and use this dataset to
lead the model’s attention to task-specific features. We developed specific con-
straints on the latent space and introduce two novel loss terms that can be
added to any classification network. We evaluate our method on a multi-site
MR dataset of MS patients and healthy subjects, compare it to state-of-the-art
methods, and perform various ablation studies. The source code is available at
https://gitlab.com/cian.unibas.ch/L2I.

2 Method

We developed a strategy that aims to ignore features that disturb the learning
of a classification task between n classes. The building blocks of our setup are
shown in Figure 2. The input image xi ∈ R3 of class i ∈ {1, ..., n} is the input
for the encoder network E with parameters θE, which follows the structure of
Inception-ResNet-v1 [26]. However, we replaced the 2D convolutions with 3D
convolutions and changed the batch normalization layers to instance normal-
ization layers. The output is the latent vector fi = E(xi) ∈ Rm, where m de-
notes the dimension of the latent space. This latent vector is normalized to a
length of 1 and forms the input for the classification network C with parame-
ters θC. Finally, we get the classification scores pi = C(fi) = C(E(xi)) for class
i ∈ {1, ..., n}. To make the separation between the classes in the latent space
learnable, we introduce additional parameters θO that learn normalized center
points O = {o1, ..., on} ⊂ Rm.
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Fig. 2. Architecture of the classification network consisting of an encoder E with pa-
rameters θE, a fully connected classifier C with parameters θC, and separate learnable
parameters θO. Here, o1, ..., on are learnable center points in the latent space, fi is a
vector in the latent space, and pi is the classification score for class i.

To suppress the scanner-related features, we embed the latent vectors in the
latent space such that latent vectors from the same class are close to each other,
and those from different classes are further apart, irrespective of the domain. We
exploit the fact that the target domain contains images of all classes of the same
origin. The model learns the separation of the embeddings using data of the
target domain only. A schematic overview in 2D for the case of n = 2 classes is
given in Figure 3. We denote the latent vector of an image of the target domain
of class i as fi,t, where t denotes the affiliation to the target domain. The center
points O are learned considering the latent vectors fi,t only, such that oi is close
to fi,t, for i ∈ {1, ..., n}, and oi is far from oj for i 6= j. We force the latent
vector fi of an input image xi into a hypersphere of radius r centered in oi. For
illustration, we use the toy example of Section 1.2: As all elements of the target
domain are blue, the two learnable center points o1 and o2 are separated from
each other based only on the number of vertices. The color is ignored. All latent
vectors of hexagons f1 of the source domain should lie in a ball around o1, and
all latent vectors of rectangles f2 should lie in a ball around o2.

2.1 Loss functions

The overall objective function is given by

Ltotal = Lcls︸︷︷︸
θC

+λcenLcen︸ ︷︷ ︸
θO,θE

+λlatentLlatent︸ ︷︷ ︸
θE

. (1)

It consists of three components: A classification loss Lcls, a center point loss Lcen
for learning O = {o1, ..., on}, and a loss Llatent on the latent space. Those compo-
nents are weighted with the hyperparameters λlatent, λcen ∈ R. The parameters
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Fig. 3. The diagram shows a 2D sketch of the proposed latent space for n = 2 classes,
with two learnable center points o1 and o2. The latent vectors are normalized and lie
on the unit hypersphere. Latent vectors fi of images of class i should lie within the
circle around oi, on the orange line or blue line respectively.

θE, θC and θO indicate which parameters of the network are updated with which
components of the loss term. While the classification loss Lcls is separate and
only responsible for the final score, it is the center point loss Lcen and the la-
tent loss λlatent that iteratively adapt the feature space to be scanner-invariant.
With this total loss objective, any classification network can be extended by our
method.

Classification Loss The classification loss Lcls,θC(fi) is defined by the cross-
entropy loss. The gradient is only calculated with respect to θC, as we do not
want to disturb the parameters θE with the scanner bias.

