
Simplifying Data Path Processing in Next-Generation
Routers

Qiang Wu, Danai Chasaki and Tilman Wolf
Department of Electrical and Computer Engineering

University of Massachusetts, Amherst, MA, USA

{qwu,dchasaki,wolf}@ecs.umass.edu

ABSTRACT

Customizable packet processing is an important aspect of
next-generation networks. Packet processing architectures
using multi-core systems on a chip can be difficult to pro-
gram. In our work, we propose a new packet processor de-
sign that simplifies packet processing by managing packet
contexts in hardware. We show how such a design scales to
large systems. Our results also show that the management
of such a system is feasible with the proposed mapping al-
gorithm.

General Terms

Design, Performance, Algorithms

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Inter-
networking—Routers; C.1.4 [Processor Architectures]:
Parallel Architectures

1. INTRODUCTION
Routers in the Internet perform packet processing func-

tions not only to implement standard network-layer protocol
operations, but also an increasingly diverse set of security,
quality-of-service, traffic management, accounting, and mea-
surement functions [4]. To implement these operations, and
to support new features as they emerge, the data path of
modern routers is implemented using programmable packet
processing systems (e.g., [2]). By adapting the software that
is executed on these packet processors, the functionality of
the router (and ultimately the network) can be changed.

This trend towards software-based network systems can
also be observed in academic research, where efforts are fo-
cused on defining the next-generation network architecture
[5]. Many of the proposed architectures use programmabil-
ity in the data path in one of two ways: (1) programmability
as a way of deploying new protocols in the network infras-
tructure, or (2) programmability as an explicit feature of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’09, October 19–20, 2009, Princeton, New Jersey, USA.
Copyright 2009 ACM 978-1-60558-630-4/09/0010 ...$5.00.

the network architecture. The prior use of programmability
is particularly important for architectures that are based on
network virtualization [1], where slices with new protocols
stacks are deployed dynamically during the operation of the
network. The latter use of programmability exposes some of
the processing capabilities of the infrastructure to allow the
dynamic deployment of new functionality within a network
or a slice (e.g., network services [6]). In either scenario, a
high-performance programmable packet processing system
is at the core of router design.

Programmable packet processing engines can be imple-
mented using several different technologies ranging from
general-purpose workstations processors [3] to embedded
multicore systems-on-a-chip network processors [18] and
programmable logic devices [19]. One of the dominating
design tradeoffs in this space is the tension between pro-
cessing performance and simplicity of use (i.e., ease of pro-
gramming). Workstation processors provide an environment
where code development is easy due to significant support
by the operating system and established development tools
(e.g., Click [11]). However, the raw processing performance
of network processors and programmable logic devices is
higher. In contrast, these systems do not use operating sys-
tems and thus require more complex code development.

In our work, we focus on the design of a packet process-
ing system that aims to provide high performance as well as
ease of use. The main idea is to handle the context man-
agement of instructions, packets, processing and flow state
in hardware. This hardware management simplifies the way
packet processing functions can access relevant data thus
significantly simplifying code development. Specifically, the
contributions of the research described in this paper are:

• An overview on the design of a packet processing
system that provides a simple programming interface
while hiding the complexities of context management.
The challenge in this aspect of the work is to design the
processing engines in such a way that instructions, flow
state, program memory, and packet memory can be
handled automatically. The processor presents a sim-
ple single-core programming environment with static
memory spaces to the application to allow for simple
code development.

• The results of a design space exploration that high-
lights the scalability of the system design to support
large numbers of active flows with diverse processing
needs. We use synthesis results from a configurable
processor core implementation to estimate the area
requirements and processing performance of different

1

system configurations. The results quantify the capa-
bilities of different system configurations to support
large numbers of flows.

• An algorithm for runtime task allocation in our highly
parallel packet processing system. The challenge in
managing the processing resource in the architecture
that we describe is to ensure that a centralized control
system sets up processing contexts and interconnec-
tions correctly for all flows. We use profiling infor-
mation to estimate the processing requirements of the
system. A mapping algorithm dynamically allocates
flows and packet processing tasks to system resources
at runtime.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents an overview
of our packet processing system architecture. A quantitative
evaluation of the design space is presented in Section 4. Sec-
tion 5 presents a discussion of runtime management issues
including a mapping algorithm. Section 6 summarizes and
concludes this paper.

2. RELATEDWORK
Customization in data path processing has been studied

as an aspect of networking systems in form of extensible
operating system kernels (e.g., x-Kernel [9]) and routers with
selectable features (e.g., router plugins [3]). More general
programmability has been proposed for active network [20],
network virtualization [1], and network services [6].

