View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-00-27

2000-01-01

Programming Active Networks Using Active Pipes

Ralph Keller, Jeyashankher Ramamirtham, Tilman Wolf, and Bernhard Plattner

Active networks allow customized processing of data traffic within the network which can be
used by applications to improve the quality of their sessions. To simplify development of active
applications in a heterogeneous environment, we propose active network pipes as a
programming abstraction to specify transmission and processing requirements. We describe a
routing algorithm that maps application session requirements onto network resources and
determines an optimal route through the network transiting all required processing sites.
Additionally, we propose a network software architecture to implement the functionality required
to support active pipes.

... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Keller, Ralph; Ramamirtham, Jeyashankher; Wolf, Tilman; and Plattner, Bernhard, "Programming Active
Networks Using Active Pipes" Report Number: WUCS-00-27 (2000). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/292

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233234925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/292?utm_source=openscholarship.wustl.edu%2Fcse_research%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/292

Programming Active Networks Using Active Pipes

Ralph Keller, Jeyashankher Ramamirtham, Tilman Wolf, and Bernhard Plattner

Complete Abstract:

Active networks allow customized processing of data traffic within the network which can be used by
applications to improve the quality of their sessions. To simplify development of active applications in a
heterogeneous environment, we propose active network pipes as a programming abstraction to specify
transmission and processing requirements. We describe a routing algorithm that maps application
session requirements onto network resources and determines an optimal route through the network
transiting all required processing sites. Additionally, we propose a network software architecture to
implement the functionality required to support active pipes.

https://openscholarship.wustl.edu/cse_research/292?utm_source=openscholarship.wustl.edu%2Fcse_research%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/292?utm_source=openscholarship.wustl.edu%2Fcse_research%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages

Programming Active Networks Using Active
Pipes

Ralph Keller, Jeyashankher Ramamirtham,
Tilman Wolf and Bernhard Plattner

WUCS-00-27

October 2000

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

Programming Active Networks Using Active Pipes

Ralph Keller!, Jeyashankher Ramamirtham?, Tilman Wolf?, Bernhard Plattner!

I'[keller | plattner] @tik.ee.ethz.ch 2 [jai | wolf] @arl.wustledu
! Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology,
Gloriastrasse 35, 8092 Zurich, Switzerland, +41-1-632-7015
2 Department of Computer Science, One Brookings Drive, Campus Box 1045,
Washington University, St. Louis MO, USA, +1-314-935-4845

Abstract — Active networks allow customized processing
of data traffic within the network which can be used by
applications to improve the quality of their sessions. To
simplify development of active applications in a heteroge-
neous environment, we propose active nefwork pipes as a
programming abstraction to specify transmission and pro-
cessing requirements. We describe a routing algorithm that
maps application session requirements onto network
resources and determines an optimal route through the net-
worlk transiting all required processing sites. Additionally,
we propose a network software architecture to implement
the functionality required to support active pipes.

Keywords — Active networks, active application pro-
gramming, session configuration, constraint-based routing

I. INTRODUCTION

Active networks provide processing capabilities on
routers that allow customized handling of data traffic
within the network [8]. Processing in the network can be
used to deploy new services, improve end-to-end quality,
monitoring, and many other useful applications. The
main challenge of providing secure, reliable, high perfor-
mance, and programmable execution environments on
routers has been addressed by many research groups [11],
21

In most cases, it is difficult for application program-
mers to make use of active services in the network since
it requires an understanding of the underlying network
infrastructure and the system architecture of the active
router. In this paper, we propose a method by which these
details can be hidden from the programmer, making the
development of the application simpler. In particular, we
address the following three issues:

» We introduce a method for specifying transmission
and processing requirements for connections over
active networks.

+ We demonstrate how the connection requirements
can be mapped onto network resources while mini-
mizing network costs.

+ We propose a network software architecture that can
implement the services required for resource map-
ping, routing, and connection setup.

