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Abstract
Shortest paths on road networks can be efficiently calculated using Dijkstra’s algorithm (D). In
addition to roads, multi-modal transportation networks include public transportation, bicycle
lanes, etc. For paths on this type of network, further constraints, e.g., preferences in using
certain modes of transportation, may arise. The regular language constrained shortest path
problem deals with this kind of problem. It uses a regular language to model the constraints.
The problem can be solved efficiently by using a generalization of Dijkstra’s algorithm (DRegLC).
In this paper we propose an adaption of the speed-up technique uniALT, in order to accelerate
DRegLC. We call our algorithm SDALT. We provide experimental results on a realistic multi-modal
public transportation network including time-dependent cost functions on arcs. The experiments
show that our algorithm performs well, with speed-ups of a factor 2 to 20.
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1 Introduction

Shortest paths on road networks can be efficiently calculated using Dijkstra’s algorithm [8].
In addition to roads, multi-modal transportation networks include public transportation,
walking paths, bicycle lanes, etc. Paths on this type of network may require a number of
restrictions and/or preferences in using certain modes of transportation. Passengers may
be willing to take trains, but not buses. Whereas distances can be covered by walking at
almost any point during an itinerary, some transportation modes such as private cars and
bikes, once discarded, might not be available again at a later point in the itinerary. More
general constraints, such as passing by any pharmacy or post office on the way to the target
destination, may also arise.

In order to deal with this problem, appropriate labels are assigned to the arcs of the
network and the additional constraints are modeled as a regular language. A valid shortest
path minimizes some cost function (distance, time, etc.) and, in addition, the word produced
by concatenating the labels on the arcs of the shortest path must form an element of the
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regular language. The problem is called regular language constrained shortest path problem
(RegLCSP). An in-depth theoretical study of a more general problem, the formal language
constrained shortest path problem, as well as a generalization of Dijkstra’s algorithm (DRegLC)
to solve RegLCSP can be found in [3].

In recent years much effort has been spent to produce speed-up techniques for Dijkstra’s
algorithm (D) and shortest paths on continental sized road networks can now be found in a
few milliseconds [6]. DRegLC has received less attention. First attempts to adapt speed-up
techniques of D to DRegLC have been described in [1].

Our Contribution In this paper, we propose an adaption of the speed-up technique uniALT
[9], in order to accelerate DRegLC. UniALT uses preprocessed data to guide D faster toward
the target. The idea is to adapt uniALT to DRegLC by transferring information of the
regular language of the RegLCSP instance into the preprocessing phase of uniALT. For each
instance of RegLCSP, we produce specific preprocessed data which guides DRegLC. We call
this algorithm SDALT (State Dependent uniALT). We provide experimental results on a
realistic multi-modal public transportation network. It is composed of the road and public
transportation network of the French region Ile-de-France which includes the city of Paris
and consists of five layers: private bike, rental bike, walking, car (including changing traffic
conditions over the day), and public transportation. To our knowledge, this is the first work
to consider a multi-modal network in this configuration and on this scale. The experiments
show that our algorithm performs well, with speed-ups of a factor 2 to 20, in respect to plain
DRegLC, in networks where some transportation modes tend to be faster than others or the
constraints cause a major detour on the non-constrained shortest path.

2 Related work

Early works on the use of regular languages as a model for constrained shortest path problems
include [21, 15, 23], with applications to database queries. A finite state automaton is used
in [14] to model path constraints (called path viability) on a multi-modal transportation
network for the bi-objective multi-modal shortest path problem. Algorithmic and complexity-
theoretical results on the use of various types of languages for the label constrained shortest
path problem can be found in [3]. The authors prove that the problem is solvable in determ-
inistic polynomial time when regular languages are used and they provide a generalization
of Dijkstra’s algorithm (DRegLC). Experimental data on networks including time-dependent
edge cost can be found in [2, 22].

In recent years, much focus has been given on accelerating the mono-modal shortest
path problem on large road graphs. There are three basic ingredients to most modern
speed-up techniques: bi-directional search, goal-directed search, and contraction. See [6] for
a comprehensive overview.