Several implementations of programmable packet process-
ing systems are based on conventional workstation proces-
sors (e.g., Click modular router, [11], dynamically extensible
router [13]). More recently, multi-core embedded network
processors (e.g., Intel IXP platform [10]) have been used for
router designs [18, 21]. In such systems, it is important to
consider programming abstractions (e.g., NP-Click [17], ad-
vanced compilers and runtime systems [7]) that can be used
to simplify software development. These development envi-
ronments support offline profiling and optimization, but do
not support dynamic adaptation to changing traffic work-
loads. Runtime support systems that manage processing re-
sources have been proposed to support more dynamic envi-
ronments [12,22,23]. Our work differs from these approaches
as it proposed hardware support for context management
(which can be seen as a form of runtime management).

The idea of using a larger number of simpler processors
to achieve high throughput on highly parallel workloads is
not new. Single instruction multiple data (SIMD) computer
architectures have used this approach. Graphics processing
units (GPU) are a very successful example of highly parallel
processors. However, their use in networking is limited since
the workloads of network processing do not match the SIMD
processing model.

Adapting processor design for the networking domain has
been explored in a variety of directions. For example, in-
struction sets have been extended to support networking
tasks [8]. Network processors designs that provide hardware
support to perform multiple protocol-processing functions
have been proposed in [15]. The focus of our work is to
further improve hardware support and to further simplify
process. Also, support for run-time adaptation of workloads
is a critical aspect of our work.

3. SYSTEM ARCHITECTURE
The main concepts of the design of our packet processing

system are discussed in this section. More details on design
tradeoffs and scalability are covered in Section 4. Issues
on runtime management are discussed in Section 5. Some
initial ideas on this system have been described in [24].

3.1 Simplicity in Data Path Processing
The main design goal of our system is to provide a simple

packet processing system that can be programmed easily
and achieves high throughput. The goal of simplicity in the
data path follows two dimensions:

• Simplicity in processor design.

• Simplicity through hardware context management.

3.1.1 Simple Processor Design

When designing a packet processing system, a design
choice needs to be made on how complex a processor is used
at the core of the system. More complex processors typi-
cally perform processing faster. However, they also require
more hardware resources and consume more power. Assum-
ing a fixed resource budget, a design can use either a larger
number of simpler processor or a smaller number of larger
processors. Using a larger number of simpler processor for
packet processors provides several advantages specific to the
networking domain:

• Higher throughput: Network processors are concerned
with the throughput of the system (i.e., total amount
of processing across all processors) rather than per-
packet delay (i.e., executing speed of single processing
task). A larger number of lower-performing processors
achieves an overall higher throughput since the cost
for speeding up single-thread performance is dispro-
portionate to the performance gain. (Note that the
processing delay on a router – even when performing
complex tasks on a slow processor – is typically consid-
erably less than the propagation delay encountered on
transmission links. Thus, increasing delay for higher
throughput is acceptable.)

• Lower power consumption: Following the argument for
higher throughput, a system with more lower-speed
processors consumes less power while achieving higher
processing performance.

• Easier support for virtualization: It is convenient to
provide isolation between slices at the level of a pro-
cessor rather than attempting to achieve isolation of
processing tasks within a processor. Having a larger
number of processors available provides the basis for
finer-grained resource allocation than is possible with
a few large processors.

However, there are also several challenges when using a
larger number of simpler processors. In particular, the man-
agement of these resources becomes more complex. We
present some solutions to this problem in Section 5. Never-
theless, using a larger number of smaller processors is prefer-
able when considering performance.

2

3.1.2 Hardware Context Management

One of the challenges in a packet processing system is to
ensure that each packet processing function has access to
data it needs. There are different types of data and infor-
mation that are used for network processing:

• Packet processing program code: The instructions for
processing a packet are typically stored in a dedicated
instruction store.

• Packet data: The packet header and often the packet
payload needs to be accessible to the packet processing
function.

• Flow state: Many packet processing functions are not
entirely stateless but maintain a small amount of per-
flow state.

• Local processing state: This state encompasses tempo-
rary memory used by the packet processing function.

• Global processing state: This state information encom-
passes global per-function state as well as system-wide
global state.

We use the term “context” to refer to the set of all these
data and state information that are specific to one particular
packet. In a typical implementation of packet processing sys-
tems, a processing functions that tries to access this context
needs to explicitly find the correct memory locations where
it is stored. Such a manual management of packet process-
ing context can lead to difficulties when programming packet
processing functions and can also consume considerable pro-
cessing resources. Instead, our packet processor design is
based on providing hardware context management.

