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Lay Summary

The sum of multiple small genetics contributors to a trait
such as kidney function can be captured by polygenic
risk scores (PGSs), derived from large-scale genome-wide
association studies; however, the clinical significance of
these scores is still being understood. We tested several
recently developed PGSs for kidney traits in 11,813 Eu-
ropean Australians, aged >70 years, from the ASPirin in
Reducing Events in the Elderly population, with a mean
estimated glomerular filtration rate (eGFR) of 72.9 ml/
min per 1.73 m2. We validated multiple PGSs for both
eGFR and decline in eGFR. At a population level, those
with higher PGSs had the lowest mean eGFR of 57 ml/
min per 1.73 m2, with significant individual variability.
Overall, this study validated PGSs for kidney function in
Risk of chronic kidney disease (CKD) is influenced by
environmental and genetic factors and increases sharply in
individuals 70 years and older. Polygenic scores (PGS) for
kidney disease-related traits have shown promise but
require validation in well-characterized cohorts. Here, we
assessed the performance of recently developed PGSs for
CKD-related traits in a longitudinal cohort of healthy older
individuals enrolled in the Australian ASPREE randomized
controlled trial of daily low-dose aspirin with CKD risk at
baseline and longitudinally. Among 11,813 genotyped
participants aged 70 years or more with baseline eGFR
measures, we tested associations between PGSs and
measured eGFR at baseline, clinical phenotype of CKD, and
longitudinal rate of eGFR decline spanning up to six years
of follow-up per participant. A PGS for eGFR was associated
with baseline eGFR, with a significant decrease of 3.9 mL/
min/1.73m2 (95% confidence interval -4.17 to -3.68) per
standard deviation (SD) increase of the PGS. This PGS, as
well as a PGS for CKD stage 3 were both associated with
higher risk of baseline CKD stage 3 in cross-sectional
analysis (Odds Ratio 1.75 per SD, 95% confidence interval
1.66-1.85, and Odds Ratio 1.51 per SD, 95% confidence
interval 1.43-1.59, respectively). Longitudinally, two
separate PGSs for eGFR slope were associated with
significant kidney function decline during follow-up. Thus,
our study demonstrates that kidney function has a
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considerable genetic component in older adults, and that
new PGSs for kidney disease-related phenotypes may have
potential utility for CKD risk prediction in advanced age.
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an older population, showing PGSs, which are static
across the life span, still impact kidney function in later
stages of life.
C hronic kidney disease (CKD) is a significant and
growing health care burden worldwide.1 CKD preva-
lence increases with age, with peak incidence after the

age of 60 years.2 Risk is driven by conventional risk factors,
including hypertension, diabetes, obesity, and smoking.2,3 In
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addition, CKD is strongly influenced by genetic factors,
especially in monogenic kidney disorders.4,5 Although rare
monogenic variants are associated with severe, rare forms of
CKD (e.g., autosomal dominant polycystic kidney disease and
Alport syndrome), the relationship between common genetic
variants and CKD risk is less well characterized, particularly
in older individuals in whom CKD prevalence is high.6,7

Heritability estimates for kidney function generated from
twin studies suggest a diminishing but still significant genetic
component across the life span.8 Genome-wide association
studies predict lower heritability of CKD between 7% and
18%, depending on the population, but have been generated
from younger populations.9–12 Further studies are required to
understand the relevance of genetic contributions to CKD in
older age.8 Accurate risk prediction remains a clinical chal-
lenge for CKD, especially in older people. Early identification
of high-risk individuals for CKD through genetic profiling,
before decline in kidney function, may help target in-
terventions to high-risk individuals earlier and reduce disease
burden.6,7

Polygenic scores (PGSs) are an aggregate measure of
common-variant risk for a given disease or trait and are
calculated by summing the effects of many different single-
nucleotide polymorphisms together into a single score.
PGSs for traits associated with kidney function have been
recently developed, including from the CKDGen Consortium
and UK Biobank, based on phenotypes related to kidney
failure, estimated glomerular filtration rate (eGFR), rate of
decline in eGFR, urine albumin-creatinine ratio (UACR), and
other conditions, such as diabetes mellitus and coronary ar-
tery disease.9,10,13 Older populations have more medical
comorbidities, and PGSs for kidney function have been
related to cardiac and metabolic disease (including diabetes
mellitus) that are known to influence kidney function.14,15

Validation and comparison of these scores in older people,
aged >70 years, has been lacking despite the high burden of
kidney disease in this older age group.

This study aims to assess the performance of recently
developed kidney disease PGSs, with regard to association
with the following: (i) CKD risk at baseline and (ii) more
rapid decline in kidney function in older individuals, inde-
pendent of environmental considerations and established risk
factors. For the first question, we conducted a cross-sectional
analysis using baseline measurements to examine whether a
PGS for eGFR and, separately, UACR was associated with
these measures in our cohort, and to compare the perfor-
mance of a PGS for eGFR with PGSs from several studies
specific to CKD phenotypes. For the second question, we
examined 2 PGSs specific for the “decline in eGFR” pheno-
type to determine whether they were associated with a greater
rate of eGFR decline prospectively using our longitudinal
measures of eGFR. In addition, we investigated whether the
PGS for eGFR was associated with metabolic disorders that
strongly associate with CKD (baseline diabetes mellitus and
incident cardiovascular disease and myocardial infarction), to
better understand these linked risks.16
Kidney International (2023) 103, 1156–1166
METHODS
Study design
The study includes genotyped Australian participants from the
ASPirin in Reducing Events in the Elderly (ASPREE) trial, a ran-
domized placebo-controlled trial of daily low-dose aspirin in older
adults.17–19 The analysis also includes recent data from the ASPREE-
XT02 Longitudinal Data Set, which extends observational follow-up
time beyond the original randomization period to a mean of 6.3
years. The ASPREE study design,20,21 recruitment, and baseline
characteristics22 have been published previously. ASPREE partici-
pants were recruited in partnership with a network of general
practitioners in Australia and the United States. The study was
approved by the Alfred Hospital Human Research Ethics Committee
(project 390/15) in accordance with the National Statement on
Ethical Conduct in Human Research (2007). Written informed
consent for genetic analysis was obtained from all study participants.

