284 research outputs found

    VISAGE Visualization for Integrated Satellite, Airborne and Ground-Based Data Exploration

    Get PDF
    The primary goal of the VISAGE project is to facilitate more efficient Earth Science investigations via a tool that can provide visualization and analytic capabilities for diverse coincident datasets. This proof-of-concept project will be centered around the GPM Ground Validation program, which provides a valuable source of intensive, coincident observations of atmospheric phenomena. The data are from a wide variety of ground-based, airborne and satellite instruments, with a wide diversity in spatial and temporal scales, variables, and formats, which makes these data difficult to use together. VISAGE will focus on "golden cases" where most ground instruments were in operation and multiple research aircraft sampled a significant weather event, ideally while the GPM Core Observatory passed overhead. The resulting tools will support physical process studies as well as satellite and model validation

    MSU Xtreme: Minnesota State University, Mankato\u27s Entry into the Clean Snowmobile Challenge 2001

    Get PDF
    Minnesota State University, Mankato’s Automotive Engineering Technology program formed a team to enter the Clean Snowmobile Challenge 2001. Selections for the organization’s machine included a 2001 Polaris Edge Chassis specially outfitted with a 2000 500 cc two-stroke Polaris engine. Modifications to the snowmobile were made specifically for Clean Snowmobile Challenge 2001 events. Acceleration, emissions, cold start, noise, fuel economy/range, handling/drivability, hill climb, and static display made up the list of events featured in the competition. MSU Xtreme has modified the snowmobile in every area with special emphasis on emissions and handling. Testing and analysis of the sled’s systems brought the team to its resulting design. The technical paper describes the results of those tests, explains the team design procedures, and presents all modifications made to the snowmobile

    A time study of physicians' work in a German university eye hospital to estimate unit costs.

    Get PDF
    BACKGROUND: Technical efficiency of hospital services is debated since performance has been heterogeneous. Staff time represents the main resource in patient care and its inappropriate allocation has been identified as a key factor of inefficiency. The aim of this study was to analyse the utilisation of physicians' work time stratified by staff groups, tasks and places of work. A further aim was to use these data to estimate resource use per unit of output. METHODS: A self-reporting work-sampling study was carried during 14-days at a University Eye Hospital. Staff costs of physicians per unit of output were calculated at the wards, the operating rooms and the outpatient unit. RESULTS: Forty per cent of total work time was spent in contact with the patient. Thirty per cent was spent with documentation tasks. Time spent with documentation tasks declined monotonically with increasing seniority of staff. Unit costs were 56 € per patient day at the wards, 77 € and 20 € per intervention at the operating rooms for inpatients and outpatients, respectively, and 33 € per contact at the outpatient unit. Substantial differences in resources directly dedicated to the patient were found between these locations. CONCLUSION: The presented data provide unprecedented units costs in inpatient Ophthalmology. Future research should focus on analysing factors that influence differences in time allocation, such as types of patients, organisation of care processes and composition of staff

    Bone Density Testing: An Under-Utilised and Under-Researched Health Education Tool for Osteoporosis Prevention?

    Get PDF
    Feedback of fracture risk based on bone mineral density (BMD) is an under-explored potential osteoporosis education intervention. We performed a randomised controlled trial of either an osteoporosis information leaflet or small group education (the Osteoporosis Prevention and Self-Management Course (OPSMC)), combined with individualised fracture risk feedback in premenopausal women over two years. Women with a mean T-score at spine and hip of <0 were informed they were at higher risk of fracture in later life and those with T-score ≥ 0 were informed they were not. Women receiving feedback of high fracture risk had a greater increase in femoral neck, but not lumbar spine, BMD compared to the low risk group (1.6% p.a. vs. 0.7% p.a., p = 0.0001). Participation in the OPSMC had no greater effect on BMD than receiving the leaflet. Femoral neck BMD change was associated with starting calcium supplements (1.3% p.a., 95% CI +0.49, +2.17) and self-reported physical activity change (0.7% p.a., 95% CI +0.22, +1.22). Mother’s report of increasing their children’s calcium intake was associated with receiving the OPSMC (OR 2.3, 95% CI 1.4, 3.8) and feedback of high fracture risk (OR 2.0, 95% CI 1.2, 3.3). Fracture risk feedback based on BMD could potentially make an important contribution to osteoporosis prevention but confirmation of long-term benefits and cost effectiveness is needed before implementation can be recommended

    Mapping protein dynamics at high spatial resolution with temperature-jump X-ray crystallography

    Get PDF
    温度による酵素の構造変化を分子動画撮影 様々な生体高分子のダイナミクスを決定する新たな方法論. 京都大学プレスリリース. 2023-09-19.Understanding and controlling protein motion at atomic resolution is a hallmark challenge for structural biologists and protein engineers because conformational dynamics are essential for complex functions such as enzyme catalysis and allosteric regulation. Time-resolved crystallography offers a window into protein motions, yet without a universal perturbation to initiate conformational changes the method has been limited in scope. Here we couple a solvent-based temperature jump with time-resolved crystallography to visualize structural motions in lysozyme, a dynamic enzyme. We observed widespread atomic vibrations on the nanosecond timescale, which evolve on the submillisecond timescale into localized structural fluctuations that are coupled to the active site. An orthogonal perturbation to the enzyme, inhibitor binding, altered these dynamics by blocking key motions that allow energy to dissipate from vibrations into functional movements linked to the catalytic cycle. Because temperature jump is a universal method for perturbing molecular motion, the method demonstrated here is broadly applicable for studying protein dynamics

    Changes in an Enzyme Ensemble During Catalysis Observed by High Resolution XFEL Crystallography

    Get PDF
    Enzymes populate ensembles of structures with intrinsically different catalytic proficiencies that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL) to observe catalysis in a designed mutant (G150T) isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations and formation of the thioimidate catalytic intermediate selects for catalytically competent substates. A prior proposal for active site cysteine charge-coupled conformational changes in ICH is validated by determining structures of the enzyme over a range of pH values. A combination of large molecular dynamics simulations of the enzyme in crystallo and timeresolved electron density maps shows that ionization of the general acid Asp17 during catalysis causes additional conformational changes that propagate across the dimer interface, connecting the two active sites. These ionization-linked changes in the ICH conformational ensemble permit water to enter the active site in a location that is poised for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics
    corecore