3.2 Packet Processor Design
The most important aspect of our packet processor design

is the way access to packet context is handled by the system.
The key idea is shown in Figure 1. Figure 1(a) shows the
physical system, where multiple instances of context exist
in possibly multiple different physical memories. Using the
context mapping hardware, the system can“switch”between
different context based on the context identifier. The logi-
cal view of what is visible to the packet processor is shown
in Figure 1(b). All relevant data are directly accessible at
fixed memory offsets. Thus, performing packet processing
functions becomes very simple (as does code development).

The detailed design of the packet processor is shown in
Figure 2. Context management is achieved using an address
shifter. The address shifter component is responsible for
mapping the processor core’s address space to the memory
section that contains the appropriate data. We discuss this
functionality in the context of instruction memory, but it
also applies to data memory as shown in Figure 2.

In our example, we assume a 16-bit address space used
by the processor core. Note that this design can also be pa-
rameterized for other memory space sizes. We only present
one configuration for illustrative purposes. On the interface
between the packet processor and the instruction memory,
the least significant bits (the lower eight bits in the system
shown in Figure 2) are connected directly to the instruction
memory. Thus, the address translation operates in chunks
of 256 bytes. The eight most significant bits are sent into
an 8-bit address shifter component.

(a) Physical system for hardware context management.

(b) Logical view of packet processor.

Figure 1: Hardware context management present
relevant context to packet processing in simplified
address space.

\

program tag

b
3

b
2

b
1

b
0

a
3

a
2

a
1

a
0

4

SRAM

Figure 3: Address Shifter Design.

The design of a 4-bit address shifter is shown in Figure 3.
By sending the appropriate control signals from SRAM, the
address shifter has the ability of either (1) forward an ad-
dress bit (i.e., outputting bi on ai) or (2) overwrite an ad-
dress bit (i.e., outputting a stored value from SRAM on
ai). With these two options, the packet processor core’s
address space can be shifted to another range in the ad-
dress space and it can be limited in size (if less than 64kB

3

/

 Figure 2: Packet Processor Design.

are needed). For example, the processor uses a 10-bit ad-
dress space, which is stored in physical memory from 0x0400

to 0x07FF, address bits 0. . . 7 are connected directly to the
memory, address bits 8. . . 9 are forwarded by the address
shifter, address bits 10 is set to 1 by the address shifter,
and all higher address bits are set to 0. Note that if the
overall address space for programs needs to exceed 16 bits,
additional address lines can be controlled by the SRAM in
Figure 3 (without having a choice of forwarding processor
address lines since they do not exist beyond 16 bits). The
selection of signals sent to the multiplexers depends on the
program tag, which is part of the context identified.

Each packet also carries context that ensures that it is
processed correctly. This information consists of:

• Program tag: This tag identifies which packet pro-
cessing function is to be performed by which packet
processor.

• Flow tag: The flow tag identifies to which flow a packet
belongs. This tag is used to demultiplex to the correct
flow state information.

These tags need to be set correctly before initiating the pro-
cessing of a packet. If multiple packet processing functions
are to be performed on a packet, multiple program tags are
necessary. This setup of tags and corresponding contexts is
performed by the control system.

3.3 System Design
The system-level design of the packet processor system is

shown in Figure 4. Packets that arrive in the system are
classified and demultiplexed into the grid of packet proces-
sors. By utilizing the inherent inter-packet parallelism of
network traffic, flow classification and packet distribution
can be parallelized and scaled to the necessary throughput

Table 1: Memory configurations.
Instruction memory Packet Data
memory memory memory

Conf. 1 64K 16K 16K
Conf. 2 64K 16K 64K
Conf. 3 64K 16K 256K

performance. Using the program and flow tags, each proces-
sor in the grid can determine what packet processing func-
tion to perform on the packet and where to send the packet
next.

The control of this system is performed through the setup
of program and flow states on the processors. (Note a global
shared memory is not shown in Figure 4.) Using this setup
capability, the system can place processing tasks onto pro-
cessors and assign the paths taken by packets belonging to
particular flows. More about this management aspect is pre-
sented in Section 5.

4. DESIGN RESOURCE REQUIREMENTS
In this section, we evaluate the packet processor system

design that was described in Section 3 using the soft proces-
sor environment SPREE (Soft Processor Rapid Exploration
Environment). SPREE allows us to generate large soft-
processor designs and target commercial FPGA and ASIC
devices. A set of processors has already been generated and
verified by SPREE at the University of Toronto. Under the
assumption that our packet processor uses a similar, MIPS-
based core, we synthesize and simulate the pipelined archi-
tectures in order to estimate the size and the clock rate of
the system design.