For the present genetic analysis, we include only Australian
ASPREE participants with a baseline eGFR measurement who pro-
vided a sample for DNA analysis (Supplementary Figure S1). First,
we conducted cross-sectional analysis of the baseline cohort. Second,
we followed up participants with longitudinal data for analysis of
eGFR decline. Finally, we excluded any participants with stage 5
CKD at baseline (those on dialysis treatment or those who received a
kidney transplant).

Outcomes
There were 4 outcome measures for the cross-sectional analysis: (i)
association with eGFR as a continuous variable; and (ii) the presence
of CKD using established criteria, with CKD being defined according
to 3 measures: (a) CKDKDIGO was based on Kidney Disease:
Improving Global Outcomes (KDIGO) criteria, where CKD was
defined as either eGFR <60 ml/min per 1.73 m2 or UACR >3.0 mg/
mmol. CKDKDIGO was derived for the subset of participants who had
UACR available at baseline. (b) CKDeGFR was defined as CKD using
only eGFR <60 ml/min per 1.73 m2); (c) a moderate to severe
CKD phenotype (CKDeGFR_mod) defined as eGFR <45 ml/min per
1.73 m2.

The eGFR was calculated using the Chronic Kidney Disease
Epidemiology Collaboration equation23 and serum creatinine
measured at baseline and annual study visits. UACR was measured at
baseline (mg/mmol), with albuminuria defined as a UACR $3.0 mg/
mmol.

For the longitudinal analysis, we used the annual eGFR measures
in a statistical model to draw inferences about annual decline in ml/
min per 1.73 m2. Diabetes at baseline was based on presence of either
self-report or fasting glucose $126 mg/dl, or medication for
diabetes. Incident cardiovascular disease and myocardial infarction
were classified as adjudicated outcomes in the original trial outcomes
(adjudication assessed by expert committees, as described
previously18).

Genotyping
Genotyping was performed on the Axiom 2.0 Precision Medicine
Diversity Research Array (Thermo Fisher Scientific) following
standard protocols and quality control. Variants were aligned to the
human genome reference GRCh38; quality control steps were
applied to match for predicted and expected sex, filter for relatedness
(using PLINK 2.0 based on –king-table-filter 0.1) as well as missing
samples and variants (–mind and –geno defaults), and exclude
variants with Hardy-Weinberg P < 0.000001. Variants were imputed
by TopMED Imputation Server Imputation (European samples).24
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Variants that were multiallelic or with low imputation quality scores
(r2 < 0.3) were removed.

To mitigate the effect of population stratification bias on the
PGS (i.e., confounding related to ethnicity), we included only in-
dividuals of European genetic ancestry, identified by principal
component analysis and overlapping the European subset of the 1000
Genomes Project phase 3 reference population25 (for details, see
Supplementary Figure S2A and B). Briefly, the genotype data were
combined with 1000 Genomes Project phase 3 data, with linkage
disequilibrium (LD) pruned (r2 < 0.1). The Z score of the first 2
principal component eigenvectors was calculated, and used to
exclude samples with �2 SDs in Z score compared with 1000 Ge-
nomes Project phase 3 reference populations, with the European
population used to identify individuals used in this study
(Supplementary Figure S2A and B).
Polygenic scores
The principal PGS for the cross sectional eGFR analysis was pub-
lished by Yu et al, 2021 (PGS000883), hereby referred to as
PGS_GFR.26 This score was then compared with the recently
developed PGS for CKD stage 3, referred to as PGS_CKD_S3. For
the assessment of eGFR decline, we examined 2 PGSs for rapid
decline of glomerular filtration rate: PGS000664, hereby referred to
as PGS_GFR_decline_2021, and PGS_GFR_decline_2022.9,27 We
also examined a PGS for UACR (PGS000822, defined as
PGS_ACR).28 Table 1 briefly summarizes the PGSs examined, and
lists details found in the primary publications.27

PGSs were calculated by PLINK2.0 using the score function.29,30

This function sums the effect sizes for each effect allele present in
each participant, creating a single score for each participant. We
created 3 predicted eGFR risk groups for PGS_GFR: high for those
with PGS > 95% above the mean, medium for those with PGS be-
tween 5% and 95%, and low for those with PGS < 5%. The high PGS
group is predicted to have the lowest eGFR, and hence would be
expected to have the highest risk of CKD (Supplementary Figure S3).

Statistical analysis
For the cross-sectional analysis, we used a linear regression to
examine the relationship between PGS_GFR and eGFR at enroll-
ment, and included the following covariates: age, sex, body mass
index, alcohol use, smoking, hypertension, diabetes, and use of
nonsteroidal anti-inflammatory drug or angiotensin-converting
enzyme inhibitors and angiotensin receptor blockers. For the bi-
nary CKD outcomes, logistic regression was used to examine the
relationship between CKD and PGS_GFR, using the same covariates
as the linear regression model.

