1,160 research outputs found
2+1 Roadway Design Guidance Update
The frequency and severity of crashes on rural two-lane roadways have increased in the US relative to other road types. This trend can be explained by the growing number of vehicles, higher speeds, narrow shoulders, and vehicle mixes. One solution for improving traffic flow and safety outcomes on rural two-lane roadways is to adopt a 2+1 design, which confers the benefits of four-lane highways but at a lower cost. Transportation agencies throughout Europe — and increasingly the US — have seen good results from 2+1 layouts. Crash data from Sweden, Germany, Finland, and Denmark reveal better safety outcomes following the implementation of 2+1 designs, with reductions in fatal and fatal and injury crash rates of 25 – 80 percent. Studies in the United States have found crash declines of 35 – 44 percent following the transition to 2+1 layouts. Over the past 10 years, the Kentucky Transportation Cabinet (KYTC) has built several 2+1 roadways. Evaluations of three 2+1 segments in the state found lower crash rates on two segments, however, not enough crash data are available to draw definitive conclusions. Despite this lack of confirmatory data, there is consensus among practitioners that 2+1 designs hold considerable promise for improving rural roadway operations. Building off of 2+1 guidance originally issued by KYTC in 2013, this report outlines updated policies that account for lessons learned at the agency during the design and construction of 2+1 roadways as well as best practices adopted by other states
Methods for LEO Testing of CubeSat Propulsion Systems
Low Earth Orbit is becoming an inexpensive and readily available technology demonstration environment. Many new CubeSat technologies are taking advantage of this as an economical mechanism to advance beyond TRL 5. A wave of CubeSat propulsion systems favoring both reaction control and primary thrust will approach TRL 5 over the coming years, with some already there. These propulsion systems cover a wide range of capabilities including taking CubeSats to interplanetary destinations. In order to determine the feasibility of using LEO to validate the propulsion system performance and in doing so raising the TRL, a variety of factors need to be addressed. These factors include: method of measurement, environmental disturbances, spacecraft control states, and spacecraft mass properties. Propulsion Pathfinder is a NASA Ames Research Center lead project focused on raising the TRL of multiple propulsion systems over a series of flights in the coming years. This paper will highlight a few of the methods of measurement considered by this project to validate the performance of a propulsion system. The measurement methods range from tracking acceleration andor wheel spin-up to monitoring Two Line Elements between thrusting and non thrusting states. Focus will then be placed on the uncertainty of the measurement method and subsequently its feasibility through an analysis of LEO disturbance environment models and common CubeSat mass properties. In addition, the primary spacecraft control states and their imposition from the propulsion system are assessed
PhoneSat In-flight Experience Results
Over the last decade, consumer technology has vastly improved its performances, become more affordable and reduced its size. Modern day smartphones offer capabilities that enable us to figure out where we are, which way we are pointing, observe the world around us, and store and transmit this information to wherever we want. These capabilities are remarkably similar to those required for multi-million dollar satellites. The PhoneSat project at NASA Ames Research Center is building a series of CubeSat-size spacecrafts using an off-the-shelf smartphone as its on-board computer with the goal of showing just how simple and cheap space can be. Since the PhoneSat project started, different suborbital and orbital flight activities have proven the viability of this revolutionary approach. In early 2013, the PhoneSat project launched the first triage of PhoneSats into LEO. In the five day orbital life time, the nano-satellites flew the first functioning smartphone-based satellites (using the Nexus One and Nexus S phones), the cheapest satellite (a total parts cost below $3,500) and one of the fastest on-board processors (CPU speed of 1GHz). In this paper, an overview of the PhoneSat project as well as a summary of the in-flight experimental results is presented
2+1 Roadway Design Guidance Update
SPR 21-605The frequency and severity of crashes on rural two-lane roadways have increased in the US relative to other road types. This trend can be explained by the growing number of vehicles, higher speeds, narrow shoulders, and vehicle mixes. One solution for improving traffic flow and safety outcomes on rural two-lane roadways is to adopt a 2+1 design, which confers the benefits of four-lane highways but at a lower cost. Transportation agencies throughout Europe \u2014 and increasingly the US \u2014 have seen good results from 2+1 layouts. Crash data from Sweden, Germany, Finland, and Denmark reveal better safety outcomes following the implementation of 2+1 designs, with reductions in fatal and fatal and injury crash rates of 25 \u2013 80 percent. Studies in the United States have found crash declines of 35 \u2013 44 percent following the transition to 2+1 layouts. Over the past 10 years, the Kentucky Transportation Cabinet (KYTC) has built several 2+1 roadways. Evaluations of three 2+1 segments in the state found lower crash rates on two segments, however, not enough crash data are available to draw definitive conclusions. Despite this lack of confirmatory data, there is consensus among practitioners that 2+1 designs hold considerable promise for improving rural roadway operations. Building off of 2+1 guidance originally issued by KYTC in 2013, this report outlines updated policies that account for lessons learned at the agency during the design and construction of 2+1 roadways as well as best practices adopted by other states
Micro Cathode Arc Thruster for PhoneSat: Development and Potential Applications
