106 research outputs found

    Properties of crystalline bismuth selenide and its use as a Hall effect magnetometer

    Get PDF
    Single crystals of n-type Bi2Se3 grown by the Bridgman technique are found to make excellent Hall effect magnetometers. Plots of Hall resistivity sub yx against magnetic field B to 10 tesla are linear to within 1 percent. Furthermore, the slope of the sub yx against B curve varies by about 1 percent in the region 1.1 to 35 K and by less than 20 percent in the region 1.1 to 300 K. Analysis of galvanomagnetic measurements indicate the samples have semimetallic densities of approximately 10 to the 25th power/cu cm, with two band conduction and near carrier compensation. Reflectivity measurements suggest a band gap of approximately 0.08 eV for the samples. The temperature dependence of mobility is also measured. A series of 50 direct immersions into liquid helium and liquid nitrogen demonstrate the reliability of Bi2Se3 magnetometers for cryogenic use

    Magnetic field generated resistivity maximum in graphite

    Get PDF
    In zero magnetic field, B, the electrical resistivity, rho(O,T) of highly oriented pyrolytic (polycrystalline) graphite drops smoothly with decreasing T, becoming constant below 4 K. However, in a fixed applied magnetic field B, the resistivity rho(B,T) goes through a maximum as a function of T, with larger maximum for larger B. The temperature of the maximum increases with B, but saturates to a constant value near 25 K (exact T depends on sample) at high B. In single crystal graphite a maximum in rho(B,T) as a function of T is also present, but has the effects of Landau level quantization superimposed. Several possible explanations for the rho(B,T) maximum are proposed, but a complete explanation awaits detailed calculations involving the energy band structure of graphite, and the particular scattering mechanisms involved

    Genome sequences of 14 Firmicutes strains isolated from the human vagina

    Get PDF
    Research on vaginal infections is currently limited by a lack of available fully sequenced bacterial reference strains. Here, we present strains (now available through BEI Resources) and genome sequences for a set of 14 vaginal isolates from the phylum Firmicutes. These genome sequences provide a valuable resource for future research in understanding the role of Gram-positive bacteria in vaginal health and disease

    Genome sequences of 11 human vaginal Actinobacteria strains

    Get PDF
    The composition of the vaginal microbiota is an important health determinant. Several members of the phylum Actinobacteria have been implicated in bacterial vaginosis, a condition associated with many negative health outcomes. Here, we present 11 strains of vaginal Actinobacteria (now available through BEI Resources) along with draft genome sequences

    Genome sequences of nine gram-negative vaginal bacterial isolates

    Get PDF
    The vagina is home to a wide variety of bacteria that have great potential to impact human health. Here, we announce reference strains (now available through BEI Resources) and draft genome sequences for 9 Gram-negative vaginal isolates from the taxa Citrobacter, Klebsiella, Fusobacterium, Proteus, and Prevotella

    Comparative Metabolomics Reveals Endogenous Ligands of DAF-12, a Nuclear Hormone Receptor, Regulating C. elegans Development and Lifespan

    Get PDF
    SummarySmall-molecule ligands of nuclear hormone receptors (NHRs) govern the transcriptional regulation of metazoan development, cell differentiation, and metabolism. However, the physiological ligands of many NHRs remain poorly characterized, primarily due to lack of robust analytical techniques. Using comparative metabolomics, we identified endogenous steroids that act as ligands of the C. elegans NHR, DAF-12, a vitamin D and liver X receptor homolog regulating larval development, fat metabolism, and lifespan. The identified molecules feature unexpected chemical modifications and include only one of two DAF-12 ligands reported earlier, necessitating a revision of previously proposed ligand biosynthetic pathways. We further show that ligand profiles are regulated by a complex enzymatic network, including the Rieske oxygenase DAF-36, the short-chain dehydrogenase DHS-16, and the hydroxysteroid dehydrogenase HSD-1. Our results demonstrate the advantages of comparative metabolomics over traditional candidate-based approaches and provide a blueprint for the identification of ligands for other C. elegans and mammalian NHRs

    Genome Sequence of Cronobacter sakazakii BAA-894 and Comparative Genomic Hybridization Analysis with Other Cronobacter Species

    Get PDF
    The genus Cronobacter (formerly called Enterobacter sakazakii) is composed of five species; C. sakazakii, C. malonaticus, C. turicensis, C. muytjensii, and C. dublinensis. The genus includes opportunistic human pathogens, and the first three species have been associated with neonatal infections. The most severe diseases are caused in neonates and include fatal necrotizing enterocolitis and meningitis. The genetic basis of the diversity within the genus is unknown, and few virulence traits have been identified.We report here the first sequence of a member of this genus, C. sakazakii strain BAA-894. The genome of Cronobacter sakazakii strain BAA-894 comprises a 4.4 Mb chromosome (57% GC content) and two plasmids; 31 kb (51% GC) and 131 kb (56% GC). The genome was used to construct a 387,000 probe oligonucleotide tiling DNA microarray covering the whole genome. Comparative genomic hybridization (CGH) was undertaken on five other C. sakazakii strains, and representatives of the four other Cronobacter species. Among 4,382 annotated genes inspected in this study, about 55% of genes were common to all C. sakazakii strains and 43% were common to all Cronobacter strains, with 10-17% absence of genes.CGH highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis) were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii strains from outbreaks in neonatal intensive care units

    Catestatin Inhibits Obesity-Induced Macrophage Infiltration and Inflammation in the Liver and Suppresses Hepatic Glucose Production Leading to Improved Insulin Sensitivity

    Get PDF
    The activation of Kupffer cells (KCs) and monocyte (Mc)-derived recruited macrophages (McMΦs) in the liver contributes to obesity-induced insulin resistance and type 2 diabetes. Diet-induced obese (DIO) mice treated with Chromogranin A (CgA) peptide catestatin (CST) showed several positive results. These included decreased hepatic/plasma lipids and plasma insulin, diminished expression of gluconeogenic genes, attenuated expression of pro-inflammatory genes, increased expression of anti-inflammatory genes in McMΦs, and inhibition of the infiltration of McMΦs resulting in improvement of insulin sensitivity. Systemic CST knockout (CST-KO) mice on normal chow diet (NCD) ate more food, gained weight, and displayed elevated blood glucose and insulin levels. Supplementation of CST normalized glucose and insulin levels. To verify that the CST deficiency caused macrophages to be very pro-inflammatory in CST-KO-NCD mice and produced glucose intolerance, we tested the effects of FACS-sorted F4/80+Ly6C- cells (representing KCs) and F4/80-Ly6C+ cells (representing McMΦs) on hepatic glucose production (HGP). Both basal and glucagon-induced HGP was markedly increased in hepatocytes co-cultured with KCs and McMΦs from NCD-fed CST-KO mice, and the effect was abrogated upon pre-treatment of CST-KO-MΦs with CST. Thus, we provide a novel mechanism of HGP suppression through CST-mediated inhibition of macrophage infiltration and function
    corecore