For the longitudinal analysis, a linear mixed model examined the
relationship between the PGS_GFR_decline_2021 and
PGS_GFR_decline_2022 and repeated eGFR measurements over
time in individual participants, with correlated random effects for
participant-specific intercept and participant-specific slope using
visit year as the time variable to yield annualized eGFR change
(Supplementary Table S1). Covariates included in the model were
baseline age, sex, body mass index, alcohol and smoking, hyper-
tension, diabetes, and treatment arm (aspirin or placebo). To
quantify the relationship between rate of decline of eGFR and
PGS_GFR_decline_2021/2022, the linear mixed model included an
interaction term between the PGS and visit year. We used the glht
function from R package multcomp31 to derive point estimates of
the rate of change per year for individuals estimated to lie at: (i) 2
1158
SDs above mean decline, (ii) 2 SDs below mean decline, and (iii)
mean decline.

Cox proportional hazards models were used to examine the as-
sociations between PGS_GFR and each of incident coronary artery
disease and incident myocardial infarction. Cause-specific hazard
ratios for PGS_GFR were reported using the survival package,32 with
the same covariates as the linear regression. Logistic regression was
used to examine the relationship between baseline eGFR and pres-
ence of diabetes mellitus. Results from statistical models are adjusted
unless otherwise specified. Area under the curve (AUC) was used to
compare the results between models. Hosmer-Lemeshow test was
used to assess calibration of model.

RESULTS
Population characteristics
Of the 19,114 total participants randomized to receive aspirin
or placebo in the ASPREE trial, 12,141 had a baseline eGFR
measure and provided a sample for genomic analysis. A
further 328 were excluded as they did not have European
genetic ancestry and 5 further individuals had stage 5 CKD.
Thus, the final study population consisted of 11,813 geno-
typed European ancestry individuals. For the analysis assess-
ing albuminuria (UACR), 2911 had a missing baseline UACR
measure; hence, this analysis was confined to a subset of 8902
individuals.

The baseline characteristics of the study sample are pre-
sented in Table 2. The mean age of the study population was
75.0 years (SD, 4.2 years), and 54.2% of participants were
women. A total of 2904 participants (24%) met the
CKDKDIGO definition, and 2071 participants met the
CKDeGFR definition (eGFR < 60 ml/min per 1.73 m2). The
median follow-time up during which participants took
aspirin or placebo was 4.7 years. Following the cessation of
the trial, additional follow-up continued (ASPREE-XT02
Longitudinal Data Set), with the median follow-up time
increasing to 6.3 years.

At baseline, the mean measured eGFR for the population
was 72.9 ml/min per 1.73 m2 (SD, 13.4 ml/min per 1.73 m2).
By 6 years of follow-up, 5127 measurements of eGFR were
available, with the mean eGFR declining to 66.5 ml/min per
1.73 m2 (SD, 14.9 ml/min per 1.73 m2; Supplementary
Table S2 and Supplementary Figure S4). For UACR, 8902
(75.4%) were measured at baseline, and 2946 were measured
at 6 years. Baseline mean UACR was 2.34 mg/mmol (median,
0.8 mg/mmol); and the value was 3.93 mg/mmol (median, 1.2
mg/mmol) at 6 years.

Cross-sectional analysis
The PGS_GFR in our fully adjusted model was associated
with eGFR at baseline; for each 1-SD decrease in the
PGS_GFR, there was a difference in eGFR of –3.9 ml/min per
1.73 m2 (95% confidence interval [CI], –4.2 to –3.7 ml/min per
1.73 m2; P < 0.001). Hosmer-Lemeshow test did not indicate a
lack of goodness of fit (P > 0.05). The mean eGFR values for
participants in the <5% (predicted high eGFR), middle, and
>95% (predicted low eGFR) groups were 81.9 � 11.7, 72.9 �
13.3, and 62.3� 12.5 ml/min per 1.73 m2, respectively, with 281
Kidney International (2023) 103, 1156–1166



Table 1 | Comparison of available PGSs for eGFR and decline in eGFR: multiple PGSs for CKD have been generated using alternative strategies, including population,
definition of eGFR

PGS Trait Population
Discovery
sample size Discovery ancestry

Validation
cohort

SNP-based
heritability

Variance
explained, %

Effect size in
validation, HR or OR
per SD (95% CI) Limitations

PGS000883 (PGS_GFR) Incident CKD ¼ eGFR
of 60 ml/min per
1.73m2 plus $30%
eGFR decline during
a follow-up visit
compared with
baseline

UK Biobank
þ
CKDGen

1,159,871 White ¼ 82%;
East Asian ¼ 14.4%;
South Asian ¼ 1.8%;
Black ¼ 1.5%;
Hispanic ¼ 0.42%

ARIC NA 7.3 HR ¼1.21 (1.16–1.26) Generated in
predominantly White
population (83%) and
validated in White
population

PGP000269 (PGS_CKD_S3) Case ¼ eGFR <60 ml/
min per 1.73 m2

Control ¼ eGFR >90
ml/min per 1.73 m2

70% of UKBB
Europeans

177,208 European/White ¼
100%

CKDGen, UK
Biobank,
eMERGE-III,
BioMe, UAB

NA 4 White ¼ OR 1.46
(1.43–1.48)
African ¼ OR 1.23
(1.26–1.38)
Latin ¼ OR 1.42
(1.26–1.38)
Asian ¼ OR 1.68 (1.45
– 2.06)

Dichotomizes eGFR,
to account for
variability in eGFR by
ancestry
Strength is well-
validated multiethnic
cohort, and addition
of APOL1 in African
cohort