Center Point Loss To determine the center points, we designed a novel loss
function defined by the distance from a latent vector fi,t of the target domain to
its corresponding center point oi. We define a radius r > 0 and force the latent
vectors of the target domain fi,t to be within a hypersphere of radius r centered
in oi. Moreover, oi and oj should be far enough from each other for i 6= j. As oi
is normalized to a length of one, the maximal possible distance between oi and
oj equals 2. We add a loss term forcing the distance between oi and oj to be
larger than a distance d. The choice of d < 2 and r > 0 with d > 2r is closely
related to the choice of a margin in conventional contrastive loss terms [25,14].
The network is not penalized for not forcing oi in the perfect position, but only
to an acceptable region, such that the hyperspheres do not overlap. Then, the
center point loss used to update the parameters θO and θE is given by

Lcen,θO,θE(fi,t,O) = max(‖fi,t−oi‖2−r, 0)2+
∑

k 6=i

1

2
max(d−‖ok−oi‖2, 0)2. (2)
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Latent Loss We define the loss on the latent space, similar to the Center Loss
[30], by the distance from fi to its corresponding center point oi

Llatent,θE(fi,O) = max(‖fi − oi‖2 − r, 0)2. (3)

With this loss, all latent vectors fi of the training set of class i are forced to be
within a hypersphere of radius r around the center point oi. This loss is used
to update the parameters θE of the encoder. By choosing r > 0, the network is
given some leeway to force fi to an acceptable region around oi, denoted by the
orange and blue lines in Figure 3.

3 Experiments

For the MS dataset, we collected T1-weighted images acquired with 3T MR scan-
ners with the MPRAGE sequence from five different in-house studies. For data
privacy concerns, this patient data is not publicly available. Written informed
consent was obtained from all subjects enrolled in the studies. All data were
coded (i.e. pseudo-anonymized) at the time of the enrollment of the patients.
To increase the number of healthy controls, we also randomly picked MPRAGE
images from the Alzheimer’s Disease Neuroimaging Initiative5 (ADNI) dataset,
the Young Adult Human Connectome Project (HCP) [29] and the Human Con-
nectome Project - Aging (HCPA) [16]. More details of the different studies are
given in Table 1 of the supplementary material, including the split into training,
validation, and test set. An example of the scanner bias effect for two healthy
control groups of the ADNI and HCP dataset can be found in Section 3 of the
supplementary material.
All images were preprocessed using the same pipeline consisting of skull-stripping
with HD-BET [17], N4 biasfield correction [27], resampling to a voxel size of
1 mm×1 mm×1 mm, cutting the top and lowest two percentiles of the pixel in-
tensities, and finally an affine registration to the MNI 152 standard space6. All
images were cropped to a size of (124, 120, 172). The dimension of the latent
space is m = 128. This results in a total number of parameters of 36, 431, 842.
We use the Adam optimizer [21] with β1 = 0.9, β2 = 0.999, and a weight decay of
5 ·10−5. The learning rate for the parameters θO is lrO = 10−4, and the learning
rate for the parameters θC and θE is lrE,C = 5 · 10−5. We manually choose the
hyperparameters λlatent = 1, λcen = 100, d = 1.9, and r = 0.1.
An early stopping criterion, with a patience value of 20, based on the validation
loss on the target domain, is used. For data sampling in the training set, we use
the scheme presented in Algorithm 1 in Section 2 of the supplementary material.

5 Data used in preparation of this article were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative(ADNI) database (adni.loni.usc.edu). The investigators
within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report.

6 Copyright (C) 1993-2009 Louis Collins, McConnell Brain Imaging Centre, Montreal
Neurological Institute, McGill University.
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Data augmentation includes rotation, gamma correction, flipping, scaling, and
cropping. The training was performed on an NVIDIA Quadro RTX 6000 GPU,
and took about 8 hours on the MS dataset. As software framework, we used
Pytorch 1.5.0.