ALT is a bi-directional, goal directed search technique based on the A∗ algorithm [11]
and has been first discussed in [9]. It uses lower bounds on the distance to the target to guide
Dijkstra’s algorithm. UniALT is the uni-directional version of ALT. Efficient implementations
of uniALT and ALT as well as experimental data on continental size road networks with
time-dependent edge cost are given in [16]. A∗ and ALT can be easily adapted to dynamic
networks. Efficient algorithms including contractions can be found in [17, 4].

In [1], bi-directional and goal-directed speed-up techniques have been applied to DRegLC
on a multi-modal network. Results vary in function of the regular language used. The authors
of [19, 5] observe that ALT in combination with contraction yields only mild speed-ups in
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a multi-modal context. They propose a method called Access Node Routing to isolate the
public transportation network from road networks so that they can be treated individually.

Overview This paper is organized as follows. Section 3 will give more details about the
graph model, uniALT, and the generalisation of Dijkstra’s algorithm which is used to solve
the RegLCSP. Section 4 presents SDALT and its implementation. Its application to a
multi-modal transportation network and computational results are presented in section 5.
Section 6 concludes our work along with directions for future research.

3 Preliminaries

Consider a directed graph G = (V,A) consisting of a set of nodes v ∈ V and a set of arcs
(i, j) ∈ A with i, j ∈ V . Arc costs are positive and represent travel times. They may be
time-independent or time-dependent. Time-independent costs for arc (i, j) are given by cij .
To model time-dependent arc costs, we use a positive function cij : R+ → R+. We only use
functions which satisfy the FIFO property as the time-dependent shortest path problem in
FIFO networks are polynomially solvable [13], whereas it is NP-hard in non-FIFO networks
[18]. FIFO means that cij(x) + x ≤ cij(y) + y for all x, y ∈ R+, x ≤ y, (i, j) ∈ A or, in other
words, that for any arc (i, j), leaving node i earlier guarantees that one will not arrive later
at node j (also called the non-overtaking property).

A path p in G is a sequence of nodes (v1, . . . , vk) such that (vi, vi+1) ∈ A for all
1 ≤ i < k. The cost of the path in a time-independent scenario is given by c(p) =∑k−1

i=1 cvivi+1 . We denote as d(r, t) the cost of the shortest path between nodes r and
t. In time-dependent scenarios, the cost or travel time γ(p, τ) of a path p departing
from v1 at time τ is recursively given by γ((v1, v2), τ) = cv1v2(τ) and γ((v1, . . . , vj), τ) =
γ(v1, . . . , vj−1, τ)) + cvj−1,vj (γ(v1, . . . , vj−1, τ)).

3.1 A∗ and uniALT algorithm
The A∗ algorithm [11] is a goal directed search used to find the shortest path from a source
node r to a target node t on a directed graph G = (V,A) with time-independent, non-negative
arc costs. A∗ is similar to Dijkstra’s algorithm [8], which we shall denote as D throughout our
paper. The difference lies in the order of selection of the next node v to be settled. A∗ employs
a key k(v) = dr(v) + π(v) where the potential function π : V → R gives an under-estimation
of the distance from v to t. dr(v) gives the tentative distance from r to v. At every iteration,
the algorithm selects the node v with the smallest key k(v). Intuitively, this means that it
first explores nodes, which lie on the shortest estimated path from r to t. In [12], it is shown
that A∗ is equivalent to D on a graph with reduced arc costs cπvw = cvw − π(v) + π(w). D
works well only for non-negative arc costs, so not all potential functions can be used. We
call a potential function π feasible, if cπvw is positive for all v, w ∈ V . π(v) can be considered
a lower bound on the distance from v to t, if π is feasible and the potential π(t) of the target
is zero. Furthermore, if π′ and π′′ are feasible potential functions, then max(π′, π′′) is a
feasible potential function [9].