The basic idea of specifying transmission and process-

ing requirements is to model a connection as a sequence

of functions that have to be performed on the data stream.
This concept is analogous to pipes in UNIX where data
can be sent through a sequence of programs. In the active
networking environment, each function corresponds to a
code module that has to be installed on a router along the
path of the connection. An active pipe is a more general
definition of an execution sequence since processing
requirements can be optional and can depend on the state
of the netwoik. We require that the connection always
goes through the same sequence of code modules and,
therefore, assume connection-oriented sessions.

In Section II, we describe our programming paradigm
for active networks and explain how active pipes can be
defined. Section IIT illustrates how we can map an active
pipe onto network resources and determine an optimal
route and the location of processing sites. In Section 1V,
we present a network software architecture to implement
the required functionality. In Section V, we discuss
related work and Section VI concludes this paper by
summarizing results,

II. PROGRAMMING PARADIGM FOR ACTIVE NETWORKS

The formal definition of an active pipe, that we intro-
duce in this section, is used by an application to specify
session requirements.

A. Active Network Pipes

An active network pipe is a description of a processing
sequence used in a connection from the source to the sink
over an active network. The active pipe abstraction can
be used by the application programmer to define where
active code modules need to be deployed for a particular
connection. There are two types of code modules that can
be used in an active pipe:

* A required module provides a processing function
that must be performed exactly once in the netwoik.
This functionality is essential for the correct opera-
tion of the application and cannot be omitted. Such a
processing function typically changes the format of
the data stream (e.g., encryption, media transcoding).

+ A conditional module provides a functionality that is
not necessary for correct operation, but can improve
the quality of the connection. This type of code mod-

Pipe = source Modules sink v Pipe | source Modules sink
Modules = Selector [Conditionalmodules] Requiredmodules Modules | &

Selector=sel{S) | &

Conditionalmodules = Conditionalmodule Conditionaimodules | &

FRequiredmodules = Requiredmodule | €

Conditionalmodule = Modulename (Location, Installationcondition)
Requiredmodule = Modulename (Location, Installationcondition)

Location = node | link
Installationcondition = C

Modulenarme = encryption | congestioncontrol | monitoring | transcoding | ...

Figure 1: Active pipe grammar

ule is installed on all nodes that fuifill a given condi-
tion. As a result the code module can be deployed
multiple times along the path. If the condition is not
satisfied at all, then no modules need to be installed.
These code modules typically do not change the for-
mat of the data stream (e.g., monitoring, congestion
control).

In addition to defining a sequence of required and con-
ditional modules, the programmer can use three other
components, which can be used independently on all
modules, to express the processing demands:

* Network attributes that maintain static and dynamic

state information for links and nodes,

» selectors that restrict the links and nodes that are

considered for a connection, and

 installation conditions that describe circumstances

under which an active code module should be
deployed.

1) Network Atrributes

In our network model we attach astributes to all nodes
and links to define properties of nodes and links.
Attributes can be either static or dynamic and are config-
ured by network management. For example the “address”
of a node is a static attribute whereas the “available band-
width” on a link is a dynamic attribute.

Formally, an attribute consists of a two-tuple
<name, value>. Each node or link can have multiple
attributes defined as an attribute set A = {a;, a;, az..a,},
where each g; is an individual attribute. We refer to the
value of attribute name on node v as wname and on link ¢
as e.naine.

2) Selectors

In certain cases the path of a connection needs to be
restricted to a certain set of nodes and links. For example,
packets that are not encrypted might not be allowed to
leave a certain domain. For this purpose we define a
selector that restricts the graph on which routing is per-
formed. Let the network be represented as a graph
G =(V E) with nodes V and links E. The selector

S: G — G’ maps the complete network graph G to a sub-
set G = (V’, E’). All routing decisions are then restricted
to that particular graph G’. If the selector is omitted, rout-
ing is performed on the complete network graph G

3) Installation Conditions

Code modules are only installed on nodes and links if
the installation condition is fulfilled. For this purpose, we
define the installation condition C as a function that maps
nodes or links to a boolean value C: V — [true, false} or
C: E — {true, false], respectively. For the evaluation of
this function, node and link attributes are used. Based on
this function, we can determine the qualifying set of links
or nodes, which is the set of all locations where the
installation condition is satisfied.

