376 research outputs found

    Shared Care, Elder and Family Member Skills Used to Manage Burden

    Get PDF
    Aim. The aim of this paper is to further develop the construct of Shared Care by comparing and contrasting it to related research, and to show how the construct can be used to guide research and practice. Background. While researchers have identified negative outcomes for family caregivers caused by providing care, less is known about positive aspects of family care for both members of a family dyad. Understanding family care relationships is important to nurses because family participation in the care of chronically ill elders is necessary to achieve optimal outcomes from nursing interventions. A previous naturalistic inquiry identified a new construct, Shared Care, which was used to describe a family care interaction that contributed to positive care outcomes. Methods. A literature review was carried out using the databases Medline, CINAHL, and Psych-info and the keywords home care, care receiver, disability, family, communication, decision-making and reciprocity. The results of the review were integrated to suggest how Shared Care could be used to study care difficulties and guide interventions. Results. The literature confirmed the importance of dyad relationships in family care. Shared Care extended previous conceptualizations of family care by capturing three critical components: communication, decision-making, and reciprocity. Shared Care provides a structure to expand the conceptualization of family care to include both members of a care dyad and account for positive and negative aspects of care. Conclusions. The extended view provided by the construct of Shared Care offers practitioners and scholars tools to use in the context of our ageing population to improve the effectiveness of family care relationships

    Time-variability in the Interstellar Boundary Conditions of the Heliosphere: Effect of the Solar Journey on the Galactic Cosmic Ray Flux at Earth

    Full text link
    During the solar journey through galactic space, variations in the physical properties of the surrounding interstellar medium (ISM) modify the heliosphere and modulate the flux of galactic cosmic rays (GCR) at the surface of the Earth, with consequences for the terrestrial record of cosmogenic radionuclides. One phenomenon that needs studying is the effect on cosmogenic isotope production of changing anomalous cosmic ray fluxes at Earth due to variable interstellar ionizations. The possible range of interstellar ram pressures and ionization levels in the low density solar environment generate dramatically different possible heliosphere configurations, with a wide range of particle fluxes of interstellar neutrals, their secondary products, and GCRs arriving at Earth. Simple models of the distribution and densities of ISM in the downwind direction give cloud transition timescales that can be directly compared with cosmogenic radionuclide geologic records. Both the interstellar data and cosmogenic radionuclide data are consistent with cloud transitions during the Holocene, with large and assumption-dependent uncertainties. The geomagnetic timeline derived from cosmic ray fluxes at Earth may require adjustment to account for the disappearance of anomalous cosmic rays when the Sun is immersed in ionized gas.Comment: Submitted to Space Sciences Review

    Random Field and Random Anisotropy Effects in Defect-Free Three-Dimensional XY Models

    Full text link
    Monte Carlo simulations have been used to study a vortex-free XY ferromagnet with a random field or a random anisotropy on simple cubic lattices. In the random field case, which can be related to a charge-density wave pinned by random point defects, it is found that long-range order is destroyed even for weak randomness. In the random anisotropy case, which can be related to a randomly pinned spin-density wave, the long-range order is not destroyed and the correlation length is finite. In both cases there are many local minima of the free energy separated by high entropy barriers. Our results for the random field case are consistent with the existence of a Bragg glass phase of the type discussed by Emig, Bogner and Nattermann.Comment: 10 pages, including 2 figures, extensively revise

    Growth hormone treatment in growth-retarded adolescents after renal transplant

    Get PDF
    Growth failure is a psychosocial problem for many patients who have undergone renal transplantation. 18 adolescents (mean age 15 6, range 11·3-19 5) with severe growth retardation after renal transplantation were treated with biosynthetic growth hormone (GH) for 2 years. All received prednisone, administered daily or on alternate days, with azathioprine and/or cyclosporin A. 16 were blindly assigned to one of two GH doses (4 vs 8 IU per m2 per day). Growth, bone maturation, renal graft function, plasma insulin-like growth factors, serum binding proteins, and other biochemical parameters were checked regularly. Glomerular filtration rate and effective renal plasma flow were tested with 125I-Thalamate and 131I-Hippuran. Data on growth and glomerular filtration rate during GH treatment were also compared with those of matched non-GH-treated controls. Mean (standard deviation) increment in height after 2 years of GH was 15·7 (5·1) cm, significantly greater (p25% reduction in glomerular filtration rate over 2 years was not significantly higher in GH-treated patients than in non-GH-treated controls (39% vs 32%, p=0·97). Although a few patients had deterioration of graft function, we could not find a relation with GH treatment. Our results show that sustained improvement of height can be achieved with GH in severely growth-retarded adolescents after renal transplantation