Good bounds can be produced by using landmarks and the triangle inequality [9]. The
main idea is to select a small set of nodes ` ∈ L ⊂ V , spread appropriately over the
network, and precompute all distances of shortest paths d(`, v) and d(v, `) between these
nodes (landmarks) and any other node v ∈ V , by using D. By using these landmark
distances and the triangle inequality, d(`, v) + d(v, t) ≥ d(`, t) and d(v, t) + d(t, `) ≥ d(v, `),
lower bounds on the distances between any two nodes v and t can be derived. π(v) =
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max`∈L(d(v, `)− d(t, `), d(`, t)− d(`, v)) gives a lower bound for the distance d(v, t) and is
a feasible potential function. The A∗ algorithm based on this potential function is called
uniALT [9]. As observed in [7], potentials stay feasible as long as arc weights only increase
and do not drop below a minimal value. Based on this, uniALT can be adapted to the
time-dependent scenario by selecting landmarks and calculating landmark distances by using
the minimum weight cost function cmin

ij = minτ (cij(τ)). A crucial point is the quality of
landmarks. Finding good landmarks is difficult and several heuristics exist [9, 10]. UniALT
provides a speed-up of about factor 10 on road graphs with time-dependent arc costs [7].

3.2 Solving the RegLCSP
Consider a labeled graph GΣ = (V,A). It is produced by associating a label l of a set of
labels Σ to each arc (e.g., f to mark foot-paths or b to mark bicycle lanes). A is a set of
triplets in V × V × Σ. (i, j, l) represents an arc from node i to node j having label l. The
RegLCSP consists in finding a shortest path from a source node r to a target node t with
starting time τstart on GΣ by minimizing some cost function (in our case travel time) and, in
addition, the concatenated labels along the shortest path must form a word of a given regular
language L0. This language can be described by a non-deterministic finite state automaton
A0 = (S,Σ0, δ, s0, F ), consisting of a set of states S, a set of labels Σ0 ⊆ Σ, a transition
function δ : Σ0 × S → 2S , an initial state s0, and a set of final states F . E.g., consider
a labeled graph which consists of arcs with labels Σ = {b, c, f, p, v, t} representing each a
different transportation mode. The automaton in Figure 3 describes a regular language with
five states S = {s0, s1, s2, s3, s4}, an initial state s0, a set of final states F = {s2, s4}, and an
alphabet Σ0 = {b, f, p, v, t}.

To efficiently solve RegLCSP, a generalization of Dijkstra’s algorithm (which we denote
DRegLC throughout this paper) has first been proposed in [3]. The DRegLC algorithm can
be seen as the application of D to the product graph P = GΣ × S with nodes (v, s) for
each v ∈ V and s ∈ S such that there is an arc ((v, s)(w, s′)) between (v, s) and (w, s′) if
there is an arc (i, j, l) ∈ A and a transition such that s′ ∈ δ(l, s). To reduce storage space
DRegLC works on the implicit product graph P by generating all the neighbors which have
to be explored only when necessary. Similarly to D, DRegLC can easily be adapted to the
time-dependent scenario as shown in [2].

4 State Dependent uniALT: SDALT

To speed up DRegLC, the authors of [1] employ A∗ and bidirectional search. In this work,
we extend uniALT to speed-up DRegLC on a graph GΣ with time-dependent arc costs and
call the resulting algorithm SDALT. It consists of a preprocessing phase and a query phase
(see Figure 1). The key of the performance of the algorithm lies in the proposed constrained
landmark distances, which are used to calculate the potential function.

Preprocessing phase A set of landmarks ` ∈ L ⊂ V is selected by using the avoid heuristic
[9]. Then the costs of the shortest paths between all v ∈ V and each landmark ` on GΣ

where arcs are weighted by the minimum weight cost function are determined. Here lies one
of the major differences between SDALT and uniALT. Differently from uniALT, SDALT does
not use D to determine landmark distances but uses instead the DRegLC algorithm. In this
way, it is possible to constrain the cost calculation by some regular languages which we will
derive from L0. We refer to these costs as constrained landmark distances d′(i, j, s), which is
the travel time of the shortest path from (i, s) to (j, sj) for some sj ∈ F constrained by the
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regular language Li→js . In the next section, we will provide four different methods on how
to choose L`→ts , L`→vs , Lv→`s , Lt→`s used to constrain the calculation of d′(`, t, s), d′(`, v, s),
d′(v, `, s), d′(t, `, s) (see Figure 2).

