141 research outputs found

    Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance

    Get PDF
    BACKGROUND: Thermus thermophilus and Deinococcus radiodurans belong to a distinct bacterial clade but have remarkably different phenotypes. T. thermophilus is a thermophile, which is relatively sensitive to ionizing radiation and desiccation, whereas D. radiodurans is a mesophile, which is highly radiation- and desiccation-resistant. Here we present an in-depth comparison of the genomes of these two related but differently adapted bacteria. RESULTS: By reconstructing the evolution of Thermus and Deinococcus after the divergence from their common ancestor, we demonstrate a high level of post-divergence gene flux in both lineages. Various aspects of the adaptation to high temperature in Thermus can be attributed to horizontal gene transfer from archaea and thermophilic bacteria; many of the horizontally transferred genes are located on the single megaplasmid of Thermus. In addition, the Thermus lineage has lost a set of genes that are still present in Deinococcus and many other mesophilic bacteria but are not common among thermophiles. By contrast, Deinococcus seems to have acquired numerous genes related to stress response systems from various bacteria. A comparison of the distribution of orthologous genes among the four partitions of the Deinococcus genome and the two partitions of the Thermus genome reveals homology between the Thermus megaplasmid (pTT27) and Deinococcus megaplasmid (DR177). CONCLUSION: After the radiation from their common ancestor, the Thermus and Deinococcus lineages have taken divergent paths toward their distinct lifestyles. In addition to extensive gene loss, Thermus seems to have acquired numerous genes from thermophiles, which likely was the decisive contribution to its thermophilic adaptation. By contrast, Deinococcus lost few genes but seems to have acquired many bacterial genes that apparently enhanced its ability to survive different kinds of environmental stresses. Notwithstanding the accumulation of horizontally transferred genes, we also show that the single megaplasmid of Thermus and the DR177 megaplasmid of Deinococcus are homologous and probably were inherited from the common ancestor of these bacteria

    Scale Invariance in the Nonstationarity of Physiological Signals

    Full text link
    We introduce a segmentation algorithm to probe temporal organization of heterogeneities in human heartbeat interval time series. We find that the lengths of segments with different local values of heart rates follow a power-law distribution. This scale-invariant structure is not a simple consequence of the long-range correlations present in the data. We also find that the differences in mean heart rates between consecutive segments display a common functional form, but with different parameters for healthy individuals and for patients with heart failure. This finding may provide information into the way heart rate variability is reduced in cardiac disease.Comment: 13 pages, 5 figures, corrected typo

    Stochastic Model for Surface Erosion Via Ion-Sputtering: Dynamical Evolution from Ripple Morphology to Rough Morphology

    Get PDF
    Surfaces eroded by ion-sputtering are sometimes observed to develop morphologies which are either ripple (periodic), or rough (non-periodic). We introduce a discrete stochastic model that allows us to interpret these experimental observations within a unified framework. We find that a periodic ripple morphology characterizes the initial stages of the evolution, whereas the surface displays self-affine scaling in the later time regime. Further, we argue that the stochastic continuum equation describing the surface height is a noisy version of the Kuramoto-Sivashinsky equation.Comment: 4 pages, 7 postscript figs., Revtex, to appear in Phys. Rev. Let

    Literacy and blood pressure – do healthcare systems influence this relationship? A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Limited literacy is common among patients with chronic conditions and is associated with poor health outcomes. We sought to determine the association between literacy and blood pressure in primary care patients with hypertension and to determine if this relationship was consistent across distinct systems of healthcare delivery.</p> <p>Methods</p> <p>We conducted a cross-sectional study of 1224 patients with hypertension utilizing baseline data from two separate, but similar randomized controlled trials. Patients were enrolled from primary care clinics in the Veterans Affairs healthcare system (VAHS) and a university healthcare system (UHS) in Durham, North Carolina. We compared the association between literacy and the primary outcome systolic blood pressure (SBP) and secondary outcomes of diastolic blood pressure (DBP) and blood pressure (BP) control across the two different healthcare systems.</p> <p>Results</p> <p>Patients who read below a 9<sup>th </sup>grade level comprised 38.4% of patients in the VAHS and 27.5% of the patients in the UHS. There was a significant interaction between literacy and healthcare system for SBP. In adjusted analyses, SBP for patients with limited literacy was 1.2 mmHg lower than patients with adequate literacy in the VAHS (95% CI, -4.8 to 2.3), but 6.1 mmHg higher than patients with adequate literacy in the UHS (95% CI, 2.1 to 10.1); (p = 0.003 for test of interaction). This literacy by healthcare system interaction was not statistically significant for DBP or BP control.</p> <p>Conclusion</p> <p>The relationship between patient literacy and systolic blood pressure varied significantly across different models of healthcare delivery. The attributes of the healthcare delivery system may influence the relationship between literacy and health outcomes.</p