4) Active Pipe Grammar

With the definition of attributes, selectors, and installa-
tion conditions, we can express conditional execution of
code modules on one or many nodes or links. The gram-
mar shown in Figure 1 defines an active pipe as a
sequence of required modules, conditional modules, and
selectors. An example of a module is encryption (node,
node.domain = A), where encryption is the identifier of the
module, node indicates that it should be installed on a
node, and node.domain = A is the condition under which
it is installed. For the selector S and the installation con-
ditions C in the grammar, we assume the functions
described in the previous subsections.

As an example for an active pipe, we can think of a sce-
nario where a connection for sensitive data transmission
is established between two domains. If the two domains
are directly connected to each other, traffic does not need
to be encrypted but if the traffic transits nodes outside the
trusted domains, encryption is needed and monitoring
within the untrusted domain on some nodes is desired as
illustrated in Figure 2.

ancryplion

tnodo,

domain A’ domain A)

\domain B

Figure 2: Active pipe for encryption between domains

Selectors are attached to the arrows between code mod-
ules and the installation conditions are shown below the
module names. Using the grammar, the example can be
expressed as:

source sel (domain A v domain B) sink v

sgurce
sel {domain A) encryption (node, node.domain = A)
sel (*) [monitoring (node, node.type = grey) |
decryption (node, node.domain = B) sel (domain B)

sink

More detailed explanations of various deployment sce-
narios are given in the following section.

B. Deployment Scenarios

With the formal definition of an active pipe, we can
address the following four basic deployment scenarios:

* required processing on node

= required processing on link

» conditional processing on nodes

« conditional processing on links

For the discussion, we use the graph shown in Figure 3.

Figure 3: Network graph used for scenarios

1) Required Processing on Node

In this example, processing on exactly one node is
required. The path of the connection has to be set up such
that it traverses at least one node that can perform the
required processing. Figure 4 shows those two potential
processing nodes in grey and a path that traverses the left
processing node. Exarmnple for this type of processing is
data transcoding. Using the grammar, this can be
expressed as:

source transcoding {node, node.active = true) sink

Figure 4: Required processing on a single node

2) Required Processing on Link

Similar to processing on one node, we can require pro-
cessing on exactly one link. In Figure 5, two links are
marked where processing could be performed on the
nodes that precede the links. This type of processing
could be encountered in conjunction with the Differenti-
ated Services architecture that allows network providers
to offer services with different quality-of-service to traf-
fic streams. The classification, marking, policing, and
shaping operations are implemented at network bound-
aries and routers within the core of the network handle
packets in different traffic classes according to the per-
hop behaviors indicated in the packet header. The links in
Figure 5, for example, could be preceded by traffic shap-
ing modules. This can be expressed as an active pipe as:

source trafficshaping {link, link.leavesdomain = true) sink

Figure 5: Required processing on a single link

3} Conditional Processing on Nodes

When processing is conditional, it can happen arbi-
trarily many times (including not at all). If the path
traverses a node which qualifies for processing under the
given condition, the code module will be installed. One
example for this type of processing is traffic monitoring
on routers that are of type M. Figure 6, depicts nodes on
which monitoring can be performed as shaded. The final
path traverses two such nodes and the monitoring module
would be installed on both of them. As an active pipe,
this can be expressed as:

source [monitoring {node, node.routertype = M}] sink

Figure 6: Conditional processing on nodes

4) Conditional Processing on Links

Similar to conditional processing on nodes, processing
can also be performed on links. A good example for such
a scenario is application-specific congestion control. The
application can install customized modules that medify
the application’s data stream in response to congestion on
certain links. For example video congestion control mod-
ules in the network can minimize the impact of losses on
the perceived video by preferentially discarding high fre-
quency image coefficients from the video stream as dem-
onstrated in [10]. If the data stream is routed along
several congested links, then congestion control modules
should be installed at each of these links. If the stream is
not routed through any congested link, no congestion
control modules need to be installed. Figure 7 illustrates
links where congestion control could be performed with
large arrows. The active pipe expression for this scenario
is:

source [congestioncontrol {link, link.congested = true)] sink

Figure 7: Conditional processing on links

Based on the formalism for defining transmission and
processing steps in a connection over an active network,
we will now demonstrate how resources are mapped onto
the underlying network and how an optimal route and the
location of processing sites can be determined.