NASA Ames Research Center and the George Washington University are developing an electric propulsion subsystem that will be integrated into the PhoneSat bus. Experimental tests have shown a reliable performance by firing three different thrusters at various frequencies in vacuum conditions. The interface consists of a microcontroller that sends a trigger pulse to the Pulsed Plasma Unit that is responsible for the thruster operation. A Smartphone is utilized as the main user interface for the selection of commands that control the entire system. The propellant, which is the cathode itself, is a solid cylinder made of Titanium. This simplicity in the design avoids miniaturization and manufacturing problems. The characteristics of this thruster allow an array of CATs to perform attitude control and orbital correction maneuvers that will open the door for the implementation of an extensive collection of new mission concepts and space applications for CubeSats. NASA Ames is currently working on the integration of the system to fit the thrusters and the PPU inside a 1.5U CubeSat together with the PhoneSat bus. This satellite is intended to be deployed from the ISS in 2015 and test the functionality of the thrusters by spinning the satellite around its long axis and measure the rotational speed with the phone gyros. This test flight will raise the TRL of the propulsion system from 5 to 7 and will be a first test for further CubeSats with propulsion systems, a key subsystem for long duration or interplanetary small satellite missions
Evidence for the h_b(1P) meson in the decay Upsilon(3S) --> pi0 h_b(1P)
Using a sample of 122 million Upsilon(3S) events recorded with the BaBar
detector at the PEP-II asymmetric-energy e+e- collider at SLAC, we search for
the spin-singlet partner of the P-wave chi_{bJ}(1P) states in the
sequential decay Upsilon(3S) --> pi0 h_b(1P), h_b(1P) --> gamma eta_b(1S). We
observe an excess of events above background in the distribution of the recoil
mass against the pi0 at mass 9902 +/- 4(stat.) +/- 2(syst.) MeV/c^2. The width
of the observed signal is consistent with experimental resolution, and its
significance is 3.1sigma, including systematic uncertainties. We obtain the
value (4.3 +/- 1.1(stat.) +/- 0.9(syst.)) x 10^{-4} for the product branching
fraction BF(Upsilon(3S)-->pi0 h_b) x BF(h_b-->gamma eta_b).Comment: 8 pages, 4 postscript figures, submitted to Phys. Rev. D (Rapid
Communications
Observation and study of baryonic B decays: B -> D(*) p pbar, D(*) p pbar pi, and D(*) p pbar pi pi
We present a study of ten B-meson decays to a D(*), a proton-antiproton pair,
and a system of up to two pions using BaBar's data set of 455x10^6 BBbar pairs.
Four of the modes (B0bar -> D0 p anti-p, B0bar -> D*0 p anti-p, B0bar -> D+ p
anti-p pi-, B0bar -> D*+ p anti-p pi-) are studied with improved statistics
compared to previous measurements; six of the modes (B- -> D0 p anti-p pi-, B-
-> D*0 p anti-p pi-, B0bar -> D0 p anti-p pi- pi+, B0bar -> D*0 p anti-p pi-
pi+, B- -> D+ p anti-p pi- pi-, B- -> D*+ p anti-p pi- pi-) are first
observations. The branching fractions for 3- and 5-body decays are suppressed
compared to 4-body decays. Kinematic distributions for 3-body decays show
non-overlapping threshold enhancements in m(p anti-p) and m(D(*)0 p) in the
Dalitz plots. For 4-body decays, m(p pi-) mass projections show a narrow peak
with mass and full width of (1497.4 +- 3.0 +- 0.9) MeV/c2, and (47 +- 12 +- 4)
MeV/c2, respectively, where the first (second) errors are statistical
(systematic). For 5-body decays, mass projections are similar to phase space
expectations. All results are preliminary.Comment: 28 pages, 90 postscript figures, submitted to LP0
CHOMPTT (CubeSat Handling of Multisystem Precision Timing Transfer): From Concept to Launch Pad
Here we present the evolution of a student satellite mission: CHOMPTT (CubeSat Handling of Multisystem Precision Time Transfer), from its original concept as a candidate for the University NanoSatellite Program 8 (UNP8), to a spacecraft ready for launch in Fall of 2017 on ELaNa XIX (Educational Launch of Nanosatellites). The 3U CubeSat houses a 1 kg, 1U OPTI (Optical Precision Timing Instrument) payload, designed and built at the University of Florida, and a 1.5U EDSNNODeS-derived bus from NASA Ames Research Center. The OPTI payload comprises of: 1) a supervisor board that handles payload data, power regulation, and mode settings, 2) an optics assembly of six 1 cm retroreflectors and four laser beacon diodes for ground-tracking; and 3) two fully redundant timing channels, each consisting of: a chip-scale atomic clock, a microprocessor with clock counter, a picosecond event timer, and an avalanche photodetector (APD) with band-pass filter. Several iterations of OPTI have been developed, tested, and designed to achieve its current functionality and design a laboratory breadboard design, a 1.5U high altitude balloon design, engineering unit design, and its current flight unit design. In-lab testing of the current OPTI design indicates a short-term precision of 100 ps, equivalent to a range accuracy of 3 cm necessary to achieve our primary objective of 200 ps time transfer error, and a long-term timing accuracy of 20 ns over one orbit (1.5 hours). After the spacecraft reaches its nominal 500 km orbit at a 85 degree inclination, an experimental laser ranging facility at Kennedy Space Center in Florida, will track and emit 1064 nm nanosecond optical pulses at the CHOMPTT spacecraft. The laser pulses will then reflect off the retroreflector array mounted on the nadir face of CHOMPTT, and return the pulse to the laser ranging facility where the laser ranging facility will record the round-trip duration of the laser pulses. At the same time the pulse arrives at the spacecraft and is reflected by the array, an APD will record the arrival time of the pulses at the nanosatellite. By comparing the arrival of the pulse at the CubeSat and the duration of the round-trip of the laser pulse, the clock discrepancy between the ground and CubeSat atomic clocks can be determined, in addition to the CubeSats range from the facility. The design and verification of the flight version of CHOMPTT will be reviewed and an overview of the lifetime development and progression of CHOMPTT from the inception to launch pad will be presented
Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an
Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
- …