89 research outputs found

    UniALT for regular language contrained shortest paths on a multi-modal transportation network

    Get PDF
    Shortest paths on road networks can be efficiently calculated using Dijkstra\u27s algorithm (D). In addition to roads, multi-modal transportation networks include public transportation, bicycle lanes, etc. For paths on this type of network, further constraints, e.g., preferences in using certain modes of transportation, may arise. The regular language constrained shortest path problem deals with this kind of problem. It uses a regular language to model the constraints. The problem can be solved efficiently by using a generalization of Dijkstra\u27s algorithm (D_RegLC). In this paper we propose an adaption of the speed-up technique uniALT, in order to accelerate D_RegLC. We call our algorithm SDALT. We provide experimental results on a realistic multi-modal public transportation network including time-dependent cost functions on arcs. The experiments show that our algorithm performs well, with speed-ups of a factor 2 to 20

    A Column Generation Based Heuristic for the Multicommodity-ring Vehicle Routing Problem

    Get PDF
    AbstractWe study a new routing problem arising in City Logistics. Given a ring connecting a set of urban distribution centers (UDCs) in the outskirts of a city, the problem consists in delivering goods from virtual gates located outside the city to the customers inside of it. Goods are transported from a gate to a UDC, then either go to another UDC before being delivered to customers or are directly shipped from the first UDC. The reverse process occurs for pick-up. Routes are performed by electric vans and may be open. The objective is to find a set of routes that visit each customer and to determine ring and gates-UDC flows so that the total transportation and routing cost is minimized. We solve this problem using a column generation-based heuristic, which is tested over a set of benchmark instances issued from a more strategic location-routing problem

    Efficient algorithms for the 2-Way Multi Modal Shortest Path Problem

    No full text
    7International audienceWe consider the 2-Way Multi Modal Shortest Path Problem (2WMMSPP). Its goal is tofi nd two multi modal paths with total minimal cost, an outgoing path and a return path. The main di fficulty lies in the fact that if a private car or bicycle is used during the outgoing path, it has to be picked up during the return path. The shortest return path is typically not equal to the shortest outgoing path as tra ffic conditions and timetables of public transportation vary throughout the day. In this paper we propose an e fficient algorithm based on bi-directional search and provide experimental results on a realistic multi modal transportation network

    The static bicycle relocation problem with demand intervals

    Get PDF
    This study introduces the Static Bicycle Relocation Problem with Demand Intervals (SBRP-DI), a variant of the One Commodity Pickup and Delivery Traveling Salesman Problem (1-PDTSP). In the SBRP-DI, the stations are required to have an inventory of bicycles lying between given lower and upper bounds and initially have an inventory which does not necessarily lie between these bounds. The problem consists of redistributing the bicycles among the stations, using a single capacitated vehicle, so that the bounding constraints are satisfied and the repositioning cost is minimized. The real-world application of this problem arises in rebalancing operations for shared bicycle systems. The repositioning subproblem associated with a fixed route is shown to be a minimum cost network problem, even in the presence of handling costs. An integer programming formulation for the SBRP-DI are presented, together with valid inequalities adapted from constraints derived in the context of other routing problems and a Benders decomposition scheme. Computational results for instances adapted from the 1-PDTSP are provided for two branch-and-cut algorithms, the first one for the full formulation, and the second one with the Benders decomposition

    An exact algorithm for the static rebalancing problem arising in bicycle sharing systems

    Get PDF
    Bicycle sharing systems can significantly reduce traffic, pollution, and the need for parking spaces in city centers. One of the keys to success for a bicycle sharing system is the efficiency of rebalancing operations, where the number of bicycles in each station has to be restored to its target value by a truck through pickup and delivery operations. The Static Bicycle Rebalancing Problem aims to determine a minimum cost sequence of stations to be visited by a single vehicle as well as the amount of bicycles to be collected or delivered at each station. Multiple visits to a station are allowed, as well as using stations as temporary storage. This paper presents an exact algorithm for the problem and results of computational tests on benchmark instances from the literature. The computational experiments show that instances with up to 60 stations can be solved to optimality within 2 hours of computing time

    Hybridized evolutionary local search algorithm for the team orienteering problem with time windows

    No full text
    International audienceThe orienteering problem (OP) consists in finding an elementary path over a subset of vertices. Each vertex is associated with a profit that is collected on the visitor’s first visit. The objective is to maximize the collected profit with respect to a limit on the path’s length. The team orienteering problem (TOP) is an extension of the OP where a fixed number m of paths must be determined. This paper presents an effective hybrid metaheuristic to solve both the OP and the TOP with time windows. The method combines the greedy randomized adaptive search procedure (GRASP) with the evolutionary local search (ELS). ELS generates multiple distinct child solutions using a mutation mechanism. Each child solution is further improved by a local search procedure. GRASP provides multiple starting solutions to the ELS. The method is able to improve several best known results on available benchmark instances

    A new effective unified model for solving the Pre-marshalling and Block Relocation Problems

    No full text
    Container terminals are exchange hubs that interconnect many transportation modes and facilitate the flow of containers. Among other elements, terminals include a yard which serves as temporary storage space. In the yard, containers are piled up by cranes to form blocks of stacks. During the shipment process, containers are carried from the stacks to ships following a given sequence. Hence, if a high priority container is placed below low priority ones, such obstructing containers have to be moved (relocated) to other stacks. Given a set of stacks and a retrieval sequence, the aim in the Pre-marshalling Problem (PMP) is to sort the initial configuration according to the retrieval sequence using a minimum number of relocations, so that no new relocations are needed during the shipment. The objective in the Block Relocation Problem (BRP) is to retrieve all the containers according to the retrieval sequence by using a minimum number of relocations. This paper presents a new unified integer programming model for solving the PMP, the BRP, and the Restricted BRP (R-BRP) variant. The new formulations are compared with existing mathematical models for these problems, as well as with other exact methods that combines combinatorial lower bounds and the branch-and-bound (B&B) framework, by using a large set of instances available in the literature. The numerical experiments show that the proposed models are able to outperform the approaches based on mathematical programming. Nevertheless, the B&B algorithms achieve the best results both in terms of computation time and number of instances solved to optimality

    The multiple vehicle balancing problem

    No full text
    This paper deals with the multiple vehicle balancing problem (MVBP). Given a fleet of vehicles of limited capacity, a set of vertices with initial and target inventory levels and a distribution network, the MVBP requires to design a set of routes along with pickup and delivery operations such that inventory is redistributed among the vertices without exceeding capacities, and routing costs are minimized. The MVBP is NP-hard, generalizing several problems in transportation, and arising in bike-sharing systems. Using theoretical properties of the problem, we propose an integer linear programming formulation and introduce strengthening valid inequalities. Lower bounds are computed by column generation embedding an ad-hoc pricing algorithm, while upper bounds are obtained by a memetic algorithm that separate routing from pickup and delivery operations. We combine these bounding routines in both exact and matheuristic algorithms, obtaining proven optimal solutions for MVBP instances with up to 25 stations
    • …
    corecore