PGS000664
(PGS_decline_2021)

eGFRcrea decline:
3 ml/min per 1.73 m2

per year, eGFRcrea
decline $25%, and
eGFRcrea <60 ml/
min per 1.73 m2 at
follow-up among
those with eGFRcrea
60 ml/min per
1.73 m2

41 Studies
from CKDGen
and UK
Biobank

>2,700,000 NA Validated
alternate
kidney
markers

NA NA NA “Extreme” phenotype
of eGFR decline,
unable to validate in
non-White
population

Gorski 202227

(PGS_decline_2022)
Decline in eGFR ml/
min per year (eGFR at
follow-up – eGFR at
baseline/number of
follow-up years)

CKDGen, UK
Biobank

343,339 White ¼ 74% The Trøndelag
Health Study

Unadjusted
eGFR
decline ¼
1%

0.62 NA Distinction between
cross-sectional CKD
and decline in eGFR
limited by collider
bias

PGS000822 (PGS_ACR) Cases ¼ urine ACR >
30 mg/g, Control ¼
urine ACR < 10 mg/g

CKDGen, UK
Biobank

564,257 White ¼ 97%
East Asian ¼ 1.1%
South Asian ¼ 0.4%
Black ¼ 1.2%
Latin ¼ 0.3%

CKDGen
Consortium

4.3% 0.69 Predominantly
European population,
variability in urine
albumin/creatinine
ratio, other studies
have found variation
in GWAS based on
ancestory/disease
states

ARIC, Atherosclerosis Risk In Communities study; CI, confidence interval; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; eMERGE-III, Electronic Medical Records and Genomics Phase III; GWAS, genome-wide
association study; HR, hazard ratio; NA, not applicable; OR, odds ratio; PGS, polygenic score; SNP, single-nucleotide polymorphism; UAB, University of Alabama at Birmingham; UKBB, United Kingdom Biobank.
Variances and heritability data are unavailable for some studies.
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Table 2 | Baseline characteristics of the 11,831 ASPREE
participants included in the analyses

Characteristic Overall

N 11,813
Age, yr, mean (SD) 75.0 (4.2)
Age group, yr, n (%)

70–74 7215 (61.1)
75–79 2958 (25.0)
80–84 1269 (10.7)
$85 371 (3.1)

Female gender, n (%)a 6401 (54.2)
Smoker, n (%)

Never 6568 (55.6)
Former 4878 (41.3)
Current 367 (3.1)

Alcohol consumption, n (%)
None 2377 (20.1)
Moderate 5328 (45.1)
Excessive 4108 (34.8)

Hypertension, n (%) 8781 (74.3)
BMI, kg/m2, mean (SD) 28.0 (4.5)
Diabetes, n (%) 1117 (9.5)
eGFR, ml/min per 1.73 m2, mean (SD) 72.9 (13.4)
Family history of CKD, n (%)b 779 (6.6)
NSAID use, n (%) 1420 (12.0)
ACE inhibitor/ARB use, n (%) 4939 (41.8)
Has ACR measurement, n (%) 8902 (75.4)

ACE, angiotensin-converting enzyme; ACR, albumin-creatinine ratio; ARB, angio-
tensin receptor blocker; ASPREE, ASPirin in Reducing Events in the Elderly; BMI, body
mass index; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate;
NSAID, nonsteroidal anti-inflammatory drug.
aGender is reported here according to that personally identified by each participant
of their own gender.
bFamily history indicates first-degree family member with history of kidney disease.

c l i n i ca l i nves t iga t i on A Bakshi et al.: Association of polygenic scores with CKD in older adults
individuals in the low group and 269 individuals in the high
group (Figure 1a; Supplementary Table S3).

The PGS_GFR was not found to be associated with the
baseline continuous measure of UACR (95% CI, –0.28 to
0.09; P ¼ 0.14). However, the PGS for UACR (PGS_ACR) was
associated with measured UACR at baseline; a 1-SD increase
in PGS_ACR associated with a difference in UACR of 0.30
(95% CI, 0.11–0.49) mg/mmol. When comparing PGS_ACR
with a binary outcome of CKD (CKDKDIGO), we found it was
associated with CKD with an odds ratio (OR) of 1.07 (95%
CI, 1.02–1.11). Given the modest sized effect represented by
this odds ratio, and small heritability estimates of UACR10 in
genome-wide association studies, most of our subsequent
analysis focused on eGFR.

We next examined binary end points related to eGFR and
CKD using the PGS_GFR. The PGS_GFR was associated with
CKDKDIGO (OR, 1.39 per SD; 95% CI, 1.33–1.45), and with
CKDeGFR (OR, 1.75; 95% CI, 1.66–1.85). Individuals with the
highest PGS_GFR (> 95%) had the highest risk for CKDeGFR

(OR, 3.39; 95% CI, 2.83–4.06, using the medium group as
reference). Similar findings were observed for moderate to
severe CKD (CKDeGFR_mod; Tables 3 and 4). In adjusted an-
alyses, we found that CKDeGFR was still associated with
PGS_GFR (OR, 1.75; 95% CI, 1.66–1.84) and with
PGS_CKD_S3 (OR, 1.51; 95% CI, 1.43–1.59; Figure 2).
Similar relationships were seen for CKDKDIGO and
1160
CKDeGFR_MOD (Tables 5 and 6; Supplementary Table S4).
Performance metrics for PGS are included in Supplementary
Figure S5.