4 Results and Discussion

To measure the classification performance, we calculate the classification ac-
curacy, the Cohen’s kappa score [6], and the area under the receiver operating
characteristic curve (AUROC) [15]. We compare our approach against the meth-
ods listed below. Implementation details and the source code of all comparing
methods can be found at https://gitlab.com/cian.unibas.ch/L2I.

– Vanilla classifier (Vanilla): Same architecture as L2I, but only Lcls is taken
to update the parameters of both the encoder E and the classifier C.

– Class-aware Sampling (Class-aware): We train the Vanilla classifier with
class-aware sampling. In every batch each class and domain is represented.

– Weighted Loss (Weighted): We train the Vanilla classifier, but the loss func-
tion Lcls is weighted to compensate for class and domain imbalances.

– Domain-Adversarial Neural Network (DANN ) [12]: The classifier learns both
to distinguish between the domains and between the classes. It includes a
gradient reversal for the domain classification.

– Unlearning Scanner Bias (Unlearning) [9]: A confusion loss aims to maxi-
mally confuse a domain predictor, such that only features relevant for the
main task are extracted.

– Supervised Contrastive Learning (Contrastive) [20]: The latent vectors are
pushed into clusters far apart from each other, with a sampling scheme and
a contrastive loss term allowing for multiple positives and negatives.

– Contrastive Adaptation Network (CAN ) [19]: This state-of-the-art DAmethod
combines the maximum mean discrepancy of the latent vectors as loss ob-
jective, class-aware sampling, and clustering.

– Fixed Center Points (Fixed): We train L2I, but instead of learning the cen-
terpoints o1 and o2 using the target domain, we fix the center points at
oi =

vi
‖vi‖2

for i ∈ {1, 2}, with v1 = (1, ..., 1) and v2 = (−1, ...,−1) .
– No margin (No-margin): We train L2I with d = 2 and r = 0, such that no

margin is chosen in the contrastive loss term in Equations 2 and 3.

We report the mean and standard deviation of the scores on the test set for 10
runs. For each run the dataset is randomly divided into training, validation, and
test set. In the first three lines of Table 1, the scores are shown when Vanilla,
Class-aware, and Weighted are trained only on the target domain. The very poor
performance is due to overfitting on such a small dataset. Therefore, the target
domain needs to be supplemented with other datasets. In the remaining lines
of Table 1, we summarize the classification results for all methods when trained
on the source and the target domain. Our method L2I strongly outperforms all
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Table 1. Mean [standard deviation] of the scores on the test set for 10 runs.

se
t Target Domain Source Domain

accuracy kappa AUROC accuracy kappa AUROC

ta
rg
et Vanilla 50.0 [0.0] 0.0 [0.0] 59.5 [13.0]

· Class-aware 65.0 [5.0] 29.3 [9.5] 68.6 [12.4]
· Weighted 50.3 [1.1] 0.0 [0.0] 73.3 [13.5]

ta
rg
et

an
d
so
ur
ce

Vanilla 69.0 [6.1] 38.0 [12.1] 79.8 [7.3] 90.3 [5.7] 80.7 [11.3] 95.0 [5.9]
· Class-aware 71.0 [8.3] 42.0 [16.6] 79.3 [13.3] 90.7[4.2] 81.3 [8.3] 95.3 [3.9]
· Weighted 71.3 [6.3] 42.7 [12.7] 81.2 [7.8] 92.2 [3.1] 84.6 [6.3] 95.1 [3.4]

DANN 67.0 [5.7] 34.0 [11.5] 74.7 [8.4] 93.1 [2.8] 86.3 [5.5] 98.7 [0.7]
Unlearning 70.7 [6.6] 41.3 [13.3] 81.7 [9.2] 85.5 [3.2] 71.0 [6.5] 90.5 [3.3]
Contrastive 76.3 [6.7] 52.6 [13.5] 86.7 [9.5] 94.5 [2.4] 89.0 [4.7] 98.9 [0.7]
CAN 75.3 [6.9] 50.7 [13.8] 83.8 [8.8] 92.8 [2.5] 85.7 [5.0] 96.7 [1.8]
L2I [Ours] 89.0 [3.9] 78.0 [7.7] 89.7 [7.6] 92.0 [2.5] 84.0 [4.9] 91.7 [4.9]