III. CONSTRAINT-BASED ROUTING IN ACTIVE
NETWORKS

Routing in active networks has to find a least-cost path
from the source to the destination taking into account
transmission costs over links and costs of executing mod-
ules. We assume that processing cost at an active node is
determined by the profile of the active module (e.g.,
required processing cycles, memory usage) and is scaled

to match the link cost units. This is a convenience that
allows us to transform the routing problem into a simple
shortest path problem with just link costs. Moreover,
shortest path problems with more than one cost metric
are known (0 be intractable [9].

We describe how the routing is performed for a single
module case (required or conditional) and then we look
at how the routing works for a sequence of active mod-
ules in an active pipe. The main idea is to transform all
the cases into a shortest path problem and use the meth-
ods incrementally to generate a shortest path problem for
the active pipe case.

Formally, the problem for the single module case can
be stated as follows. We are given a directed graph,
G =(V, E), with a transmission cost ¢{e), for each link
e € E, and a processing cost of the module ¢(v), for each
node v € V. Let the source be defined by s and the desti-
nation by d. We describe the transformations for each of
the scenarios described in Section II to a shortest path
problem. As an example network, we use the graph
shown in Figure 8. Transmission costs are denoted on the
links and the processing costs for a module are shown
within the nodes.

@\79‘:
/véf/%

Figure 8: Network graph used for scenarios

A. Regquired Modules

For required modules, the routing algorithm’s objective
is to determine the node where processing can be per-
formed such that the cost of the path (sum of transmis-
sion costs on links and the processing cost for the active
module at the node) is minimized. As discussed in Sec-
tion II, there are two cases:

1) Required Processing on Nodes

In this case, given a qualifying set of nodes, NG V, we
need to determine the optimal node nn € N, where the pro-
cessing should be done. As described in [6], we can solve
this problem by transforming it to a shortest path prob-
lem. We modify the graph G by making two copies which
we identify as layer 1 and layer 2 as illustrated in Figure
9. For each vertex u in the initial graph, let #; denote the
vertex in layer 1 of the target graph while u; denotes the
vertex copy in layer 2. To model the processing of mod-
ules, we add edges berween the two layers. For every
node nn € N, where processing may occur, we add an edge

Figure 9: Transformation for required node scenario

{ny, 1y} in the target graph and let the link cost of (ny, 1)
be the processing cost on node n, ¢f7).

The source node in layer 1, s;, is the source for this
new graph and the destination node in layer 2, d5, is the
destination node for the new graph. This ensures that the
path from the source to the destination is forced to go
through exactly one processing site. To resolve the rout-
ing problem with one mandatory processing site, we find
a least-cost path in the target graph using a shortest path
algorithm. The path can be mapped back to the original
graph by projecting the two layers onto a single layer and
the processing is optimally performed where the path
crosses the two layers. A proof for this method is pre-
sented in [6].

2) Required Processing on Links

Here, given a qualifying set of links, L C E, the appli-
cation wants the processing to be done on the node adja-
cent fo exactly one link among the set. In this case, the
procedure of determining the optimal location is very
similar to the previous case, except for one small varia-
tion. Again, we transform the graph G by making two
copies, as in the previous case as illustrated in Figure 10.
For each vertex « in the initial graph, u; denotes the ver-
tex in layer 1 of the target graph while u; corresponds to
the vertex copy in layer 2. Now for every edge e € L,
which connects nodes i and j, we add a new diagonal
edge (i, j») in the target graph between the two layers.
The weight of this new edge is the sum of processing cost
at the node and the transmission cost of the link. This is
given by the expression ¢{i)+ cfe). The shortest path
from s; 10 do gives us an optimal path that transits the
processing site and the link crossing the two layers is the
optimal location to do processing.