We also performed a subgroup analysis to examine
whether family history of kidney disease impacted the PGS
associations. When excluding individuals with family history
of kidney disease (remaining n ¼ 10,462), PGS_GFR
remained associated with CKDKDIGO with OR of 1.37 (95%
CI, 1.31–1.44), P< 0.001, and AUC of 0.69 (95% CI, 0.67–0.70).
When examining only individuals with a family history of
kidney disease (n ¼ 743), PGS_GFR was associated with
CKDKDIGO with OR of 1.40 (95% CI, 1.18–1.66), P < 0.001,
and AUC of 0.70 (95% CI, 0.65–0.74). In a model for
CKDKDIGO including all individuals and omitting the PGS,
family history had an association in the unadjusted model
with OR of 1.20 (95% CI, 1.02–1.41) and adjusted OR of 1.19
(95% CI, 1.00–1.41). Hosmer-Lemeshow test did not indicate
a lack of goodness of fit (P > 0.05) in either subgroup.

Longitudinal analysis
PGS_GFR was not associated with decline in eGFR (P ¼
0.15). In contrast, PGS_GFR_decline_2021 was associated
with more rapid decline in eGFR over the course of the trial
(P ¼ 0.01), as was PGS_GFR_decline_2022 (P ¼ 0.045).
Point estimates for the rate of yearly decline for an individual
with a PGS_GFR_decline_2021 score in the 5th percentile was
–1.14 ml/min per 1.73 m2 (95% CI, –1.20 to –1.07 ml/min
per 1.73 m2) compared with –0.99 ml/min per 1.73 m2 (95%
CI, –1.06 to –0.93 ml/min per 1.73 m2) for those in the 95th
percentile. The estimated mean decline per year was –1.07 ml/
min per 1.73 m2 (95% CI, –1.10 to –1.03 ml/min per 1.73 m2;
Figure 3). For PGS_GFR_decline_2022, the rates of decline
for those in the 5th and 95th percentiles were –1.12 (95% CI,
–1.19 to –1.06) and –1.01 (95% CI, –1.07 to –0.94) ml/min
per 1.73 m2.

We next sought to assess the impact of possible collider
bias when adjusting by baseline eGFR.27 In a linear mixed
model for eGFR measures at follow-up times only, with
baseline eGFR added as a fixed effect, the results are no longer
significant for PGS_GFR_decline_2021 (P ¼ 0.06) or
PGS_GFR_decline_2022 (P ¼ 0.17).

Association of PGS for GFR with cardiometabolic disorders
We tested PGS_GFR against other cardiometabolic conditions
in the ASPREE cohort to examine the specificity of CKD
prediction. The PGS_GFR was not associated with develop-
ment of coronary artery disease (hazard ratio, 1.01 [95% CI,
0.93–1.10] per 1 SD) or incident myocardial infarction
(hazard ratio, 0.97 [95% CI, 0.85–1.11] per 1 SD) over the
course of the study, nor with the presence or absence of
diabetes mellitus at baseline (OR, 1.00 [95% CI, 0.94–1.06]
per 1 SD; Table 7).

DISCUSSION
In this study, we demonstrated that PGSs for kidney-related
traits are associated with CKD risk in older adults,
Kidney International (2023) 103, 1156–1166
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Figure 1 | Distribution of estimated glomerular filtration rate (GFR) and (natural) log urine albumin-creatinine ratio (UACR)
compared with their polygenic scores (PGSs), stratified into low (<5%), medium (Reference [Ref]), and high (>95%) groups.
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aged $70 years, highlighting the persisting influence of ge-
netic factors for kidney function even in older age. Our re-
sults suggest that PGSs may have future utility for risk
prediction of CKD in older people. The PGS_GFR was
associated with baseline eGFR, whereas both PGS_GFR and
PGS_CKD_S3 were associated with clinical CKD end points
by KDIGO CKD stage. Older individuals with high PGSs had
significantly higher risk of CKD than those with low PGSs.
The PGS_GFR was not associated with UACR or other
metabolic disorders strongly associated with CKD (cardio-
vascular disease, myocardial infarction, and diabetes melli-
tus). The PGSs for decline in GFR (PGS_GFR_decline_2021
and PGS_GFR_decline_2022) offer further insights into the
role of different genetic factors associated with rates of
decline. Overall, our study indicates that PGSs for kidney
disease–related traits could help improve CKD risk predic-
tion in older people.

The first key result of this study is the confirmation that
higher PGS_GFR per SD is associated with –3.9 ml/min per
1.73 m2 decrease in GFR per SD in the ASPREE population.
Although this decrease per 1 SD is relatively small, this change
is impactful for individuals with $2 SDs PGS score, who at
Table 3 | Cross-sectional analyses of PGS_GFR

CKD definition Adjusted OR (95% CI) P value AUC (95%

CKDKDIGO 1.37 (1.31–1.43) 1.3 � 10–42 0.69 (0.67–
CKDeGFR 1.75 (1.66–1.84) 1.7 � 10–90 0.73 (0.72–
CKDeGFR_MOD 1.70 (1.52–1.90) 3.6 � 10–20 0.79 (0.77–