·Fixed 71.7[7.2] 43.3 [14.5] 76.5 [11.4] 90.5 [3.9] 81.0 [7.9] 90.2 [5.8]
·No-Margin 82.0 [3.9] 64.0 [7.8] 75.3 9.1] 91.7 [4.8] 83.3 [9.7] 84.9 [3.9]

other methods on the target domain. Although we favor the target domain dur-
ing training, we see that L2I still has a good performance on the source domain.
Therefore, we claim that the model learned to distinguish the classes based on
disease-related features that are present in both domains, rather than based on
scanner-related features. The benefit of learning o1 and o2 by taking only the
target domain into account can be seen when comparing our method against
Fixed. Moreover, by comparing L2I to No-margin, we can see that choosing
d < 2 and r > 0 brings an advantage. All methods perform well on the source
domain, where scanner-related features can be taken into account for classifi-
cation. However, on the target domain, where only disease-related features can
be used, the Vanilla, Class-aware and Weighted methods show a poor perfor-
mance. A visualization of the comparison between the Vanilla classifier and our
method L2I can be found in the t-SNE plots in Section 4 of the supplementary
material. DANN and Contrastive, as well as the state-of-the-art methods CAN
and Unlearning fail to show the performance they achieve in classical DA tasks.
Although CAN is an unsupervised method, we think that the comparison to our
supervised method is fair, since CAN works very well on classical DA problems.

5 Conclusion

We presented a method that can ignore image features that are induced by dif-
ferent MR scanners. We designed specific constraints on the latent space and
define two novel loss terms, which can be added to any classification network.
The novelty lies in learning the center points in the latent space using images of
the monocentric target domain only. Consequently, the separation of the latent
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space is learned based on task-specific features, also in cases where the main
task cannot be learned from the source domain alone. Our problem therefore
differs substantially from classical DA or contrastive learning problems. We ap-
ply our method L2I on a classification task between multiple sclerosis patients
and healthy controls on a multi-site MR dataset. Due to the scanner bias in the
images, a vanilla classification network and its variations, as well as classical DA
and contrastive learning methods, show a weak performance. L2I strongly out-
performs state-of-the-art methods on the target domain, without loss of perfor-
mance on the source domain, improving the generalization quality of the model.
Medical images acquired with different scanners are a common scenario in long-
term or multi-center studies. Our method shows a major improvement for this
scenario compared to state-of-the-art methods. We plan to investigate how other
tasks like image segmentation will improve by integrating our approach.
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Supplementary Material

1 Study details of the MS dataset

Table 1. Overview of the studies in the MS dataset. All images are T1-weighted
MPRAGE images acquired with a 3T Siemens scanner. The dataset is split propor-
tionally into training, validation and test set. Since there are only few images of healthy
subjects in Study 1, we add 9 images of healthy subjects of Study 5. Those images were
also acquired on the same scanner, but they differ in the acceleration factor from im-
ages of Study 1. To make sure that this slight difference does not disturb the training
or provide biased results during test time, we use those images only for validation.

Training Validation Testing Scanner Age Gender[m/f]
healthy MS healthy MS healthy MS

T
ar

ge
t Study 1 16 55 9 15 15 Trio Trim 19-62 34 / 58

Study 5 9 Trio Trim 26-55 4 / 5

S
ou

rc
e

Study 2 368 20 30 Skyra-fit, Skyra 20-76 137 / 279
ADNI 113 6 9 Trio Trim 56-78 54 / 74
HCP 89 4 7 Connectome 22-35 49 / 51
HCPA 140 7 10 Prisma 36-88 66 / 91
Study 3 40 2 3 Skyra 27-78 21 / 31
Study 4 22 1 1 Skyra 21-47 12 / 12