The proof of this is straight-forward. To reach the desti-
nation d, from s;, we need to traverse one of the edges
connecting the two layers. The edge weights of these
links ensure that when we cross a layer, we take into
account the cost of installing the active module before the
link. Since the shortest path algorithm selects a route
with minimum costs, the edge that crosses the layers is
the optimal location to install the active module.

Figure 10: Graph transformation for required link scenario

Note: An important fact to observe about routing in the
required processing cases is that all paths from any node
in layer 1 to any node in layer 2 satisfy the constraint that
an active module must be installed on a single node of the
qualifying set. In other words, to reach any node in layer
2, we have to traverse one of the links connecting the two
layers. No matter how we modify layer 2 to do other pro-
cessing, any path from layer 1 must use one of the links
connecting the two layers. Thus, we can modify the
graph in the lower layers and the constraint that an active
module must be installed at one location is still satisfied
in the resulting shortest path problem through this trans-
formation. This shows the correctness of the shortest path
problem that is constructed for the required modules.

B. Conditional Processing

In the conditional processing case, active modules
should be installed at locations (with respect to nodes or
links) that satisfy a given condition along the path. We
now discuss the two cases presented in Section II:

1} Conditional Processing on Nodes

In this case, we are given a qualifying set of nodes,
N c V, and we need to determine the set of nodes where
the active module must be installed such that the path
cost is optimal. More formally, suppose there exists a
path p = <s, vy, v,, &> from the source s to the destina-
tion d, and if v;€ N, then an active module must be
installed on that node v;. This can be solved as follows.
For every node v € N, let {e;, 5, e3..... ¢,,} be the set of
outgoing edges. As shown in Figure 11, the transforma-
tion on the graph is simply to increase the edge weights
of the outgoing links by the processing cost of the node.
That is, cpeu(e;) = cfe;) + cfv). The source and destina-
tion remain the same.

Proof of this method is, again, straight-forward. When
a path transits a node, the processing costs at the node are
taken into account by the increased link weight of the
outgoing link. Thus, when a path goes through a node, an
active module can be deployed at that node. Since the
shortest path algorithm optimizes total costs, both link

Figure 11: Transformation for conditional nodes scenario

and processing costs are minimized.

2) Conditional Processing on Links

Here, the application wanis a module to be installed at
all links in the path given a qualifying set of links, LC E.
This case is similar to the node case, except that the link
weights are increased corresponding to the links in the
qualifying set only. Thus, the transformation as illustrated
in Figare 12 on the graph is, for every edge ec L,
increase the edge weight by the processing cost of the
node adjacent to that link. That is, ¢, (e) = c(e) + c(v),
where e is an outgoing link at v.

The proof directly follows from the proof of the previ-
ous case with the difference that the active module needs
to be installed if we go through the particular links only.
Thus, the increase in the edge weights of these links
ensures that if any of the links is taken, then the cost
includes the processing cost too.

Figure 12: Transformation for conditional links

Note: In the conditional cases as well, the important
fact to notice is that all paths from any source to any des-
tination satisfy the given condition that if the path transits
any node (or link) that belongs to the qualifying set, then
an active module is installed there. This is true because
the link weights are increased in such a way that the pro-
cessing cost of the active modules is included in the link
costs. Thus, the shortest path problem includes the cost of
installing the active modules.

C. Combination of Conditional Modules

In the specification of an active pipe, a combination of
conditional modules can be installed on the same graph
and the order of installation does not matter. The graph,
G, is transformed using the method described for the con-
ditional module case, individually, for each of the mod-
ules on the same graph. This results in a graph with link

weights modified for each of the conditional modules.
For each of the conditional modules, all paths between
any two nodes in the graph satisfy the required constraint
that “whenever going through a selected node or link, the
corresponding active module needs to be installed”. This
follows directly from the observation mentioned about
the conditional module transformations above. Also, if
the installation condition for two different modules over-
lap (i.e., some node or link is a candidate for installing
the active module for both cases), then the flow has to be
processed by both modules at the same location. We
assume that active nodes support chaining of active mod-
ules for a single flow, i.e., a single flow can be processed
by multiple code modules in a sequence on the same
node.