AUC, area under the curve; CI, confidence interval; CKD, chronic kidney disease; eGFR
Disease: Improving Global Outcomes; OR, odds ratio; PGS, polygenic score.
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age $70 years had a mean eGFR of 58 ml/min per 1.73 m2 at
the most recent follow-up, placing them considerably below
the average study participant of 72.8 ml/min per 1.73 m2.
This result provides evidence that genetic profiling has the
capacity to identify clinically meaningful subgroups for CKD,
independently of other factors. When kidney function was
modeled by CKD diagnosis or CKD stage (stage 3B–5), we
found similar results, supporting validity of PGS for kidney
function in this older population. The PGS_GFR, derived
from baseline eGFR as a continuous measure, has a higher
OR per SD than PGS_CKD_S3 in ASPREE, in both adjusted
and unadjusted models. The PGS_GFR, derived from eGFR
as a continuous measure, has a higher OR per SD than
PGS_CKD_S3,33 in ASPREE, in both adjusted and unadjusted
models, when considering OR per SD and AUC. The
PGS_CKD_S3, which separates CKD into eGFR <60 or > 90
ml/min per 1.73 m2, may perform better if tested in a mul-
tiancestry population.33 The PGS_GFR is associated with risk
of CKD even in individuals without family history of CKD,
limited by assessment in an older population with possible
selection bias because of exclusion of cardiovascular disease at
enrollment.
CI) Unadjusted OR (95% CI) P value AUC (95% CI)

0.70) 1.36 (1.30–1.42) 8.5 � 10–44 0.58 (0.57–0.60)
0.75) 1.71 (1.63–1.80) 1.1 � 10–90 0.64 (0.63–0.66)
0.81) 1.70 (1.53–1.89) 1.5 � 10–21 0.65 (0.62–0.68)

, estimated glomerular filtration rate; GFR, glomerular filtration rate; KDIGO, Kidney
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Table 4 | Cross-sectional analyses of PGS_CKD_S3

CKD definition Adjusted OR (95% CI) P value AUC (95% CI) Unadjusted OR (95% CI) P value AUC (95% CI)

CKDKDIGO 1.24 (1.19–1.30) 9.8 � 10–22 0.68 (0.67–0.69) 1.23 (1.18–1.29) 1.5 � 10–12 0.56 (0.55–0.57)
CKDeGFR 1.51 (1.43–1.59) 3.1 � 10–54 0.71 (0.70–0.73) 1.48 (1.40–1.55) 1.2 � 10–52 0.61 (0.60–0.62)
CKDeGFR_MOD 1.47 (1.32–1.65) 5.0 � 10–12 0.78 (0.75–0.80) 1.46 (1.31–1.63) 3.4 � 10–12 0.62 (0.59–0.65)

AUC, area under the curve; CI, confidence interval; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; KDIGO, Kidney Disease: Improving Global Outcomes;
OR, odds ratio; PGS, polygenic score.
OR and P values for adjusted logistic regression examining standardized (mean ¼ 0; SD ¼ 1) PGS_GFR for binary outcomes: CKDKDIGO (eGFR < 60 ml/min per 1.73 m2 or urine
albumin-creatinine ratio > 3 mg/mmol), CKDEGFR (eGFR < 60 ml/min per 1.73 m2), and CKDEGFR_MOD (eGFR < 45 ml/min per 1.73 m2). Model adjusted for age, sex, alcohol,
smoking, hypertension, diabetes, body mass index, nonsteroidal anti-inflammatory drug and angiotensin-converting enzyme inhibitor/angiotensin receptor blocker use, and
visit year. In the adjusted model, n ¼ 11,205 as individuals with incomplete covariate data are removed; in the unadjusted model, the same set of individuals are used.
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The PGS_GFR has previously been validated in a signifi-
cantly younger US community-based cohort (mean age, 54
years), with higher eGFR (mean, 100 ml/min per 1.73 m2)
with a hazard ratio of 1.33 for CKD per 1-SD decrease of
PGS.26 Considering that a PGS is unchanging over the life
span and can be measured in early life, the differences be-
tween the low, middle, and high PGS groups may help identify
individuals at significant risk for CKD earlier than other risk
stratification methods. For example, PGSs in cardiovascular
disease were able to identify 13% of early-onset cardiovascular
disease and reclassify certain individuals to lower risk of
disease.34 Potential clinical translation of PGS could identify
those at higher risk to consider risk-reducing measures and
targeted screening, whereas the broader research uses of PGS
may include identifying new drug targets.35

The model we used with PGS_GFR was adjusted for de-
mographics, body mass index, key comorbidities (hyperten-
sion and diabetes), and common medications that can affect
kidney function (nonsteroidal anti-inflammatory drugs,
angiotensin receptor blockers, or angiotensin-converting
enzyme inhibitors), which highlights that the PGS is a
source of risk information independent of conventional risk
factors. However, as with other risk factors for CKD, a high
PGS does not preclude individuals from having preserved
kidney function, and translating PGS as part of a clinical risk
prediction tool requires consideration of these limitations.
Disease states are modifiable, with genetic risk predicted from
PGS having significant variation in clinical phenotypes, as we
Figure 2 | Comparison of polygenic score (PGS)_glomerular filtration
kidney function as CKDKDIGO (estimated GFR [eGFR] < 60 ml/min per
(eGFR < 60 ml/min per 1.73 m2), and CKDEGFR_MOD (eGFR < 45 ml/m
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demonstrated with eGFR, particularly compared with higher
penetrance monogenic diseases, which exhibit more direct
relationships to kidney function outcomes. The variability
within high and low PGS groups demonstrated in our pop-
ulation supports the concept of modifiable genetic risk.36,37

In the studied population, the PGS_GFR did not correlate
with development of coronary artery disease or myocardial
infarction during follow-up or with baseline prevalence of
diabetes mellitus. This suggests that the genetic signal
captured by the PGS may be relatively specific to kidney
function. However, the fact that the ASPREE population was
free of overt cardiovascular disease at enrollment limits the
conclusions that can be drawn about these phenotypes.
Studies in populations with higher cardiovascular risk
compared with the ASPREE cohort have found PGSs for
CKD are associated with adverse end points of kidney fail-
ure, myocardial infarction, and death.15 A PGS for CKD has
also been associated with large-vessel stroke.38 It is pertinent
to consider differences in the choice of PGS and the pop-
ulations they are generated from; PGS_GFR includes eGFR
across a spectrum of individuals who may not have
comorbidities, whereas a PGS for CKD is more likely to
include individuals with cardiovascular disease and other
comorbidities.