Potential function π(v, s) The constrained landmark distances determined during the
preprocessing phase are used to calculate the potential function π(v, s) given in Equation (1)
and to provide a lower bound on the distance d′(v, t, s) of the shortest path from (v, s) to
(t, st) for some st ∈ F . Note that d′(v, t, s) is constrained by Lv→ts = Ls0. Ls0 is equal to L0
except that the initial state s0 of L0 is replaced by s. Intuitively, it represents the remaining
constraints of L0 to be considered for the shortest path from an arbitrary pair (v, s) to the
target.

π(v, s) = max
`∈L

(d′(`, t, s)− d′(`, v, s), d′(v, `, s)− d′(t, `, s)) (1)

Query phase The query phase deploys a DRegLC algorithm enhanced by the characteristics
of the A∗ algorithm. For each pair (v, s), the query maintains a tentative distance label
dr(v, s) and a parent pair p(v, s). At every iteration, it selects the pair (v, s) with the
smallest key k(v, s) = dr(v, s) + π(v, s) and relaxes all outgoing arcs of (v, s). DRegLC, in
contrast, uses key k(v, s) = dr(v, s). Relaxing an arc (v, w, l) means calculating tmp =
dr(v, s) + cvwl(τstart + dr(v, s)), checking cost labels dr(w, s′) > tmp, and if that is the case,
to set dr(w, s′) = tmp and p(w, s′) = (v, s) for all states s′ ∈ δ(l, s). Note that the cost of
arc (v, w, l) might be time-dependent and thus has to be evaluated for time τstart + dr(v, s).
The query terminates when a pair (t, s) with s ∈ F is settled. See Listing 1.

Note that if π(v, s) is feasible, all characteristics that we discussed before for uniALT
also hold for SDALT. SDALT can be seen as an A∗ search on the product graph P using
potential function π(v, s). Hence, SDALT is correct and terminates always with the correct
constrained shortest path.
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Listing 1 Pseudo-code SDALT
func t i on SDALT(GΣ ,r ,t ,τstart ,L0 )

dr(v, s):= ∞ , p(v, s):= −1, path_found:= f a l s e
dr(r, s0):= 0 , k(r, s0):= dr(r, s0) + π(r, s0)
i n s e r t (r, s0) in p r i o r i t y queue Q

whi le Q i s not empty :
ex t r a c t (v, s) with sma l l e s t key k from Q

i f v = t and s ∈ F0 :
path_found:= true , break

f o r each (w, s′) o f (v, s) where (v, w, l) ∈ A , s′ ∈ δ(l, s) :
tmp:= dr(v, s) + cvwl(τstart + dr(v, s)) // time−dependency
i f tmp < dr(w, s′) :

dr(w, s′):= tmp
k(w, s′):= dr(w, s′) + π(w, s′)
p(w, s′):= (v, s)
i f (w, s′) not in Q : i n s e r t (w, s′) in Q

e l s e : r eo rde r Q

end f o r
end whi l e

4.1 Constrained landmark distances
The only open question now is how to produce good bounds which are capable to guide
SDALT efficiently toward the target while considering the constraints given by L0. More
formally, how to choose the regular languages L`→ts , L`→vs , Lv→`s , Lt→`s used to constrain
the calculation of d′(`, t, s), d′(`, v, s), d′(v, `, s), d′(t, `, s) in order that d′(`, t, s)− d′(`, v, s),
d′(v, `, s)− d′(t, `, s) are valid lower bounds for d′(v, t, s) (see Figure 2) and that π(v, s) is
feasible. Proposition 1 partially answers this question. Note that the concatenation of two
regular languages L1 and L2 is the regular language L3 = L1 ◦L2 = {v ◦w|(v, w) ∈ L1×L2}.
E.g., if L1 = {a, b} and L1 = {c, d} then L1 ◦ L2 = L3 = {ac, ad, bc, bd}.