2 Sampling algorithm on the MS dataset

Algorithm 1 Sampling scheme
repeat

• Sample a random batch from the whole training set (target and source domain)
of size 10. Use this batch to calculate Lcls and Llatent.
• Sample one image from the target domain of each class and calculate Lcenter.
• Update network parameters with Ltotal.

until early stopping criterion on validation loss is reached.
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3 Histogram showing the scanner bias effect

Fig. 1. Distribution of the pixel intensities for preprocessed and normalized MPRAGE
MR images of healthy subjects of the ADNI and the HCP dataset. It can clearly be
seen that the distribution of the pixel intensities is still different for each dataset after
preprocessing. This difference originates from variations in scanner hardware, software
version or scanning protocols.

4 T-SNE plots

Fig. 2. On the left, we present the t-SNE plot of the latent vectors using the Vanilla
classifier. On the target domain (orange and red datapoints), the distinction between
healthy and diseased subjects cannot clearly be seen. On the right, we show the t-
SNE plot of the latent vectors using L2I. The separation between healthy and diseased
subjects can be seen, regardless of the affiliation to the source or target domain.
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Chapter 10

Discussion and Conclusion

The aim of this work was the development of methods for the automatic detection and segmen-
tation of pathological regions in medical images. Limited availability of data and corresponding
labels imposes various challenges to state-of-the-art deep learning approaches and has a direct
impact on the degree of automatization that can be achieved. We explored various scenarios
depending on the amount of data and labels accessible and proposed methods to cope with the
given limitations. An overview of the different scenarios and the developed methods is shown
in Figure 1.3.
Deep learning models have shown excellent performance for image segmentation when trained
in a fully supervised setting. However, manual segmentations, which are required for this
type of training, are underlying variations and prone to human bias. Inter-rater variability and
unclear anatomical outlines, e.g., blurry outlines of brain tumors, can lead to inaccurate ground
truth segmentations. Moreover, there is uncertainty in the model parameter themselves. For
clinical applications, it is essential to identify the regions with high certainty in the predicted
segmentation. In order to highlight these regions, we presented a novel segmentation approach
based on diffusion models. We evaluated our novel method on the BRATS2020 challenge for a
binary tumor segmentation task. Compared to classical fully supervised segmentation methods,
where the segmentation is computed in one step, the generation of the segmentation mask was
performed by a Markov process described in Section 3.3.2. Applying this stochastic generation
process multiple times for each input image, this implicitly provided an ensemble of segmenta-
tion masks. Already an ensemble of five segmentation masks resulted in segmentation scores
close to state-of-the-art. The variance map of this ensemble provided pixel-wise uncertainty
maps, for example, supporting the experts in finding a safety margin for tumor resection. We
visually compared these uncertainty maps to the aleatoric and epistemic uncertainty maps using
Bayesian neural networks, showing that similar regions are highlighted. In contrast to these
methods, however, our approach does not rely on adding noise to the input image or masking
model parameters. The uncertainty originates from the stochasticity in the generation process
itself. A quantitative analysis of the resulting uncertainty maps is yet to be explored.
By training on pixel-wise manual labels, fully supervised segmentation methods learn to imitate
human performance. Moreover, such pixel-wise ground truth labels are often unavailable.
Therefore, we focused on weakly supervised anomaly detection based on image-to-image
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translation to obtain pixel-wise anomaly maps. Given two datasets, one containing patients and
one containing healthy controls, we translated images showing a pathology to images showing
no pathology. The anomaly map was defined by the difference between the two. In PathoGAN
[5], Fixed-Point-GAN [168] and VAGAN [14], GANs were adapted to perform this type of
image-to-image translations task. However, a challenge arises when the pathology is defined
by a structural deformation of already existing structures rather than lesions. In this case, the
generation of an inpainting or an additive map, as proposed by the previous approaches, is
insufficient to capture the difference between the data distributions of the healthy and the dis-
eased subjects. We defined a new method called DeScarGAN, where a new image is generated
without the constraints of an inpainting or additive approach. This provided more freedom
to the generation process and opened the possibility of dealing with structural deformations.