    Further Evidence Suggestive of a Solar Influence on Nuclear Decay Rates

    Full text link
    Recent analyses of nuclear decay data show evidence of variations suggestive of a solar influence. Analyses of datasets acquired at the Brookhaven National Laboratory (BNL) and at the Physikalisch-Technische Bundesanstalt (PTB) both show evidence of an annual periodicity and of periodicities with sidereal frequencies in the neighborhood of 12.25 year^{-1} (at a significance level that we have estimated to be 10^{-17}). It is notable that this implied rotation rate is lower than that attributed to the solar radiative zone, suggestive of a slowly rotating solar core. This leads us to hypothesize that there may be an "inner tachocline" separating the core from the radiative zone, analogous to the "outer tachocline" that separates the radiative zone from the convection zone. The Rieger periodicity (which has a period of about 154 days, corresponding to a frequency of 2.37 year^{-1}) may be attributed to an r-mode oscillation with spherical-harmonic indices l=3, m=1, located in the outer tachocline. This suggests that we may test the hypothesis of a solar influence on nuclear decay rates by searching BNL and PTB data for evidence of a "Rieger-like" r-mode oscillation, with l=3, m=1, in the inner tachocline. The appropriate search band for such an oscillation is estimated to be 2.00-2.28 year^{-1}. We find, in both datasets, strong evidence of a periodicity at 2.11 year^{-1}. We estimate that the probability of obtaining these results by chance is 10^{-12}.Comment: 12 pages, 6 figures, v2 has a color corrected Fig 6, a corrected reference, and a corrected typ

    Lithium deposition in single ion conducting polymer electrolytes

    Get PDF
    Lithium Li metal is considered as promising anode material for high energy density rechargeable batteries, although its application is hampered by inhomogeneous Li deposition and dendritic Li morphologies that could eventually result in contact losses of bulk and deposited Li as well as cell short circuits. Based on theoretical investigations, recent works on polymer electrolytes particularly focus on the design of single ion conducting electrolytes and improvement of bulk Li transport properties, including enhanced Li transference numbers, ionic conductivity, and mechanical stability, thereby affording safer and potentially dendrite free cycling of Li metal batteries. In the present work, it is revealed that the spatial microstructures, localized chemistry, and corresponding distributions of properties within the electrolyte are also decisive for achieving superior cell performances. Thus, targeted modification of the electrolyte microstructures should be considered as further critical design parameters for future electrolyte development and to actually control Li deposition behavior and longevity of Li metal batterie

    Inheritance of OCT4 predetermines fate choice in human embryonic stem cells

    Get PDF
    It is well known that clonal cells can make different fate decisions, but it is unclear whether these decisions are determined during, or before, a cell's own lifetime. Here, we engineered an endogenous fluorescent reporter for the pluripotency factor OCT4 to study the timing of differentiation decisions in human embryonic stem cells. By tracking single-cell OCT4 levels over multiple cell cycle generations, we found that the decision to differentiate is largely determined before the differentiation stimulus is presented and can be predicted by a cell's preexisting OCT4 signaling patterns. We further quantified how maternal OCT4 levels were transmitted to, and distributed between, daughter cells. As mother cells underwent division, newly established OCT4 levels in daughter cells rapidly became more predictive of final OCT4 expression status. These results imply that the choice between developmental cell fates can be largely predetermined at the time of cell birth through inheritance of a pluripotency factor

    Response to “Comment on ‘optimal exposure biomarkers for nonpersistent chemicals in environmental epidemiology’”

    Get PDF
    We appreciate the opportunity to respond to the letter from Stahlhut et al. regarding our Brief Communication. We stressed the importance of biospecimen integrity and the potential danger of unrecognized contamination of convenience samples, particularly with ubiquitous environmental chemicals such as bisphenol A (BPA) and phthalates

    The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    Get PDF
    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described
    corecore