2,265 research outputs found

    Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Get PDF
    Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004), SENEX (June–July 2013), and SEAC4RS (August–September 2013) and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (∼ 42–45%), followed by NOx (31%), total peroxy nitrates (ΣPNs; 14%), and total alkyl nitrates (ΣANs; 9–12%) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOxemissions will lead to a continued decline in surface ozone and less frequent high-ozone events

    Rapid deposition of oxidized biogenic compounds to a temperate forest

    Get PDF
    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H_2O_2), nitric acid (HNO_3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO_3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m^(−2)⋅s^(−1)). GEOS−Chem, a widely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS−Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases

    Association of polygenic scores with chronic kidney disease phenotypes in a longitudinal study of older adults

    Get PDF
    Risk of chronic kidney disease (CKD) is influenced by environmental and genetic factors and increases sharply in individuals 70 years and older. Polygenic scores (PGS) for kidney disease-related traits have shown promise but require validation in well-characterized cohorts. Here, we assessed the performance of recently developed PGSs for CKD-related traits in a longitudinal cohort of healthy older individuals enrolled in the Australian ASPREE randomized controlled trial of daily low-dose aspirin with CKD risk at baseline and longitudinally. Among 11,813 genotyped participants aged 70 years or more with baseline eGFR measures, we tested associations between PGSs and measured eGFR at baseline, clinical phenotype of CKD, and longitudinal rate of eGFR decline spanning up to six years of follow-up per participant. A PGS for eGFR was associated with baseline eGFR, with a significant decrease of 3.9 mL/min/1.73m2 (95% confidence interval -4.17 to -3.68) per standard deviation (SD) increase of the PGS. This PGS, as well as a PGS for CKD stage 3 were both associated with higher risk of baseline CKD stage 3 in cross-sectional analysis (Odds Ratio 1.75 per SD, 95% confidence interval 1.66-1.85, and Odds Ratio 1.51 per SD, 95% confidence interval 1.43-1.59, respectively). Longitudinally, two separate PGSs for eGFR slope were associated with significant kidney function decline during follow-up. Thus, our study demonstrates that kidney function has a considerable genetic component in older adults, and that new PGSs for kidney disease-related phenotypes may have potential utility for CKD risk prediction in advanced age

    Developing the accredited postgraduate assessment program for Fellowship of the Australian College of Rural and Remote Medicine

    Get PDF
    Introduction: Accreditation of the Australian College of Rural and Remote Medicine (ACRRM) as a standards and training provider, by the Australian Medical Council (AMC) in 2007, is the first time in the world that a peak professional organisation for rural and remote medical education has been formally recognised. As a consequence, the Australian Government provided rural and remote medicine with formal recognition under Medicare as a generalist discipline. This accreditation was based on the ability of ACRRM to meet the AMC's guidelines for its training and assessment program.\ud \ud Methods: The methodology was a six-step process that included: developing an assessment blueprint and a classification scheme; identifying an assessment model; choosing innovative summative and formative assessment methods that met the needs of rural and remote located medical practitioner candidates; 21 rural doctors and academics developing the assessment items as part of a week-long writing workshop; investigating the feasibility of purchasing assessment items; and 48 rural candidates piloting three of the assessment items to ensure they would meet the guidelines for national accreditation.\ud \ud Results: The project resulted in an innovative formative and summative assessment program that occurs throughout 4 years of vocational training, using innovative, reliable, valid and acceptable methods with educational impact. The piloting process occurred for 3 of the 6 assessment tools. Structured Assessment Using Multiple Patient Scenarios (StAMPS) is a new assessment method developed as part of this project. The StAMPS pilot found that it was reliable, with a generalisability coefficient of >0.76 and was a valid, acceptable and feasible assessment tool with desired educational impact. The multiple choice question (MCQ) examination pilot found that the applied clinical nature of the questions and their wide range of scenarios proved a very acceptable examination to the profession. The web based in-training assessment examination pilot revealed that it would serve well as a formative process until ACRRM can further develop their MCQ database.\ud \ud Conclusions: The ACRRM assessment program breaks new ground for assessing rural and remote doctors in Australia, and provides new evidence regarding how a comprehensive and contemporary assessment system can work within a postgraduate medical setting

    Does swab type matter? Comparing methods for \u3ci\u3eMannheimia haemolytica\u3c/i\u3e recovery and upper respiratory microbiome characterization in feedlot cattle

    Get PDF
    Background: Bovine respiratory disease (BRD) is caused by interactions among host, environment, and pathogens. One standard method for antemortem pathogen identification in cattle with BRD is deep-guarded nasopharyngeal swabbing, which is challenging, costly, and waste generating. The objective was to compare the ability to recover Mannheimia haemolytica and compare microbial community structure using 29.5 inch (74.9 cm) deep-guarded nasopharyngeal swabs, 16 inch (40.6 cm) unguarded proctology swabs, or 6 inch (15.2 cm) unguarded nasal swabs when characterized using culture, real time-qPCR, and 16S rRNA gene sequencing. Samples for aerobic culture, qPCR, and 16S rRNA gene sequencing were collected from the upper respiratory tract of cattle 2 weeks after feedlot arrival. Results: There was high concordance of culture and qPCR results for all swab types (results for 77% and 81% of sampled animals completely across all 3 swab types for culture and qPCR respectively). Microbial communities were highly similar among samples collected with different swab types, and differences identified relative to treatment for BRD were also similar. Positive qPCR results for M. haemolytica were highly concordant (81% agreed completely), but samples collected by deep-guarded swabbing had lower amounts of Mh DNA identified (Kruskal–Wallis analysis of variance on ranks, P \u3c 0.05; Dunn-test for pairwise comparison with Benjamini–Hochberg correction, P \u3c 0.05) and lower frequency of positive compared to nasal and proctology swabs (McNemar’s Chi-square test, P \u3c 0.05). Conclusions: Though differences existed among different types of swabs collected from individual cattle, nasal swabs and proctology swabs offer comparable results to deep-guarded nasopharyngeal swabs when identifying and characterizing M. haemolytica by culture, 16S rRNA gene sequencing, and qPCR

    Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations

    Get PDF
    The hydroxyl radical (OH) fuels tropospheric ozone production and governs the lifetime of methane and many other gases. Existing methods to quantify global OH are limited to annual and global-to-hemispheric averages. Finer resolution is essential for isolating model deficiencies and building process-level understanding. In situ observations from the Atmospheric Tomography (ATom) mission demonstrate that remote tropospheric OH is tightly coupled to the production and loss of formaldehyde (HCHO), a major hydrocarbon oxidation product. Synthesis of this relationship with satellite-based HCHO retrievals and model-derived HCHO loss frequencies yields a map of total-column OH abundance throughout the remote troposphere (up to 70% of tropospheric mass) over the first two ATom missions (August 2016 and February 2017). This dataset offers unique insights on near-global oxidizing capacity. OH exhibits significant seasonality within individual hemispheres, but the domain mean concentration is nearly identical for both seasons (1.03 ± 0.25 × 10^6 cm^(−3)), and the biseasonal average North/South Hemisphere ratio is 0.89 ± 0.06, consistent with a balance of OH sources and sinks across the remote troposphere. Regional phenomena are also highlighted, such as a 10-fold OH depression in the Tropical West Pacific and enhancements in the East Pacific and South Atlantic. This method is complementary to budget-based global OH constraints and can help elucidate the spatial and temporal variability of OH production and methane loss
    • …
    corecore