The major challenge was that the GAN must preserve the identity in regions showing healthy
tissue or background. This ensures that the output of the model does not show any subject but
the healthy reconstruction of the input image, which is of great importance for the anomaly
map to be accurate. In DeScarGAN, we proposed additional identity-preserving loss terms
and an architecture with skip connections to ensure this identity-preserving mechanism. For
evaluation, we designed a specific synthetic dataset with pixel-wise ground truth, where the
anomalous images show in shrinkage of specific image regions. For the medical applications,
we visually compared the results on X-ray images of the lungs, where the patients suffer from
pleural effusions. The flexibility of generating a whole new image, combined with the proposed
detail-preserving mechanisms, enabled us to outperform the comparing methods. However, the
extension to 3D, which is essential for processing MR or CT images, did not yield good results.
Memory requirements, long training times and the unstable GAN training are the major reasons
that prevented us from moving from 2D to 3D.
Due to the complex and unstable training of such an identity preserving GAN, we replaced
the GAN with a denoising diffusion model. A key advantage is that no adversarial training is
involved; only an MSE loss is taken to update a model with a U-Net architecture. This renders
the training process straightforward. The resulting generated images are of excellent quality:
A short time after DDPMs were introduced, it was shown that diffusion models can beat
GANs at what they do best, i.e., the generation of fake images [42]. We took advantage of this
promising new method and adapted it to an image-to-image translation task. The deterministic
iterative noising and denoising process of denoising diffusion implicit models encodes input
images in noise, thereby guaranteeing the detail-preserving mechanism during image-to-image
translation. Therefore, no additional constraints need to be made during training, which makes
it less prone to error. To achieve our goal of translating an input image of a patient to its healthy
reconstruction, an external classifier was trained to distinguish between healthy and diseased
subjects. We included classifier guidance in the denoising process, initially proposed to guide
the generation of synthetic images towards the desired class. To the best of our knowledge,
we are the first to use this process for detail-preserving image-to-image translation. Thereby,
the images are only changed in regions that contribute to the abnormality of the input image.
Consequently, the resulting anomaly maps are very clear compared to other anomaly detection
methods. We want to highlight that this happens only during evaluation, and the stable training
process of diffusion models remains unchanged. A drawback is the iterative generation process,
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which takes longer than the GAN-based approach. This may represent a significant challenge
when applying diffusion models to 3D data.
This simple combination of a diffusion model with an external, task-specific network opened
the door for many other applications. Having built the diffusion model for anomaly detection
based on a binary classification network, we extended this idea. We included the gradient of
a regression model and a segmentation model to generate images matching the desired output
characteristics. This resulted in a very flexible framework for image-to-image translation,
which can be used for the simulation of tumor growth, atrophy, or the generation of data for
evaluating anomaly detection methods. One significant advantage is that the diffusion model
and the external network are trained separately. Consequently, the same diffusion model can be
used for various image-to-image translation tasks on the same dataset. Other image-to-image
translation methods using the DDIM encoding and decoding scheme do not rely on such an
external network. They need to change the training scheme of the diffusion models to perform
image-to-image translation, and consequently, they need to be retrained for each specific task
[91, 136].
Finally, all the methods mentioned above are only as good as the data they are trained on. MR
images originating from different scanners are biased towards the acquisition settings. This may
result in a challenging combination of datasets of multiple sites, limiting the performance of a
deep learning model. We presented a novel domain adaptation method L2I that learns to ignore
the scanner-related features in the images while learning features relevant to a classification
task. We focused on a data setup where only a small dataset provided images of all classes. Due
to this challenging setup, state-of-the-art domain adaptation methods for MR harmonization
failed to show the performance they have on classical domain adaptation tasks. Our method
showed a robust performance across all scanners. We argue that mechanisms such as the
proposed one must be included in more advanced tasks if we want reliable and generalizable
deep learning methods in the clinic.

