254 research outputs found

    Light Dose is a Limiting Factor to Maintain Cell Viability in Fluorescence Microscopy and Single Molecule Detection

    Get PDF
    A test system for cell viability based on colony formation has been established and applied to high resolution fluorescence microscopy and single molecule detection. Living cells were irradiated either by epi-illumination or by total internal reflection (TIR) of a laser beam, and light doses where at least 90% of irradiated cells survived were determined. These light doses were in the range of a few J/cm2 up to about 200 J/cm2 depending on the wavelength of illumination as well as on the presence or absence of a fluorescent dye (e.g., the membrane marker laurdan). In general, cells were less sensitive to TIR than to epi-illumination. However, comparably high light doses needed for repetitive excitation of single molecules limit the application of super-resolution microscopy to living cells

    High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data II: The Spring Equatorial Stripe

    Get PDF
    This is the second paper in a series aimed at finding high-redshift quasars from five-color (u'g'r'i'z') imaging data taken along the Celestial Equator by the Sloan Digital Sky Survey (SDSS) during its commissioning phase. In this paper, we present 22 high-redshift quasars (z>3.6) discovered from ~250 deg^2 of data in the spring Equatorial Stripe, plus photometry for two previously known high-redshift quasars in the same region of sky. Our success rate of identifying high-redshift quasars is 68%. Five of the newly discovered quasars have redshifts higher than 4.6 (z=4.62, 4.69, 4.70, 4.92 and 5.03). All the quasars have i* < 20.2 with absolute magnitude -28.8 < M_B < -26.1 (h=0.5, q_0=0.5). Several of the quasars show unusual emission and absorption features in their spectra, including an object at z=4.62 without detectable emission lines, and a Broad Absorption Line (BAL) quasar at z=4.92.Comment: 28 pages, AJ in press (Jan 2000), final version with minor changes; high resolution finding charts available at http://www.astro.princeton.edu/~fan/paper/qso2.htm

    Optical and Radio Properties of Extragalactic Sources Observed by the FIRST and SDSS Surveys

    Full text link
    We discuss the optical and radio properties of 30,000 FIRST sources positionally associated with an SDSS source in 1230 deg2^2 of sky. The majority (83%) of the FIRST sources identified with an SDSS source brighter than r=21 are optically resolved. We estimate an upper limit of 5% for the fraction of quasars with broad-band optical colors indistinguishable from those of stars. The distribution of quasars in the radio flux -- optical flux plane supports the existence of the "quasar radio-dichotomy"; 8% of all quasars with i<18.5 are radio-loud and this fraction seems independent of redshift and optical luminosity. The radio-loud quasars have a redder median color by 0.08 mag, and a 3 times larger fraction of objects with red colors. FIRST galaxies represent 5% of all SDSS galaxies with r<17.5, and 1% for r<20, and are dominated by red galaxies. Magnitude and redshift limited samples show that radio galaxies have a different optical luminosity distribution than non-radio galaxies selected by the same criteria; when galaxies are further separated by their colors, this result remains valid for both blue and red galaxies. The distributions of radio-to-optical flux ratio are similar for blue and red galaxies in redshift-limited samples; this similarity implies that the difference in their luminosity functions, and resulting selection effects, are the dominant cause for the preponderance of red radio galaxies in flux-limited samples. We confirm that the AGN-to-starburst galaxy number ratio increases with radio flux, and find that radio emission from AGNs is more concentrated than radio emission from starburst galaxies (abridged).Comment: submitted to AJ, color gif figures, PS figures available from [email protected]

    The Fifth Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). DR5 includes all survey quality data taken through June 2005 and represents the completion of the SDSS-I project (whose successor, SDSS-II will continue through mid-2008). It includes five-band photometric data for 217 million objects selected over 8000 square degrees, and 1,048,960 spectra of galaxies, quasars, and stars selected from 5713 square degrees of that imaging data. These numbers represent a roughly 20% increment over those of the Fourth Data Release; all the data from previous data releases are included in the present release. In addition to "standard" SDSS observations, DR5 includes repeat scans of the southern equatorial stripe, imaging scans across M31 and the core of the Perseus cluster of galaxies, and the first spectroscopic data from SEGUE, a survey to explore the kinematics and chemical evolution of the Galaxy. The catalog database incorporates several new features, including photometric redshifts of galaxies, tables of matched objects in overlap regions of the imaging survey, and tools that allow precise computations of survey geometry for statistical investigations.Comment: ApJ Supp, in press, October 2007. This paper describes DR5. The SDSS Sixth Data Release (DR6) is now public, available from http://www.sdss.or

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction

    A Survey of z>5.7 Quasars in the Sloan Digital Sky Survey IV: Discovery of Seven Additional Quasars