D. Active Pipe Routing

We shall now define an algorithm to perform routing in
the active pipe case. An active pipe can have various
afternatives that are separated by “v’. The different alter-
natives are solved, individually, for the shortest path and
the optimal one is chosen among them. So, we discuss
how the routing is done for a single alternative. As
described in Section II, a selector restricts the route until
some processing is done. The selector defines a subgraph
through which the routes can be taken until a required
processing is performed or the destination is reached. For
each required module, we add a new layer in the graph
according to the transformations defined previously. The
second layer is defined by the next selector specified by
the application and if there is none, the first layer is repli-
cated to give us the second layer. A number of condi-
tional modules can be installed together on the same
layer according to the specification by the application.
This results in modifying link weights in the layers for
each of the modules. The original source node in the top-
most layer of the graph is the source of this modified
graph and the original destination node in the bottom-
most layer is the destination of the modified graph. The
resulting graph satisfies the constraints specified by the
application because the constraints are satisfied for each
of the modules. Solving the resulting graph for the short-
est path returns optimal locations for installing the mod-
ules.

As an example, we consider the active pipe from Sec-
tion IL. The first alternative is to determine a path that
does not leave the trusted domain and in our example
there does not exist such a path. Instead, we need to go
through an encryption and decryption step. Figure 13
shows the graph obtained by applying the transforma-
tions for this case. The top layer is the source domain
defined by the selector sel (domain A). The required

Middio Layer

Betlom Layer

Figure 13: Graph transformation for encryption and
decryption example

encryption step is done between the top and the middle
layer and the required decryption is performed between
the middle and the bottom layer. The conditional moni-
toring is done in the middle layer at the grey nodes.
Using a shortest path algorithm, we can now determine
the optimal route and processing locations.

IV. NETWORK SOFTWARE ARCHITECTURE

We have described an algorithm that allows us to trans-
late application requirements onto network resources. In
this section, we identify the required components needed
for an implementation and propose an architecture that
obtains and maintains network state information required
for optimal resource mapping. Additicnally, the software
is responsible for installing code modules at the locations
determined by the routing algorithm.

A. Network Control Software

The core component of our network architecture is the
Network Control Software (NCS), a distributed session
configuration system for flows that need processing on
intermediary node. The NCS accepts session initiation
requests from applications, maps the session require-
ments onto network resources, and reserves resources
along the least-cost path. Each domain runs an instance
of the NCS which has complete information about its
local domain and aggregated information on distant
domains. If a session needs to be configured using multi-
ple domains, the local NCS computes a path based on its
view of the network, reserves processing resources in its
domain, and then forwards the session configuration
request 1o successive instances of the NCS along the path
to the destination.

Internally, the NCS is composed of the following com-
ponents as depicted in Figure 14:

* The session setup manager handles session initia-

tion requests from the application and controls other
components for session setup.

-

Modufa
Froporty
Diatal

—

S

Module
Cotlg |
Database

—

Figure 14: Network Control Software (NCS)

» The network state database stores the current state
of the network which includes the topology and the
location and work-load of processing elements.

* The network state exchange component continu-
ously updates the network state database with infor-
mation reported by individual nodes.

* The module property database contains module
descriptions for use by the NCS. Specifically, it con-
tains information such as whether the module should
be installed with respect to a node or link, and
whether it is required or conditional. In addition, the
database includes the installation condition and the
selector functions. Storing module-specific proper-
ties in a database simplifies the API, because the user
does not need to deal with module-specific parame-
ters.

* The module code database provides a library of
active modules for (possibly) different type of execu-
tion environments,

* The path determination component performs con-
straint-based routing by internally building the lay-
ered graph and then using a shortest-path algorithm
computes a least-cost route and the location of pro-
cessing modules.

* The rescurce reservation component allocates net-
work resources along the session path. Using a proto-
col such as [5], active modules are installed in the
router’s networking subsystem.