    Disordered Structural Ensembles of Vasopressin and Oxytocin and Their Mutants

    Get PDF
    Vasopressin and oxytocin are intrinsically disordered cyclic nonapeptides belonging to a family of neurohypophysial hormones. Although unique in their functions, these peptides differ only by two residues and both feature a tocin ring formed by the disulfide bridge between first and sixth cysteine residues. This sequence and structural similarity are experimentally linked to oxytocin agonism at vasopressin receptors and vasopressin antagonism at oxytocin receptors. Yet single- or double-residue mutations in both peptides have been shown to have drastic impacts on their activities at either receptor, and possibly the ability to bind to their neurophysin carrier protein. In this study we perform molecular dynamics simulations of the unbound native and mutant sequences of the oxytocin and vasopressin hormones to characterize their structural ensembles. We classify the subpopulations of these structural ensembles on the basis of the distributions of radius of gyration and secondary structure and hydrogen-bonding features of the canonical tocin ring and disordered tail region. We then relate the structural changes observed in the unbound form of the different hormone sequences to experimental information about peptide receptor binding, and more indirectly, carrier protein binding affinity, receptor activity, and protease degradation. This study supports the hypothesis that the structural characteristics of the unbound form of an IDP can be used to predict structural or functional preferences of its functional bound form

    Attention Performance in an Epidemiological Sample of Urban Children: The Role of Gender and Verbal Intelligence

    Get PDF
    We administered a comprehensive attentional battery to an epidemiologically defined sample of 435 first and second-grade children to assess the influence of gender and verbal intelligence on attention. The battery included three versions of the continuous performance test (CPT), two digit cancellation tasks, three subtests from the WISC-R, and the Wisconsin Card Sorting Test. The results indicated that both gender and intelligence had an impact on attentional performance. Girls performed better than boys; they made fewer errors on the CPT and obtained higher scores on the digit cancellation task and the Coding subtest of the WISC-R. Children with higher verbal intelligence also performed better on the attentional tests, but this advantage was not observed across measures or levels of performance. For example, children with limited verbal skills performed significantly worse than their peers only in measures with high processing demands(the degraded CPT and the distraction version of the digit cancellation task)

    Role of structural dynamics at the receptor G protein interface for signal transduction

    Get PDF
    GPCRs catalyze GDP/GTP exchange in the α-subunit of heterotrimeric G proteins (Gαßγ) through displacement of the Gα C-terminal α5 helix, which directly connects the interface of the active receptor (R*) to the nucleotide binding pocket of G. Hydrogen-deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of α5 starts from an intermediate GDP bound complex (R*•GGDP). To elucidate the structural basis of receptor-catalysed displacement of α5, we modelled the structure of R*•GGDP. A flexible docking protocol yielded an intermediate R*•GGDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*•Gempty), however with the α5 C-terminus (GαCT) forming different polar contacts with R*. Starting molecular dynamics simulations of GαCT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of α5 with R* in R*•Gempty. The observed rotation of α5 by 60° is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the α5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the α5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket

    Quantitative in vivo Analyses Reveal Calcium-dependent Phosphorylation Sites and Identifies a Novel Component of the Toxoplasma Invasion Motor Complex

    Get PDF
    Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component

    Quantitative in vivo Analyses Reveal Calcium-dependent Phosphorylation Sites and Identifies a Novel Component of the Toxoplasma Invasion Motor Complex

    Get PDF
    Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component
    • …
    corecore