I Proposition 1. For all s ∈ S, if the concatenation of L`→vs and Lv→ts is included in L`→ts

(L`→vs ◦ Lv→ts ⊆ L`→ts ), then d′(`, t, s)− d′(`, v, s) is a lower bound for the distance d′(v, t, s).
Similarly, if Lv→ts ◦ Lt→`s ⊆ Lv→`s then d′(v, `, s)− d′(t, `, s) is a lower bound for d′(v, t, s).

This is derived from the observation that the distance of the shortest path from ` to t (v
to `) must not be greater than the distance of the shortest path from ` to v to t (v to t to `).
Now we proceed to present four methods on how to set L`→ts , L`→vs , Lv→`s , Lt→`s . We name
these four methods standard (std), basic (bas), advanced (adv), and specific (spe).

(std) In the standard method, the landmark distance calculation is not constrained by any
regular language. (std) represents the application of plain uniALT to DRegLC.

(bas) The motivation for the basic method comes from the observation that if L0 totally
excludes the use of some fast transportation modes, these modes should not be considered
when calculating the landmark distances. This means that (bas) uses L`→vs = L`→ts =
Lv→`s = Lt→`s = Lbas = {Σ∗0}, which is the language consisting of all words over Σ0. E.g.,
for the RegLCSP with L0 represented by automaton in Figure 3a the landmark distances
calculation would be constrained by using automaton in Figure 3b. In an ideal scenario
where one transportation mode, which is excluded by L0, dominates any other (e.g., bike
over foot), it can be proven that (bas) produces better bounds than (std).
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I Proposition 2. Given a labeled graph GΣ
bas = (V,A1 ∪A2) with Σ = {`1, `2}, where for

any two shortest paths p1 ⊆ A1, p2 ⊆ A2 between two arbitrary nodes, there exists an α > 1
such that c(p1) > αc(p2). Arcs in A1 are labeled `1 and arcs in A2 are labeled `2. For a
RegLCSP on GΣ

bas exclusively allowing arcs with label `1, L0 = {`∗1}, bounds calculated by
using (bas) are at least a factor α greater than bounds calculated using (std).

(adv) The advanced method consists in calculating separate constrained landmark distances
for each pair (v, s) by using the regular language L`→vs = L`→ts = Lv→`s = Lt→`s = Ladv,s =
{Σ(s,A0)∗}. Σ(s,A0) returns all labels of Σ0 except those of fast transportation modes
which use is no longer allowed from state s onward. This means that for s0 it includes all
transportation modes present in Σ0, equally to (bas). For the calculation of the constrained
landmark distances for the other states s ∈ S it excludes fast transportation modes of Σ0, if
from s onward on A0 these transportation modes may not be used anymore for the remaining
path to reach the target. E.g., consider the RegLCSP with L0 represented by automaton
in Figure 3a. By applying (adv) the landmark distances calculation would be constrained
be using automata in Figures 3b, 3c, and 3d. From state s2 onward, private bike cannot
be used any more (dominates walking, and sometimes even public transport), from state
s4 also private transport is excluded. Note that by using (adv), π(v, s) may be infeasible,
so we change it to: πadv(v, s) = max{π(v, sx)|sx ∈ Ω(s,A0)}, where Ω(s,A0) returns the set
containing all states sx ∈ S from which s is reachable by some sequence of transitions on
A0, including s. E.g., in reference to the automaton in Figure 3a, Ω(s0,A0) = {s0} whereas
Ω(s2,A0) = {s0, s1, s2}. In an ideal scenario where transportation modes hierarchically
dominate each other (car over taxi over trains over biking over walking) and in which they are
excluded in decreasing order of speed by advancing on A0 it can be proven, by generalizing
Proposition 2, that (adv) produces better bounds than (bas).

