79 research outputs found

    Mechanism development and modelling of tropospheric multiphase halogen chemistry : The CAPRAM Halogen Module 2.0 (HM2)

    Get PDF
    A new detailed multiphase halogen mechanism, the CAPRAM Halogen Module 2.0 (HM2), has been developed and coupled to the multiphase chemistry mechanism RACM-MIM2ext/CAPRAM 3.0n. The overall mechanism comprises 1,705 reactions including 595 reactions of the HM2. Halogen chemistry box model studies have been, for the first time, performed with a non-permanent cloud scenario for pristine open ocean regions in mid-latitudes. Moreover, detailed time-resolved reaction flux analysis has been used to investigate the multiphase halogen reaction cycles in more detail. Clouds significantly change the multiphase halogen chemical system and new reaction cycles are proposed for in-cloud conditions. While most gas phase concentrations are decreased for chlorine and iodine species, they are increased for bromine. Flux analyses determined the relative contributions of the methylene dihalides CH2IX (X = Cl, Br, I) as the main I atom source with a contribution of about 80 % to the total iodocarbon sources. Furthermore, HOI was confirmed to be important for chlorine activation. It is shown that 25 % of the ozone loss can be attributed to halogens. VOC oxidation by halogens is important as halogens account for about 20 % of the methane oxidation and up to 80 % of the oxidation of other VOCs. In other cases, enhanced VOC and VOC oxidation product concentration levels were found. For example, 15 % of the methyl peroxyl radicals are formed after the reaction of chlorine atoms with methane or methyl hydroperoxide. In the aqueous phase, changes in the oxidation of organics do only occur for highly oxidised organics without a C-H bond. For example, over 80 % of oxalic acid are oxidised by electron transfer with Cl2− in deliquescent particles during non-cloud periods

    Implementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-Muscat(5.0) and evaluation using satellite data

    Get PDF
    The regional atmospheric model Consortium for Small-scale Modeling (COSMO) coupled to the Multi-Scale Chemistry Aerosol Transport model (Muscat) is extended in this work to represent aerosol-cloud interactions. Previously, only one-way interactions (scavenging of aerosol and in-cloud chemistry) and aerosol-radiation interactions were included in this model. The new version allows for a microphysical aerosol effect on clouds. For this, we use the optional two-moment cloud microphysical scheme in COSMO and the online-computed aerosol information for cloud condensation nuclei concentrations (Cccn), replacing the constant Cccn profile. In the radiation scheme, we have implemented a droplet-size-dependent cloud optical depth, allowing now for aerosol-cloud-radiation interactions. To evaluate the models with satellite data, the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) has been implemented. A case study has been carried out to understand the effects of the modifications, where the modified modeling system is applied over the European domain with a horizontal resolution of 0.25°g × g0.25°. To reduce the complexity in aerosol-cloud interactions, only warm-phase clouds are considered. We found that the online-coupled aerosol introduces significant changes for some cloud microphysical properties. The cloud effective radius shows an increase of 9.5g%, and the cloud droplet number concentration is reduced by 21.5g%

    Dynamic evaluation of modeled ozone concentrations in Germany with four chemistry transport models

    Get PDF
    Simulating the ozone variability at regional scales using chemistry transport models (CTMs) remains a challenge. We designed a multi-model intercomparison to evaluate, for the first time, four regional CTMs on a national scale for Germany. Simulations were conducted with LOTOS-EUROS, REM-CALGRID, COSMO-MUSCAT and WRF-Chem for January 1st to December 31st, 2019, using prescribed emission information. In general, all models show good performance in the operational evaluation with average temporal correlations of MDA8 O3 in the range of 0.77–0.87 and RMSE values between 16.3 μg m−3 and 20.6 μg m−3. On average, better models' skill has been observed for rural background stations than for the urban background stations as well as for springtime compared to summertime. Our study confirms that the ensemble mean provides a better model-measurement agreement than individual models. All models capture the larger local photochemical production in summer compared to springtime and observed differences between the urban and the rural background. We introduce a new indicator to evaluate the dynamic response of ozone to temperature. During summertime a large ensemble spread in the ozone sensitivities to temperature is found with (on average) an underestimation of the ozone sensitivity to temperature, which can be linked to a systematic underestimation of mid-level ozone concentrations. During springtime we observed an ozone episode that is not covered by the models which is likely due to deficiencies in the representation of background ozone in the models. We recommend to focus on a diagnostic evaluation aimed at the model descriptions for biogenic emissions and dry deposition as a follow up and to repeat the operational and dynamic analysis for longer timeframes
    • …
    corecore