B. Module Properties

A description of each module is stored in the module
property database and includes information such as
whether the module should be installed with respect to a
node or link, and whether it is required or conditional.
Each module also contains a list of formal parameters
that are needed to instantiate a module {such as the
“trusted domain” for the encryption module). To specify
the eligible locations where the module can be installed,

the description contains the installation condition.
Table 1 illustrates the module description for an encryp-
tion meodule. Note that the function uses the formal
parameter frusteddomain which is provided by the appli-
cation.

Table 1 Properties for encryption module

Encryption Module
formal parameters rrusteddomain
module type required
location node

installation condition if wdomain = trusteddomain

selector rrusteddomain

To install a module in the network, the application has
to provide only the name of the module and its formal
parameters. All module-specific information (such as the
module type, installation condition, selector) is retrieved
from the module property database. For example, an
application that wishes to install encryption and decryp-
tion modules needs to provide the following information:

<encryptionmodule, “arl.wustl.edu”>
<decryptionmodule, “tik.ee.ethz.ch™>

Using the information provided by the application and
the information stored in the property database, the NCS
can build the graph and determine a route for the session
as described in Section III.

C. Session Setup

Now, we describe the session setup procedure using the
encryption example. The following six session setup
steps are ilfustrated in Figure 14:

1. Using an active pipe description, the application
requests a secure session between two domains. The
domain identifiers are passed as formal parameters.

. The session manager retrieves information about the
encryption and decryption modules from the module
description database.

3. The network state database delivers information

about the topology and state of the network.

4. Using the network state information, the routing
component determines a path through the network
and the location of active modules along that path.

5. The resource reservation component allocates the
required resources and installs the code modules
along the path.

6. Once all active modules are deployed and the con-
nection is setup, the application can start transmit-
ting data.

2

D. Implementation Issues

For an implementation of our proposed network archi-
tecture, routers are required to support connection-ori-
ented communication. This can be achieved by either
using routers that inherently support connection-oriented
communication, like ATM switches, or by building a con-
nection-oriented overlay network over a datagram net-
work, similar to Virtual Private Networks used in the
Internet.

For routing purposes, the NCS needs to receive topol-
ogy and network state information. This includes infor-
mation about the location and utilization of potential
processing nodes. Link-state protocols such as OSPF {7]
and PNNI [1] provide information about the network
topology and, in the case of PNNI, available bandwidth of
links. These can be extended to include available pro-
cessing resources at active nodes and attribute informa-
tion. For reasons of scalability, this information must be
aggregated, like in PNNI.

As a result of state aggregration and potentially stale
information, the determined route of a session and the
locations of the code modules might not be optimal or
even feasible. To deal with this situation, the signaling
subsystem needs to support crankback mechanisms to
find alternate routes.

The module property and module code databases can
be organized in a hierarchy with several levels of cach-
ing, like the DNS system, to ensure scalability.

V. RELATED WORK

In the context of active networks, resource discovery
and resource reservation are crucial factors of network
programmability. Darwin [4] proposes an integrated
resource management scheme that maps application con-
straints onto the network resources. The application pro-
vides resource requests in form of a virtual mesh, which
is an annotated graph structure that specifies desired
high-level services as nodes in the graph. A resource bro-
ker (Xena) then translates the virtual mesh onto network
resources by expressing it as a boolean optirnization
problem, which is generally NP-hard, thus this approach
is only appropriate for small to medium sized networks.
Resource discovery mechanisms have not been imple-
mented in the Darwin system.

Chae et al. [3] propose a mechanism that allows dis-
covery of topological properties related to network ser-
vices and resource states. Internal properties of the
network are collected using network queries, which are
evaluated in a distributed fashion and the aggregate result
is sent back to the source. This might be a useful scheme
for discovering attributes of nodes and links in our archi-
tecture. The amount of information that has to be dissem-

inated over the network for attributes might be large. The
queries can be restricted to the attributes that are of inter-
est for a particular session setup.

