22 research outputs found

    Response selection difficulty modulates the behavioral impact of rapidly learnt action effects

    Get PDF
    It is well established that we can pick up action effect associations when acting in a free-choice intentional mode. However, it is less clear whether and when action effect associations are learnt and actually affect behavior if we are acting in a forced-choice mode, applying a specific stimulus-response (S-R) rule. In the present study, we investigated whether response selection difficulty imposed by S-R rules influences the initial rapid learning and the behavioral expression of previously learnt but weakly practiced action effect associations when those are re-activated by effect exposure. Experiment 1 showed that the rapid acquisition of action effect associations is not directly influenced by response selection difficulty. By contrast, the behavioral expression of re-activated action effect associations is prevented when actions are directly activated by highly over-learnt response cues and thus response selection difficulty is low. However, all three experiments showed that if response selection difficulty is sufficiently high during re-activation, the same action effect associations do influence behavior. Experiment 2 and 3 revealed that the effect of response selection difficulty cannot be fully reduced to giving action effects more time to prime an action, but seems to reflect competition during response selection. Finally, the present data suggest that when multiple novel rules are rapidly learnt in succession, which requires a lot of flexibility, action effect associations continue to influence behavior only if response selection difficulty is sufficiently high. Thus, response selection difficulty might modulate the impact of experiencing multiple learning episodes on action effect expression and learning, possibly via inducing different strategies

    Neural mechanisms of goal-directed behavior: outcome-based response selection is associated with increased functional coupling of the angular gyrus

    Get PDF
    Goal-directed behavior is based on representations of contingencies between a certain situation (S), a certain (re)action (R) and a certain outcome (O). These S-R-O representations enable flexible response selection in different situations according to the currently pursued goal. Importantly however, the successful formation of such representations is a necessary but not sufficient precondition for goal-directed behavior which additionally requires the actual usage of the contingency information for action control. The present fMRI study aimed at identifying the neural basis of each of these two aspects: representing vs. explicitly using experienced S-R-O contingencies. To this end, we created three experimental conditions: S-R-O contingency present and used for outcome-based response selection, S-R-O contingency present but not used, and S-R-O contingency absent. The comparison between conditions with and without S-R-O contingency revealed that the angular gyrus is relevant for representing S-R-O contingencies. The explicit usage of learnt S-R-O representations in turn was associated with increased functional coupling between angular gyrus and several subcortical (hippocampus, caudate head), prefrontal (lateral orbitofrontal cortex (OFC), rostrolateral prefrontal cortex (RLPFC)) and cerebellar areas, which we suggest represent different explicit and implicit processes of goal-directed action control. Hence, we ascribe a central role to the angular gyrus in associating actions to their sensory outcomes which is used to guide behavior through coupling of the angular gyrus with multiple areas related to different aspects of action control

    Regulating craving by anticipating positive and negative outcomes : a multivariate pattern analysis and network connectivity approach

    Get PDF
    During self-control, we may resist short-term temptations in order to reach a favorable future (e.g., resisting cake to stay healthy). The neural basis of self-control is typically attributed to “cold,” unemotional cognitive control mechanisms which inhibit affect-related regions via the prefrontal cortex (PFC). Here, we investigate the neural underpinnings of regulating cravings by mentally evoking the positive consequences of resisting a temptation (e.g., being healthy) as opposed to evoking the negative consequences of giving in to a temptation (e.g., becoming overweight). It is conceivable that when using these types of strategies, regions associated with emotional processing [e.g., striatum, ventromedial prefrontal cortex (vmPFC)] are involved in addition to control-related prefrontal and parietal regions. Thirty-one participants saw pictures of unhealthy snacks in the fMRI scanner and, depending on the trial, regulated their craving by thinking of the positive consequences of resisting, or the negative consequences of not resisting. In a control condition, they anticipated the pleasure of eating and thus, allowed the craving to occur (now-condition). In line with previous studies, we found activation of a cognitive control network during self-regulation. In the negative future thinking condition, the insula was more active than in the positive condition, while there were no activations that were stronger in the positive (> negative) future thinking condition. However, additionally, multivariate pattern analysis showed that during craving regulation, information about the valence of anticipated emotions was present in the vmPFC, the posterior cingulate cortex (PCC) and the insula. Moreover, a network including vmPFC and PCC showed higher connectivity during the positive (> negative) future thinking condition. Since these regions are often associated with affective processing, these findings suggest that “hot,” affective processes may, at least in certain circumstances, play a role in self-control

    Unbiased Analysis of Item-Specific Multi-Voxel Activation Patterns Across Learning

    Get PDF
    Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely biased when BOLD response estimation involves systematic imbalance in model regressor correlations. This problem occurs in situations where trial types of interest are temporally dependent and the associated BOLD activity overlaps. For example, in learning paradigms early and late learning stage trials are inherently ordered. It has been shown empirically that MVPAs assessing consecutive learning stages can be substantially biased especially when stages are closely spaced. Here, we propose a simple technique that ensures zero bias in item-specific multi-voxel activation patterns for consecutive learning stages with stage being defined by the incremental number of individual item occurrences. For the simpler problem, when MVPA is computed irrespective of learning stage over all item occurrences within a trial sequence, our results confirm that a sufficiently large, randomly selected subset of all possible trial sequence permutations ensures convergence to zero bias – but only when different trial sequences are generated for different subjects. However, this does not help to solve the harder problem to obtain bias-free results for learning-related activation patterns regarding consecutive learning stages. Randomization over all item occurrences fails to ensure zero bias when the full trial sequence is retrospectively divided into item occurrences confined to early and late learning stages. To ensure bias-free MVPA of consecutive learning stages, trial-sequence randomization needs to be done separately for each consecutive learning stage