We also validated a PGS for albuminuria in the population.
A 1-SD increase in the UACR PGS was associated with a 0.33
mg/mmol increase in UACR. However, the heritability of
albuminuria varies from estimates of 0.03 to 0.04 in genome-
rate (GFR) with PGS_chronic kidney disease (CKD)_S3 for
1.73 m2 or urine albumin-creatinine ratio > 3 mg/mmol), CKDEGFR

in per 1.73 m2). CI, confidence interval; OR, odds ratio.
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Table 5 | PGS_GFR for measures of CKD with PGS stratified by
low and high risk of CKD

End point

Low (£5% percentile) High (‡95% percentile)

OR (95% CI) P value OR (95% CI) P value

CKDKDIGO 0.73 (0.58–0.90) 0.004 2.38 (1.99–2.85) 4.8 � 10–21

CKDeGFR 0.41 (0.29–0.55) 1.5 � 10–8 3.39 (2.83–4.06) 1.0 � 10–39

CKDeGFR MOD 0.34 (0.13–0.71) 0.01 2.57 (1.80–3.58) 6.4 � 10–8

CI, confidence interval; CKD, chronic kidney disease; eGFR, estimated glomerular
filtration rate; GFR, glomerular filtration rate; KDIGO, Kidney Disease: Improving
Global Outcomes; OR, odds ratio; PGS, polygenic score.
OR and P values for the fully adjusted logistic regression examining standardized
(mean ¼ 0; SD ¼ 1) PGS_GFR stratified into categories (low, <5%; medium, 5%–95%;
and high, >95% risk CKD) against binary outcomes: CKDKDIGO (eGFR< 60 ml/min per
1.73 m2 or urine albumin-creatinine ratio > 3), CKDeGFR (eGFR < 60 ml/min per 1.73
m2), and CKDeGFR_MOD (eGFR < 45 ml/min per 1.73 m2).

Table 6 | PGS_CKD_S3 for measures of CKD with PGS stratified
by low and high risk of CKD

End point

Low (£5% percentile) High (‡95% percentile)

OR (95% CI) P value OR (95% CI) P value

CKDKDIGO 0.92 (0.74–1.13) 0.43 1.85 (1.53–2.23) 9.5 � 10–11

CKDeGFR 0.60 (0.46–0.78) 0.0002 2.43 (2.01–2.94) 3.4 � 10–20

CKDeGFR MOD 0.61 (0.31–1.07) 0.14 1.63 (1.06–2.41) 0.019

CI, confidence interval; CKD, chronic kidney disease; eGFR, estimated glomerular
filtration rate; KDIGO, Kidney Disease: Improving Global Outcomes; OR, odds ratio;
PGS, polygenic score.
OR and P values for the fully adjusted logistic regression examining standardized
(mean ¼ 0; SD ¼ 1) PGS_GFR stratified into categories (low, <5%; medium, 5%–95%;
and high, >95% risk CKD) against binary outcomes: CKDKDIGO (eGFR < 60 ml/min per
1.73 m2 or urine albumin-creatinine ratio > 3), CKDeGFR (eGFR < 60 ml/min per 1.73
m2), and CKDeGFR_MOD (eGFR < 45 ml/min per 1.73 m2).
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wide association studies, up to 0.16 in the Framingham study
and up to 0.30 in families with type 2 diabetes mellitus.28,39,40

Given this variability, populations with greater heritability
estimates may be more reflective of the duration of exposure
to diabetes or poorly controlled hypertension. Given this
heterogeneity, we focused predominantly on GFR for this
study.

The second key outcome of our study was the validation of
PGS for decline in eGFR (Figure 3) over time, based on serial
eGFR measures of an average of 6 years of follow-up per
participant. These results indicate a significant genetic
component associated with more rapid decline in older ages.
The result is informative, as to our knowledge the
PGS_GFR_decline_2021 has not been validated in other
populations to date, especially in this age range. The
PGS_GFR_decline_2021 is a more “rapid” decline phenotype
than PGS_GFR_decline_2022; however, both results were
similar in our population, and we were unable to discriminate
any significant advantage between either score, potentially
related to absence of rapid decline phenotype in our popu-
lation. Major limitations included a high dropout rate in later
years and the fact that estimated rates of decline between the
high and low PGS groups was small, corresponding to a 0.18
ml/min per 1.73 m2 difference per year.
Figure 3 | Estimated difference in rate of decline of estimated glome
score (PGS)_GFR_decline scores, showing estimates for mean, as we
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Although the heritability of eGFR decline from genome-
wide association studies is 0.38, suggesting significant ge-
netic factors,9 the result of our analysis showed that the
magnitude of change between the high and low PGS groups
was small, and therefore may lack short- to middle-term
clinical significance. This result may have been influenced
by the overall health status of the ASPREE trial population at
baseline. In a recent meta-analysis of 1.7 million patients,
absolute reduction was more significant in those with a lower
starting eGFR, suggesting that identifying those with a pro-
pensity toward lower eGFR could be useful for predicting who
is at risk of more severe decline, and might be more useful
than trying to predict decline using genetic information at
older age.41 The way in which baseline eGFR is handled in the
analysis changes the conclusion of whether PGS_GFR_de-
cline_2021 and PGS_GFR_decline_2022 are associated with
eGFR decline, which may be related to collider bias. Collider
bias is introduced when models for decline in eGFR incor-
porate baseline eGFR as part of the outcome, but which
contain stronger genetic significance, and has been demon-
strated in previous models, including PGS_GFR_de-
cline_2022, suggesting studying genetic determinants of eGFR
decline should be examined separately from genetics
contributing to cross-sectional eGFR.42
rular filtration rate (GFR) per year according to the 2 polygenic
ll as point estimates for individuals in 5th and 95th percentiles.
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Table 7 | Association of cardiometabolic disease over the course of the ASPREE study with PGS_GFR