Future work

With the current encouraging results using diffusion models, a wide field of clinical applications
opened. Our preliminary work can be extended to more complex image-to-image translation
tasks. Using a longitudinal dataset, a process such as tumor growth could be simulated using
an adapted regression approach. In this scope, brain atrophy could also be modeled during the
aging process. Another goal is to simultaneously change multiple attributes of one image, e.g.,
if a patient suffers from multiple diseases, using image-to-image translation. This could be
achieved by extending the binary classification used in the weakly supervised anomaly detec-
tion approaches to a multi-class classification problem, or by applying the gradients of multiple
external networks.
Regarding the fully supervised segmentation approach, we made a simplification to a binary
classifiation problem: The tumor class comprised the GD-enhancing tumor, the peritumoral
edema, and the necrotic and non-enhancing tumor core. The next step would be a multi-class
segmentation for a more detailed analysis of those subclasses. For this, experiments with multi-
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channel outputs or non-binary ground truth segmentations need to be considered. Furthermore, a
quantitative analysis of the uncertainty maps is required for comparison against other pixel-wise
uncertainty estimation methods. For example, it would be interesting to compute our method’s
calibration error.
Since the proposed approaches are implemented in 2D, an extension to 3D will be necessary for
many medical problems. This requires the development of efficient and lean methods that fit
the memory restrictions of the GPUs. Moreover, especially regarding diffusion models, there is
much potential to reduce the evaluation time.
Since data is often limited in many real-world problems, a multi-site setting such as the one
presented in Chapter 9 is very likely to occur. Also, in setups like federated learning, some
harmonization mechanism needs to be included in the pipeline to ensure the generalizability of
the model to different sites. Any classification network can be adapted with our domain adapta-
tion approach L2I. The weakly supervised anomaly detection methods presented in Chapters 6
and 7 both include a binary classification network. It is crucial that this classifier is robust and
performs well across scanners. The next step is to combine our anomaly detection approaches
with the scanner-invariant classifier to get generalizable and stable methods. It is of interest to
investigate how our domain adaptation approach L2I integrates into more advanced tasks such
as segmentation or anomaly detection.
In this work, we relied either on fully labeled data or on a weakly labeled dataset of patients
as well as healthy controls. With even less information available, the obvious extension of this
thesis would be to deal with data without labels. For example, if only healthy controls were avail-
able, unsupervised or self-supervised anomaly detection methods would need to be explored.

Conclusion

The fast progress of deep learning opened many possibilities for the automatization of medical
image analysis. In this thesis, we had to cope with various settings related to the availability of
data or labels in medical applications. While the overall goal was to find pathological regions in
images of patients automatically, we explored different scenarios relating to the amount of data
and type of labels available.
Our main contribution is the adaptation of generative models to different medical applications.
We extended denoising diffusion models for the segmentation of brain tumors. Our novel
method enabled us to compute uncertainty maps of the segmentation. Furthermore, we could
show that generative adversarial nets as well as denoising diffusion models can be used for
weakly supervised anomaly detection in medical images. Our methods have shown great
performance even in cases where the pathology shows in deformation of already existing
structures. Based on denoising diffusion implicit models, we proposed a novel and flexible
framework for detail-preserving image-to-image translation for medical image analysis. It
showed exceptional results for various tasks, e.g., tumor growth. Finally, we presented a domain
adaptation method for robust MR analysis in a multi-site setting.
All presented methods perform well for their given task, each representing a building block
toward generalizable and applicable deep learning methods. While all our proposed approaches
show promising results, it will be an inevitable step to put the building blocks together to
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improve robustness and interpretability to establish reliable deep learning methods in the clinic.
We want to highlight the role of diffusion models in this thesis, which offer an interesting
alternative to generative adversarial networks for image generation and opened a new field of
research.
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