    Regulating Craving by Anticipating Positive and Negative Outcomes: A Multivariate Pattern Analysis and Network Connectivity Approach

    Get PDF
    During self-control, we may resist short-term temptations in order to reach a favorable future (e.g., resisting cake to stay healthy). The neural basis of self-control is typically attributed to “cold,” unemotional cognitive control mechanisms which inhibit affect-related regions via the prefrontal cortex (PFC). Here, we investigate the neural underpinnings of regulating cravings by mentally evoking the positive consequences of resisting a temptation (e.g., being healthy) as opposed to evoking the negative consequences of giving in to a temptation (e.g., becoming overweight). It is conceivable that when using these types of strategies, regions associated with emotional processing [e.g., striatum, ventromedial prefrontal cortex (vmPFC)] are involved in addition to control-related prefrontal and parietal regions. Thirty-one participants saw pictures of unhealthy snacks in the fMRI scanner and, depending on the trial, regulated their craving by thinking of the positive consequences of resisting, or the negative consequences of not resisting. In a control condition, they anticipated the pleasure of eating and thus, allowed the craving to occur (now-condition). In line with previous studies, we found activation of a cognitive control network during self-regulation. In the negative future thinking condition, the insula was more active than in the positive condition, while there were no activations that were stronger in the positive (> negative) future thinking condition. However, additionally, multivariate pattern analysis showed that during craving regulation, information about the valence of anticipated emotions was present in the vmPFC, the posterior cingulate cortex (PCC) and the insula. Moreover, a network including vmPFC and PCC showed higher connectivity during the positive (> negative) future thinking condition. Since these regions are often associated with affective processing, these findings suggest that “hot,” affective processes may, at least in certain circumstances, play a role in self-control

    When the Choice Is Ours: Context and Agency Modulate the Neural Bases of Decision-Making

    Get PDF
    The option to choose between several courses of action is often associated with the feeling of being in control. Yet, in certain situations, one may prefer to decline such agency and instead leave the choice to others. In the present functional magnetic resonance imaging (fMRI) study, we provide evidence that the neural processes involved in decision-making are modulated not only by who controls our choice options (agency), but also by whether we have a say in who is in control (context). The fMRI results are noteworthy in that they reveal specific contributions of the anterior frontomedian cortex (viz. BA 10) and the rostral cingulate zone (RCZ) in decision-making processes. The RCZ is engaged when conditions clearly present us with the most choice options. BA 10 is engaged in particular when the choice is completely ours, as well as when it is completely up to others to choose for us which in turn gives rise to an attribution of control to oneself or someone else, respectively. After all, it does not only matter whether we have any options to choose from, but also who decides on that

    Habituelle und arbiträre sensomotorische Verknüpfungen im lateralen prämotorischen Kortex des Menschen.

    No full text

    Learning-Related Brain-Electrical Activity Dynamics Associated with the Subsequent Impact of Learnt Action-Outcome Associations

    No full text
    Goal-directed behavior relies on the integration of anticipated outcomes into action planning based on acquired knowledge about the current contingencies between behavioral responses (R) and desired outcomes (O) under specific stimulus conditions (S). According to ideomotor theory, bidirectional R-O associations are an integral part of this knowledge structure. Previous EEG studies have identified neural activity markers linked to the involvement of such associations, but the initial acquisition process has not yet been characterized. The present study thus examined brain-electrical activity dynamics during the rapid acquisition of novel bidirectional R-O associations during instructed S-R learning. Within a trial, we inspected response-locked and stimulus-locked activity dynamics in order to identify markers linked to the forward and backward activation of bidirectional R-O associations as they were being increasingly strengthened under forced choice conditions. We found that a post-response anterior negativity following auditory outcomes was increasingly attenuated as a function of the acquired association strength. This suggests that previously reported action-induced sensory attenuation effects under extensively trained free choice conditions can be established within few repetitions of specific R-O pairings under forced choice conditions. Furthermore, we observed the even more rapid development of a post-response but pre-outcome fronto-central positivity which was reduced for high R-O learners which might indicate the rapid deployment of preparatory attention towards predictable outcomes. Finally, we identified a learning-related stimulus-locked activity modulation within the visual P1-N1 latency range which might reflect the multi-sensory integration of the perceived antecedent visual stimulus the anticipated auditory outcome

    Changes in global functional network properties predict individual differences in habit formation

    No full text
    Prior evidence suggests that sensorimotor regions play a crucial role in habit formation. Yet, whether and how their global functional network properties might contribute to a more comprehensive characterization of habit formation still remains unclear. Capitalizing on advances in Elastic Net regression and predictive modeling, we examined whether learning-related functional connectivity alterations distributed across the whole brain could predict individual habit strength. Using the leave-one-subject-out cross-validation strategy, we found that the habit strength score of the novel unseen subjects could be successfully predicted. We further characterized the contribution of both, individual large-scale networks and individual brain regions by calculating their predictive weights. This highlighted the pivotal role of functional connectivity changes involving the sensorimotor network and the cingulo–opercular network in subject-specific habit strength prediction. These results contribute to the understanding the neural basis of human habit formation by demonstrating the importance of global functional network properties especially also for predicting the observable behavioral expression of habits
    corecore