Since SPREE processors are compatible with Altera hard-

4

.
.
.

.
.
.

Figure 4: Packet Processor System Design.

Table 2: Resource requirements on FPGA.
FPGA size Conf. 1 Conf. 2 Conf. 3
(ALUTs/Memory bits)

8-bit 549/2,361,344 556/2,754,560 690/4,327,424
16-bit 576/2,623,488 587/3,409,920 768/6,555,648
32-bit 619/3,147,776 655/4,720,640 900/11,012,096

ware, we use Altera Quartus II as our synthesis tool, and
Modelsim as the simulation tool. Several 32-bit processor
systems are available in SPREE - implemented with three,
five and seven pipeline stages. We design and synthesize 8
and 16 bit width processors as well, in order to obtain a fair
view of the size requirements of both smaller and larger sin-
gle processors. The target devices are Startix II FPGAs and
Hardcopy II ASICs. Although Stratix II hardware is used
in the SPREE flow as a single processor, SPREE also has
the potential to program multiple processors. Based on the
size that is required for one service processor we estimate
how many processors we can afford to have, so that our
system supports the desired amount of services and flows.
Moreover, we draw conclusions about the width size of the
processor that best suits our design.

Stratix devices offer up to 15Mbits of on-chip memory
while an average Stratix-II FPGA has around 100,000 adap-
tive LUTs. Hardcopy II Asic devices support approximately
9 Mbits of memory and up to 3,000,000 Hcells. Table 2
shows the size required on an FPGA device to build a ser-
vice processor of 8-16 or 32 bits for different memory config-
urations. We assume scenarios where we would need 64K of
instruction memory and 16-64 or 256K of data memory for a
single service processor. In Table 3, we show the respective
size requirements when we target an ASIC device.

The bottleneck of the processor architecture is not the
number of hcells that are needed to build the functional
units of the processor, but the instruction and data memory.
With Hardcopy IV series being in the 40-nm scale, current
ASICs already contain 2.8M to 15M usable gates and up to
20.3 Mbits of on-chip memory. These figures are going to

 1

 10

 100

 1000

 10000

 100000

 1e+006

 10 100 1000 10000 100000

S
ta

te
 p

e
r

F
lo

w
 (

b
it
s
)

Flows

Conf. 1
Conf. 2
Conf. 3

Figure 5: Available flow state per flow.

rise even more in the near future. Taking into account the
maximum size of commercial ASICs we calculate the number
of processors that can potentially fit in them. Assuming -
for simplicity - that we have one processing step per flow we
can estimate the state per flow that we need for our service
processor. Figure 5 depicts the state/flow for the different
number of flows that the system supports. We can see how
the state varies for several memory configurations.

It is also important to identify the speed at which we
can have the service processor running. During synthesis,
we enable the speed optimization option, so that the fitter
makes the highest effort even after meeting the timing re-

5

Table 3: Resource requirements on ASIC. The two largest designs could not be synthesized due to limitations
in the development tools.

ASIC size Conf. 1 Conf. 2 Conf. 3
(Hcells/Memory bits)
8-bit 16,858/2,361,344 16,954/2,754,560 17,491/4,327,424
16-bit 16,950/2,623,488 17,249/3,409,920 –/6555648
32-bit 17,071/3,147,776 18,124/4,720,640 –/11,012,096

Table 4: Maximum clock frequency.
Max clock rate 8-bit 16-bit 32-bit

Pipeline 3 139.28 MHz 137.84 MHz 128.32 MHz
Pipeline 5 141.66 MHz 138.62 MHz 134.93 MHz
Pipeline 7 178.16 MHz 174.67 MHz 163.24 MHz

quirements. Table 4 shows the maximum clock rate in which
the service processor can function. We observe that an 8-bit
processor with seven pipeline stages gives the fastest results.

Overall, these results show that our design can support a
large number of packet processors on ASICs as well as on
experimental FPGA platforms (e.g., NetFPGA [14]).

5. RUNTIME MANAGEMENT
The packet processing system above requires an effective

control system to set up hardware context and manage re-
sources during runtime. In environments where packets from
different flows require different types of processing, a static
allocation can not handle changes in traffic patterns (unless
over-provisioning is possible, which it is not in most sys-
tems). Therefore, a runtime system needs to perform the
following functions:

• Mapping of packet processing functions to processors.
This step require placement of context information in
each processor’s local memory.