Cardiometabolic trait PGS_GFR per 1 SD (95% CI), P value PGS_CKD_S3 per 1 SD (95% CI), P value

Incident coronary artery disease 1.01a (0.93–1.10), P ¼ 0.96 0.98a (0.90–1.06), P ¼ 0.57
Incident myocardial infarction over study 0.97a (0.85–1.11), P ¼ 0.66 0.91a (0.80–1.05), P ¼ 0.19
Baseline diabetes mellitus 1.00b (0.94–1.06), P ¼ 0.82 0.99b (0.93–1.05), P ¼ 0.70

ASPREE, ASPirin in Reducing Events in the Elderly; GFR, glomerular filtration rate; PGS, polygenic score.
aHazard ratio.
bOdds ratio.
Covariates for coronary artery disease and myocardial infarction are age, sex, smoking, and alcohol use. The model for baseline diabetes mellitus is adjusted for age, sex,
alcohol, smoking, hypertension, diabetes, body mass index, nonsteroidal anti-inflammatory drug and angiotensin-converting enzyme inhibitor/angiotensin receptor blocker
use, and visit year. In the adjusted model, n ¼ 11,205 as individuals with incomplete covariate data are removed; in the unadjusted model, the same set of individuals are
used.
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A key strength of this study was validation of multiple PGSs
for kidney phenotypes in an older, healthy population, across
both eGFR and KDIGO stage. Models utilizing eGFR cutoff
had stronger associations (and a greater AUC) than the same
model when using KDIGO stage as the end point, but both are
valid measures of kidney function. AUC scores showed com-
parable performance for both PGS_GFR and PGS_ CKD_S3 in
all kidney phenotypes, with slightly higher AUC in PGS_GFR.
The similarity is unsurprising as both are generated from
CKDGen and UK Biobank data from predominantly European
populations. PGS_CKD_S3 is unique with higher numbers of
multiethnic populations, and incorporation of APOL1 varia-
tion in the African ancestry cohort, with separation of eGFR
into CKD status, to ensure discrimination of eGFR across
ethnicities. Validation studies found that PGS_CKD out-
performs PGS_CKD_S3 in patients of European ancestry, but
not of Asian or African descent.33 PGS_GFR_Decline_2021
was generated for >3 ml/min per 1.73 m2 per year loss of
eGFR, exceeding the rate in ASPREE, yet was still validated in
this cohort. We were unable to discriminate this from
PGS_GFR_Decline_2022, a phenotype with a lower rate of
decline. Interestingly, the PGS_GFR_Decline_2022 noted a
single-nucleotide polymorphism–for–age effect, supporting
our findings of significance of PGS at older ages. Overall,
kidney phenotypes in ASPREE were consistent with published
literature, in their validation of recently developed PGSs.

Further strengths of this study lie in the high-quality lon-
gitudinal data and repeated measures of eGFR in an older
population, validated in multiple phenotypes. The ASPREE
cohort is a unique patient demographic, with exclusion criteria
that ensure participants were free from cardiovascular disease,
cancer, or dementia diagnoses at enrollment; thus, the general
population is likely to have higher rates of CKD compared with
ASPREE at equivalent age and a broader range of eGFR
measures. A limitation of this study (as a result of the cohort
ascertainment and related healthy survivorship bias) is that
there were too few cases of CKD 4 to 5 and kidney failure to
examine these phenotypes robustly, or to conclude on whether
the PGS was associated with related metabolic or cardiovas-
cular diseases. Nevertheless, individuals did retain some risks
(such as high rates of hypertension) that are reflective of the
broader population of older individuals.

A limitation found in many PGS studies is the risk of
confounding by ethnicity (i.e., population stratification bias,
1164
where single-nucleotide polymorphisms strongly associated
with one ethnicity may be more reflective of the shared
environment in culture groups).43 However, we mitigated
against this risk by limiting the study to only individuals of
European ethnicity. As a result, our findings cannot neces-
sarily be generalized to other ethnicities, and PGS_CKD_S3 is
more accurate for multiethnic populations, including incor-
poration of APOL1 status in African ancestry.33

The clinical translation of the investigated eGFR PGSs
remains an open question, as novel approaches for improved
long-term prognostication are explored. The results of this
study suggest that identifying high-risk individuals earlier for
CKD, before decline in eGFR, even at older ages may be a
viable application of PGSs in the future. This may have spe-
cific benefit in older people, aged $70 years, in whom the
prevalence of CKD increases sharply. Further validation of the
PGSs tested is required in the general population, and across
different ethnicities, age groups, and kidney-related condi-
tions, to determine suitability for clinical implementation.
PGSs for kidney disease–related traits could help improve
CKD risk prediction and may offer a potentially modifiable
risk factor that is amenable to early detection.
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