    Get PDF
    We present the discovery of seven quasars at z>5.7, selected from ~2000 deg^2 of multicolor imaging data of the Sloan Digital Sky Survey (SDSS). The new quasars have redshifts z from 5.79 to 6.13. Five are selected as part of a complete flux-limited sample in the SDSS Northern Galactic Cap; two have larger photometric errors and are not part of the complete sample. One of the new quasars, SDSS J1335+3533 (z=5.93), exhibits no emission lines; the 3-sigma limit on the rest-frame equivalent width of Ly alpha+NV line is 5 A. It is the highest redshift lineless quasar known, and could be a gravitational lensed galaxy, a BL Lac object or a new type of quasar. Two new z>6 quasars, SDSS 1250+3130 (z=6.13) and SDSS J1137+3549 (z=6.01), show deep Gunn-Peterson absorption gaps in Ly alpha. These gaps are narrower the complete Gunn-Peterson absorption troughs observed among quasars at z>6.2 and do not have complete Ly beta absorption.Comment: AJ in press, 16 pages, 3 figure

    Impact of early psychosocial factors (childhood socioeconomic factors and adversities) on future risk of type 2 diabetes, metabolic disturbances and obesity: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Psychological factors and socioeconomic status (SES) have a notable impact on health disparities, including type 2 diabetes risk. However, the link between childhood psychosocial factors, such as childhood adversities or parental SES, and metabolic disturbances is less well established. In addition, the lifetime perspective including adult socioeconomic factors remains of further interest.</p> <p>We carried out a systematic review with the main question if there is evidence in population- or community-based studies that childhood adversities (like neglect, traumata and deprivation) have considerable impact on type 2 diabetes incidence and other metabolic disturbances. Also, parental SES was included in the search as risk factor for both, diabetes and adverse childhood experiences. Finally, we assumed that obesity might be a mediator for the association of childhood adversities with diabetes incidence. Therefore, we carried out a second review on obesity, applying a similar search strategy.</p> <p>Methods</p> <p>Two systematic reviews were carried out. Longitudinal, population- or community-based studies were included if they contained data on psychosocial factors in childhood and either diabetes incidence or obesity risk.</p> <p>Results</p> <p>We included ten studies comprising a total of 200,381 individuals. Eight out of ten studies indicated that low parental status was associated with type 2 diabetes incidence or the development of metabolic abnormalities. Adjustment for adult SES and obesity tended to attenuate the childhood SES-attributable risk but the association remained. For obesity, eleven studies were included with a total sample size of 70,420 participants. Four out of eleven studies observed an independent association of low childhood SES on the risk for overweight and obesity later in life.</p> <p>Conclusions</p> <p>Taken together, there is evidence that childhood SES is associated with type 2 diabetes and obesity in later life. The database on the role of psychological factors such as traumata and childhood adversities for the future risk of type 2 diabetes or obesity is too small to draw conclusions. Thus, more population-based longitudinal studies and international standards to assess psychosocial factors are needed to clarify the mechanisms leading to the observed health disparities.</p

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    The Third Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Third Data Release of the Sloan Digital Sky Survey (SDSS). This release, containing data taken up through June 2003, includes imaging data in five bands over 5282 deg^2, photometric and astrometric catalogs of the 141 million objects detected in these imaging data, and spectra of 528,640 objects selected over 4188 deg^2. The pipelines analyzing both images and spectroscopy are unchanged from those used in our Second Data Release.Comment: 14 pages, including 2 postscript figures. Submitted to AJ. Data available at http://www.sdss.org/dr

    The Second Data Release of the Sloan Digital Sky Survey

    Get PDF
    The Sloan Digital Sky Survey (SDSS) has validated and made publicly available its Second Data Release. This data release consists of 3324 deg2 of five-band (ugriz) imaging data with photometry for over 88 million unique objects, 367,360 spectra of galaxies, quasars, stars, and calibrating blank sky patches selected over 2627 deg2 of this area, and tables of measured parameters from these data. The imaging data reach a depth of r ≈ 22.2 (95% completeness limit for point sources) and are photometrically and astrometrically calibrated to 2% rms and 100 mas rms per coordinate, respectively. The imaging data have all been processed through a new version of the SDSS imaging pipeline, in which the most important improvement since the last data release is fixing an error in the model fits to each object. The result is that model magnitudes are now a good proxy for point-spread function magnitudes for point sources, and Petrosian magnitudes for extended sources. The spectroscopy extends from 3800 to 9200 Å at a resolution of 2000. The spectroscopic software now repairs a systematic error in the radial velocities of certain types of stars and has substantially improved spectrophotometry. All data included in the SDSS Early Data Release and First Data Release are reprocessed with the improved pipelines and included in the Second Data Release. Further characteristics of the data are described, as are the data products themselves and the tools for accessing them
    • 

    corecore