The PNNI protocol [1] is a distributed resource alloca-
tion system for ATM networks. PNNI consists of two pro-
tocols, a hierarchical link-state protocol that distributes
information about network resources, and a signaling
protocol that uses this information to reserve network
resources along a precomputed path. In PNNI, the source
initiates a session setup by sending a request to the switch
connected to the source. The switch uses information
about the network topology and resource availability
(which is gathered by the link-state protocol) and com-
putes a path to the destination. The switch then passes the
selected route to switches along the path and each switch
then tries to allocate local resources. If an attempt to
make a reservation fails, a crankback process is initiated
and an alternate path to the destination is computed. To
make this approach scalable to very large networks,
switches have only complete knowledge about their Iocal
network but aggregated information of distant networks.

V1. CONCLUSIONS

Network applications can significantly benefit from
computational capabilities within the network because
they are able to deploy customized packet processing ser-
vices rather than depend solely on end-to-end mecha-
nisms. Such applications need an abstract way of
specifying session requirements that can be translated
onto network resources.

In this paper, we propose active network pipes as an
abstraction used by applications to specify session
requirements in a high-level and expressive way. An
active pipe is a sequence of functions that are executed
on the data stream which is routed through the network.
The locations of these functions within the network are
defined through installation conditions. We present an
algorithm that maps high-level application requirements
onte physical network resources while guaranteeing low-
est network costs. Qur scheme transforms an active pipe
specification into a layered graph whose solution repre-
sents the locations for modules and optimal path through
the network transiting all modules. We also identify com-
ponents that are needed for an implementation and pro-
pose a network software architecture that supports active
pipes.

We believe that providing one common programming
abstraction to various heterogeneous active network
architectures is important for making active applications
easily programmable and widely usable. Active network
pipes represent a significant step towards the solution of
this crucial problem.

(1]
(2]

3

[4]

[5]

(6]
[7]
(8]

9]

[10]

(4]

REFERENCES

ATM Forum Technical Committee, Private Network-Network
Interface Specification Version 1.0, March 1996.

Andrew T. Campbell, Herman G. De Meer, Michael E.
Kounavis, Kazuho Miki, John B. Vicente, and Daniel Villele,
“A survey of programmable networks,” Computer Communica-
tion Review, vol. 29, no. 2, pp. 7-23, Apr. 1999,

Youngsu Chae, Shasi Merugu, Ellen Zegura, Samrat Bhatta-
charjee, “Exposing the Network: Support for Topology Sensi-
tive Applications”, Proceedings of IEEE Openarch 2000,
March 2000.

Prashant Chandra, Allan Fisher, Corey Kosak, T.S. Eugene Ng,
Peter Steenkiste, Eduardo Takahashi, Hui Zhang, “Darwin: Re-
source Management for Value-Added Customizable Network
Service”, Sixth IEEE International Conference on Network Pro-
tocols, October 1998,

Prashant Chandra, Allan Fisher, Peter Steenkiste, “Beagle: A
Resource Allocation Protocol for an Advanced Services Inter-
net”, Technical Report CMU-CS-98-150, August 1998.

Sumi Choi, Jonathan Turner, Tilman Wolf, “Configuring Ses-
sions in Programmable Networks”, submitted to Infocom 2001.
J. Moy, RFC 2328 OSPF Version 2, IETF Network Working
Group, April 1998.

David Tennenhouse, Jonathan M. Smith, W. David Sincoskie,
David J. Wetherall, Gary J. Minden, “A Survey of Active Net-
work Research”, IEEE Commumications Magazine, Vol. 35, no.
I, pp. 80-86, January 1997.

Roch A. Guérin, “QoS Routing in Networks with Inaccurate In-
formation: Theory and Algorithins,” IEEE Transactions on Net-
working, Vol. 7, No. 3, June 1999,

Ralph Keller, Sumi Choi, Dan Decasper, Marcel Dasen, George
Fankhauser, Bernhard Plattner, “An Active Router Architecture
for Multicast Video Distribution,” Proceedings of Infocom
2000, Tel Aviv, March 2000.

Konstantinos Psounis, “Active Networks: Applications, Securi-
ty, Safety, and Architectures,” IEEE Communications Surveys,
First Quarter 1999,

	Programming Active Networks Using Active Pipes
	Recommended Citation
	Programming Active Networks Using Active Pipes

	tmp.1439924045.pdf.OsDSP