(spe) Besides using L0 for gradually excluding transportation modes, it can also be used
to impose further restrictions, for example to not allow transfers from one vehicle of public
transportation to another. L0 can also be used to force the shortest path to pass by any
arc marked with a certain label. Suppose we are looking for the shortest foot path to a
target which also passes by the nearest pharmacy. To handle this problem, we can label
all arcs of the foot layer which represent streets on which a pharmacy is located not with
f but with z. E.g., L0, represented by automaton in Figure 4a, imposes the use of the
foot layer and that an arc with label z has to be obligatorily visited. (spe) is capable of
anticipating such constraints in the preprocessing phase by inserting these constraints in the
languages used during the landmark distance calculations. We define four different regular
languages L`→vs , L`→ts , Lt→`s , Lv→`s to calculate the constrained landmark distances for each
pair (v, s). Consider the following rules to determine L`→vs , L`→ts , Lv→`s , Lt→`s , which are
here represented as automata, and Proposition 3.

Rule 1 A`→vsx
is the sub-automaton of A0 consisting of sx, all the states from which sx is

reachable, and the transitions between these states. Any s which is an initial state in A0,
is also an initial state in A`→vsx

, sx is a final state.
Rule 2 A`→tsx

is the sub-automaton of A0 consisting of all states reachable from sx and all
states from which these states are reachable, including all transitions between these states.
Any s which is an initial state in A0 is also an initial state in A`→tsx

. Any s which is
reachable from sx and is final in A0 is also final in A`→tsx

.
Rule 3 Av→`sx

is the sub-automaton of A0 consisting of sx, all the states which are reachable
from sx, and the transitions between these states. Any s which is a final state in A0, is
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also a final state in A`→tsx
. Mark sx as initial state.

Rule 4 At→`sx
consists of one final/initial state whose set of self-loops is equal to the intersec-

tions of self-loops of all final states of Av→`sx
.

Rule 5 If A`→vsx
(At→`sx

) consists of one state with no self-loops, then add an auto-loop to sx
in A0 to be used in rules 1 and 2 (rules 3 and 4) with arbitrary transitions so that node
(v, sx) is reachable from landmark ` (so that landmark ` is reachable from node (t, sx)).

I Proposition 3. By using the regular languages, described by the automata constructed
by applying rules 1 to 5, for the constrained landmark distance calculation for all pairs (v, s),
the potential function π(v, s) in Equation (1) is feasible.

An example of the application of (spe) can be found in Table 4b where rules 1 to 5 have
been applied to the automaton in Figure 4a. Under weak conditions it can be proven that
(spe) succeeds in providing better bounds in comparison to (bas) and (adv), for RegLCSP
similar to the one discussed in the example.

Performance and memory consumption Finally note that the number of bounds to be
calculated grows linearly to the number of relaxed arcs in (std), (bas), and (spe). For (adv),
the number of calculated bounds in worst case scenario is an additional factor |S| higher.
Memory requirement for (bas) is equal to (std). It grows linearly in respect to |S| and may
be up to |S| times higher in (adv). Memory requirement for (spe) may grow by a constant
factor of 4 in the worst case with respect to (adv).

5 Experimental evaluation

We consider a multi-modal graph composed of the road and public transportation network
of the French region Ile-de-France, which includes the city of Paris. It consists of five
layers: private bike (b), rental bike (v), walking (f), car (c), and public transportation (p).
Layers are connected by transfer arcs (t) which model the time needed to transfer from one
transportation mode to another. The cost of transfer arcs is set uniformly to 20sec. Each arc
has exactly one associated label l ∈ Σ = {b, v, f, c, p, t}. The graph consists of circa 3.7mil
arcs and 1.2mil nodes. Dimensions of the single layers are summarized in Table 1. See [20, 19]
for more information about graph models of a multi-modal network and time-dependency.

The private bike, walking, and rental bike layers are based on OpenStreetMap1 data. Arc
cost equals travel-time. Bikes have been considered to move at 12km/h, pedestrians at a
speed of 4km/h. The private bike layer is connected to the walking layer at common street
intersections. The bike rental layer is connected to the walking layer at the locations of bike
rental stations2. In addition, we introduced ten arcs with label z between nodes of the foot
layer. They represent foot paths close to locations of interest and are used to simulate the
problem of reaching a target and in addition passing by any pharmacy, supermarket, etc.

