2,232 research outputs found

    Design and Performance of Scalable High-Performance Programmable Routers - Doctoral Dissertation, August 2002

    Get PDF
    The flexibility to adapt to new services and protocols without changes in the underlying hardware is and will increasingly be a key requirement for advanced networks. Introducing a processing component into the data path of routers and implementing packet processing in software provides this ability. In such a programmable router, a powerful processing infrastructure is necessary to achieve to level of performance that is comparable to custom silicon-based routers and to demonstrate the feasibility of this approach. This work aims at the general design of such programmable routers and, specifically, at the design and performance analysis of the processing subsystem. The necessity of programmable routers is motivated, and a router design is proposed. Based on the design, a general performance model is developed and quantitatively evaluated using a new network processor benchmark. Operational challenges, like scheduling of packets to processing engines, are addressed, and novel algorithms are presented. The results of this work give qualitative and quantitative insights into this new domain that combines issues from networking, computer architecture, and system design

    A Proposal for a High-Performance Active Hardware Architecture

    Get PDF
    Current research in Active Networking is focused on developing software architectures and defining funtionality of Execution Environments. While active network systems show superior functionality compared to traditional networks, they only operate at substantially lower link speeds. To increase the acceptance of Active Network in environments where link speeds of several Gb/s are common, we propose a hardware architecture that performs high-speed packet handling while providing the same flexibility as a common software system. The design exploits the independence between data streams for parallel processing. To measure the impact of different design decisions on the performance of the system, we also propose a benchmark for Active Network components. This benchmark can be used for many Active Network architectures and can help to standardize performance results

    The Panopticon—Assessing the Effect of Starvation on Prolonged Fly Activity and Place Preference

    Get PDF
    Animal behaviours are demonstrably governed by sensory stimulation, previous experience and internal states like hunger. With increasing hunger, priorities shift towards foraging and feeding. During foraging, flies are known to employ efficient path integration strategies. However, general long-term activity patterns for both hungry and satiated flies in conditions of foraging remain to be better understood. Similarly, little is known about how permanent contact chemosensory stimulation affects locomotion. To address these questions, we have developed a novel, simplistic fly activity tracking setup— the Panopticon. Using a 3D-printed Petri dish inset, our assay allows recording of walking behaviour, of several flies in parallel, with all arena surfaces covered by a uniform substrate layer. We tested two constellations of providing food: (i) in single patches and (ii) omnipresent within the substrate layer. Fly tracking is done with FIJI, further assessment, analysis and presentation is done with a custom-built MATLAB analysis framework. We find that starvation history leads to a long-lasting reduction in locomotion, as well as a delayed place preference for food patches which seems to be not driven by immediate hunger motivation

    Programming Active Networks Using Active Pipes

    Get PDF
    Active networks allow customized processing of data traffic within the network which can be used by applications to improve the quality of their sessions. To simplify development of active applications in a heterogeneous environment, we propose active network pipes as a programming abstraction to specify transmission and processing requirements. We describe a routing algorithm that maps application session requirements onto network resources and determines an optimal route through the network transiting all required processing sites. Additionally, we propose a network software architecture to implement the functionality required to support active pipes

    Metaheuristics for online drive train efficiency optimization in electric vehicles

    Get PDF
    Utilization of electric vehicles provides a solution to several challenges in today’s individual mobility. However, ensuring maximum efficient operation of electric vehicles is required in order to overcome their greatest weakness: the limited range. Even though the overall efficiency is already high, incorporating DC/DC converter into the electric drivetrain improves the efficiency level further. This inclusion enables the dynamic optimization of the intermediate voltage level subject to the current driving demand (operating point) of the drivetrain. Moreover, the overall drivetrain efficiency depends on the setup of other drivetrain components’ electric parameters. Solving this complex problem for different drivetrain parameter setups subject to the current driving demand needs considerable computing time for conventional solvers and cannot be delivered in real-time. Therefore, basic metaheuristics are identified and applied in order to assure the optimization process during driving. In order to compare the performance of metaheuristics for this task, we adjust and compare the performance of different basic metaheuristics (i.e. Monte-Carlo, Evolutionary Algorithms, Simulated Annealing and Particle Swarm Optimization). The results are statistically analyzed and based on a developed simulation model of an electric drivetrain. By applying the bestperforming metaheuristic, the efficiency of the drivetrain could be improved by up to 30% compared to an electric vehicle without the DC/DC- converter. The difference between computing times vary between 30 minutes (for the Exhaustive Search Algorithm) to about 0.2 seconds (Particle Swarm) per operating point. It is shown, that the Particle Swarm Optimization as well as the Evolutionary Algorithm procedures are the best-performing methods on this optimization problem. All in all, the results support the idea that online efficiency optimization in electric vehicles is possible with regard to computing time and success probability

    Triplet superconductivity from non-local Coulomb repulsion in Sn/Si(111)