Data for the public transportation layer has been provided by STIF3. It includes geo-
graphical and timetable data on buses, tramways, subways and regional trains. Our model is
similar to the one presented in [20]: A trip of a public transportation vehicle is defined as a
sequence of route nodes. Route nodes can be pictured as station platforms and are connected
to station nodes, which model public transportation stations, such as those pictured on

1 See www.openstreetmap.org
2 Vélib’, www.velib.paris.fr
3 Syndicat des Transports d’Ile de France, www.stif.info, data for scientific use from 01/12/2010
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subway network maps. Trips consisting of the same sequence of route nodes are grouped
into routes. Travel times are modeled according to timetable information by time-dependent
cost functions. They include waiting times at stations.

The car layer is based on geographical road data and traffic information provided by
Mediamobile4. It is connected to the walking layer by transfer arcs at station nodes. Arc
cost equals travel time which depends on the type of road. Circa 10% of the arcs have a
time-dependent cost function to represent changing traffic conditions throughout the day.

SDALT is implemented in C++ and compiled with GCC 4.1. We merged and adapted
the implementations of uniALT described in [16, 9] and DRegLC described in [19]. As priority
queue, we use a binary heap. As in the case of uniALT, periodical additions of landmarks
(max. 6 landmark) and refresh cycles of the priority queue take place. We use an Intel Xeon,
2.6 Ghz, with 16 GB of RAM. Source node r, target node t, and start time τstart are picked at
random. r and t always belong to the walking layer. We use 32 landmarks which are placed
exclusively on the walking layer. Preprocessing takes less than a minute. We compare SDALT
employing the different methods (bas), (adv), and (spe), with DRegLC and (sta). SDALT has
been evaluated by running 500 test instances for five RegLCSP scenarios, see Figures 3a,
4a and 5. They have been chosen with the intention to represent real-world queries, which
may often arise when looking for constrained shortest paths on a multi-modal transportation
network. See Table 2 for experimental results. Runtime is the average running time of the
algorithm over 500 test instances. SettNo, touchNo and reInsNo give the average of the
number of settled, touched and reinserted nodes. MaxSett gives the maximum number of
settled nodes. TouchEd and calcPot give the average number of touched edges and calculated
potentials.

layer arcs nodes time-dependent PT-transfer stations transfer
Walking (f) 601 280 220 091 - - - -

Private Bike (b) 600 952 220 091 - - - 440 182
Rental Bike (v) 600 952 220 091 - - 1 198 2 396

Car (c) 1 112 511 514 331 111 641 - - 37 906
Public Transportation (p) 259 623 109 922 82 833 176 790 21 527 37 944

Special Arcs (z) 10 - - - - -
Tot 3 731 700 1 284 526 194 474 (9 803 812 Time Points) 556 372

Table 1 Dimensions of the graph

5.1 Discussion of experimental results
SDALT, in comparison to DRegLC, succeeds in directing the constrained shortest path search
faster toward the target in situations where L0 is likely to introduce a detour from the
unconstrained shortest path. This is the case when the use of fast transportation modes is
excluded or limited, or if arcs with infrequent labels have to be obligatorily visited.

(bas) works well in situations where L0 excludes a priori fast transportation modes. This
can be observed in scenario C and in scenario D, where shortest paths are limited to the
walking and rental bike layer, both being much slower than the car or public transportation
layer, which are excluded. (adv) gives a supplementary speed-up in cases where initially
allowed fast transportation modes are excluded from a later state on A0 onward. This can be
observed in scenario B, where by transition from the initial state s0 toward s1 or s2, either

4 www.v-trafic.fr, www.mediamobile.fr
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Figure 3 Automata for scenario A. Shortest path must start either by walking (f) or by private
bike (b). Once the private bike is discarded, the path can be continued by walking or by taking
public transportation (p). The trip may then be continued by using bike rental (v) or by walking.
Transfer arcs (t) are used to change between transportation modes. The automata in Figure 3b and
Figures 3b, 3c, and 3d are used during the pre-processing phase for (bas) and (adv), respectively.
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calculation of d′(`, v, s0) is constrained by language L`→v

s0 described by the top-left automaton in
row s0, d′(`, t, s1) is constrained by L`→t

s1 described by the bottom-left automaton in row s1, etc.

s0

s1

s2 s3

f t

fptv

t
c

t

f

(a) A0 scenario B

s0 s2s1
t t

f v f

(b) A0 scenario C

s0

s1 s2

s3 s4

s5 s6

ft

ft

ft

fpt

bft

cft

z

z

z

fptz

bftz

cftz

(c) A0 scenario E

Figure 5 Automata of scenarios

ATMOS’11



74 UniALT for Regular Language Constrained Shortest Paths on a . . .

scenario algo space runtime settNo maxSett touchNo touchEd calcPot
[MB] [ms]

scenario A DRegLC 0 529 542 914 1 397 414 547 643 1 998 610 -
sta 310 486 376 527 1 376 485 381 081 1 405 720 1 750 580
bas 310 427 333 121 1 350 973 337 528 1 244 450 1 591 770
adv 930 361 139 635 688 616 183 104 516 746 2 133 710
spe 1 660 262 162 982 861 574 224 389 617 503 598 707

scenario B DRegLC 0 509 446 279 1 576 407 453 835 1 303 320 -
std 310 243 176 971 1 387 476 182 469 511 462 861 436
bas 310 138 117 549 894 842 121 489 337 650 510 982
adv 1 240 114 66 100 409 027 71 174 149 285 619 147
spe 1 550 198 165 105 612 247 177 596 387 361 368 139

scenario C DRegLC 0 355 456 674 865 722 457 957 1 649 190 -
std 310 431 406 837 865 395 408 279 1 491 630 1 608 090
bas 310 17 20 252 220 571 22 217 76 099 68 880
adv 620 18 14 536 159 146 18 020 51 665 93 915
spe 1 240 16 13 195 210 208 17 510 48 228 69 609

scenario D DRegLC 0 160 235 943 417 117 236 854 944 596 -
std 310 209 224 408 415 861 225 384 899 874 940 876
bas 310 38 45 151 223 726 46 192 185 620 147 207
spe 930 8 8 389 59 073 9 181 35 210 32 180

scenario E DRegLC 0 1 995 1 430 230 4 231 958 1 447 310 4 570 860 -
sta 310 1 174 723 364 3 169 152 737 249 2 342 480 3 578 470
adv 1 240 902 487 880 1 600 241 497 815 1 564 900 4 593 790
spe 2 480 511 395 947 1 565 563 406 472 1 256 090 960 304

Table 2 Experimental results

the public transportation network or the car network is excluded. However, speed-ups are
mild as the number of potentials which have to be calculated for (adv) is much higher as it is
for (bas). Finally, (spe) has a positive impact on running times for scenarios where the visit
of some infrequent labels, which would generally not be part of the unconstrained shortest
path, is imposed by L0, see scenario D and scenario E.

Speed-ups for scenarios including labels of arcs with time-dependent arcs costs (public
transportation, car) are lower then speed-ups for scenarios considering only arcs with time-
independent arcs costs. This is due to the fact that bounds are calculated by using the
minimum weight cost function. Bounds are especially bad for public transportation at night
time, as connections are not served as frequently as during the day.

6 Conclusions

We presented a method on how to apply the speed-up technique uniALT to the generalized
Dijkstra’s algorithm (DRegLC) which is used to solve the RegLCSP. SDALT uses preprocessed
data to anticipate the impact of the given regular language on the shortest path. We
proposed four different methods on how to produce this preprocessed data and explained in
which situations they are likely to work best. We implemented our algorithm and produced
different versions which differ only slightly in terms of coding but differ in terms of memory
requirements and performance. We ran experiments on a real-world public transportation
network. The results showed that SDALT succeeds in providing speed-ups of a factor 2
to 20 in respect to DRegLC. Among the possible improvements, we believe that there is
space to reduce memory consumption. A logical direction for future research would be the
investigation of the impact of a bi-directional search on SDALT and the applicability and
effects of contraction. Another question is how to adapt SDALT efficiently to multi-objective
versions of DRegLC. It would also be interesting to test its performance on dynamic networks.
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