    Get PDF
    Atomic layers deposited on semiconductor substrates introduce a platform for the realization of the extended electronic Hubbard model, where the consideration of electronic repulsion beyond the onsite term is paramount. Recently, the onset of superconductivity at 4.7K has been reported in the hole-doped triangular lattice of tin atoms on a silicon substrate. Through renormalization group methods designed for weak and intermediate coupling, we investigate the nature of the superconducting instability in hole-doped Sn/Si(111). We find that the extended Hubbard nature of interactions is crucial to yield triplet pairing, which is f-wave (p-wave) for moderate (higher) hole doping. In light of persisting challenges to tailor triplet pairing in an electronic material, our finding promises to pave unprecedented ways for engineering unconventional triplet superconductivity.Comment: 4 pages, 3 figures (supplement: 3 pages, 2 figures

    Simplifying data path processing in next-generation routers

    Get PDF
    ABSTRACT Customizable packet processing is an important aspect of next-generation networks. Packet processing architectures using multi-core systems on a chip can be difficult to program. In our work, we propose a new packet processor design that simplifies packet processing by managing packet contexts in hardware. We show how such a design scales to large systems. Our results also show that the management of such a system is feasible with the proposed mapping algorithm

    Bone density as a marker for local response to radiotherapy of spinal bone metastases in women with breast cancer: a retrospective analysis

    Get PDF
    Background: We designed this study to quantify the effects of radiotherapy (RT) on bone density as a local response in spinal bone metastases of women with breast cancer and, secondly, to establish bone density as an accurate and reproducible marker for assessment of local response to RT in spinal bone metastases. Methods: We retrospectively assessed 135 osteolytic spinal metastases in 115 women with metastatic breast cancer treated at our department between January 2000 and January 2012. Primary endpoint was to compare bone density in the bone metastases before, 3 months after and 6 months after RT. Bone density was measured in Hounsfield units (HU) in computed tomography scans. We calculated mean values in HU and the standard deviation (SD) as a measurement of bone density before, 3 months and 6 months after RT. T-test was used for statistical analysis of difference in bone density as well as for univariate analysis of prognostic factors for difference in bone density 3 and 6 months after RT. Results: Mean bone density was 194.8 HU ± SD 123.0 at baseline. Bone density increased significantly by a mean of 145.8 HU ± SD 139.4 after 3 months (p = .0001) and by 250.3 HU ± SD 147.1 after 6 months (p <.0001). Women receiving bisphosphonates showed a tendency towards higher increase in bone density in the metastases after 3 months (152.6 HU ± SD 141.9 vs. 76.0 HU ± SD 86.1; p = .069) and pathological fractures before RT were associated with a significantly higher increase in bone density after 3 months (202.3 HU ± SD 161.9 vs. 130.3 HU ± SD 129.2; p = .013). Concomitant chemotherapy (ChT) or endocrine therapy (ET), hormone receptor status, performance score, applied overall RT dose and prescription of a surgical corset did not correlate with a difference in bone density after RT. Conclusions: Bone density measurement in HU is a practicable and reproducible method for assessment of local RT response in osteolytic metastases in breast cancer. Our analysis demonstrated an excellent local response within metastases after palliative RT

    Towards Pricing Mechanisms for Delay Tolerant Services

    Get PDF
    One of the applications of Delay Tolerant Networking (DTN) is rural networks. For this application researchers have argued benefits on lowering costs and overcoming challenging conditions under which, for instance, protocols such as TCP/IP cannot work because their underlying requisites are not satisfied. New responses are required in order to understand the true adoption opportunities of this technology. Constraints in service level agreements and viable alternative pricing schemes are some of the new issues that arise as a consequence of the particular operation mode. In this paper, we propose a novel model for pricing delay tolerant services, which adjusts prices to demand variability subject to constraints imposed by the DTN operation. With this model we also show how important parameters such as channel rental costs, cycle times of providers, and market sensitivities affect business opportunities of operators

    High-dose single-fraction IMRT versus fractionated external beam radiotherapy for patients with spinal bone metastases: study protocol for a randomized controlled trial

    Get PDF
    Background: Stereotactic body radiation therapy (SBRT)using intensity-modulated radiotherapy (IMRT) can be a safe modality for treating spinal bone metastasis with enhanced targeting accuracy and an effective method for achieving good tumor control and a rigorous pain response. Methods/design: This is a single-center, prospective randomized controlled trial to evaluate pain relief after RT and consists of two treatment groups with 30 patients in each group. One group will receive single-fraction intensity-modulated RT with 1Ă—24 Gy, and the other will receive fractionated RT with 10Ă—3 Gy. The target parameters will be measured at baseline and at 3 and 6 months after RT. Discussion: The aim of this study is to evaluate pain relief after RT in patients with spinal bone metastases by means of two different techniques: stereotactic body radiation therapy and fractionated RT. The primary endpoint is pain relief at the 3-month time-point after RT. Secondly, quality of life, fatigue, overall and bone survival, and local control will be assessed. Trial registration ClinicalTrials.gov identifier NCT02358720 (June 2, 2015)
    • …
    corecore