• Monitoring and profiling of actual workload. During
runtime, the system needs to keep track of what re-
sources are being used based on current traffic load.

• Dynamic adaptation of resource allocation. As traf-
fic requirements change, the packet processor needs to
adapt the resource

Runtime systems have been designed for network proces-
sors [12, 22, 23]. We follow some of the ideas in [23] on how
to handle dynamic task mapping in our system. In partic-
ular, we focus on the mapping algorithm that places packet
processing functions on packet processors in our system. To
support runtime adaptation, this algorithm can simply be
periodically to update the system.

5.1 Task Mapping Algorithm
The task mapping algorithm designed for our system con-

sists to three steps:

1. Workload profiling: Flow statistics are collected from
packet I/O subsystem to derive task utilization and
edge utilization.

2. Task replication: Tasks that are processing intensive
and are used heavily are replicated across multiple pro-
cessors to increase the processing resources dedicated

to them. This step determines which tasks need to be
replicated.

3. Task and edge mapping: The final step places tasks
on processors while considering the limits on the band-
width of the interconnect.

We discuss each step in more detail.

5.1.1 Workload Profiling

The task mapping algorithm requires knowledge of the
workload of the system, i.e., how much traffic requires which
packet processing function(s). Therefore, it is important to
have some profiling information about the workload.

The flow of all packets is represented by a directed graph,
where packet processing functions are nodes and traffic tra-
verses edges. The characteristics of this graph are deter-
mined by the type of traffic that is sent via the router on
which the packet processing system is installed. To deter-
mine the processing requirements, we collect two metrics:
utilization and processing times. For utilization, we profile
the utilization u(ti) of each task ti and the utilization u(ei,j)
of each edge ei,j . These utilizations values indicate how fre-
quently a tasks is used and how much traffic is sent between
tasks. The processing time si of task ti captures the pro-
cessing complexity of the task. In practice, processing times
vary between packets and si represents an average value.
With this profiling information, we express the total system
processing demand, Psys as Psys =

∑
i
si × u(ti).

5.1.2 Task Replication

Task replication is a technique to balance the workload of
tasks in a network processing system [23]. The main idea is
to create multiple instances of tasks that require the largest
amount of work. Work, wi, of task ti is defined as the prod-
uct of utilization and processing time: wi = u(ti)× si. Note
that high work can be caused by high utilization (and pos-
sibly simple processing) or high processing complexity (and
possibly low utilization).

A task that requires high work, is split into multiple in-
stances (i.e., copies). Traffic is distributed evenly between
the copies. As a result, the effective utilization for each copy
decreases by a factor d if the tasks is duplicated d times.
Therefore, the work for each task instance is reduced.

Using a simply greedy algorithm that iteratively dupli-
cates the most work-intensive task achieves a very balanced
workload. Note that the duplication process terminates

6

when there are as many tasks as can be installed on the
system. In addition, note that a beneficial side effect of
duplication is the creation of many simple tasks, which is
important for our packet processing system, where a large
number of simple processors need to be utilized to achieve
high throughput.

5.1.3 Task and Edge Mapping

Given a graph of processing tasks (and their duplicates),
the mapping algorithm needs to place the tasks on N pro-
cessor cores with M hardware threads in each core. Since
tasks are nearly balanced in the amount of work that they
perform (due to task replication as explained above), there
are no bottleneck tasks that can hold up the flow of packets
through the system. Therefore, it is not necessary to solve
a packing problem, where work-intensive tasks need to be
co-located with simple tasks to avoid overloading of a pro-
cessor. Instead, the algorithm can simply place an equal
number of tasks on all processors and focus on reducing the
interconnect load.

Algorithm 1 shows how the mapping m is computed. This
algorithm requires all inter-processor connection capacities
Cx,y (from processor x to y) to be initialized before mapping
starts. For processors that are not directly connected, the
capacity is set to zero. Mapping starts with placing the
first task, which is assumed to be the ingress node of all
traffic, to an empty thread on the first processor. Then, the
mapnext function locates the edge with highest utilization
among all outgoing edges of the latest mapped task. If the
current processor that hosts the latest mapped task still has
an empty thread and the remaining capacity of connection
from the processor’s output to its input is enough to support
the edge utilization, the task that is pointed to by this edge
is mapped to current processor. Otherwise, the algorithm
tries to map it to the neighbors of current processor. If all
steps succeed, this process is repeated recursively to achieve
a depth-first mapping. The recursion terminates when a task
has no outgoing edge to unmapped tasks (e.g., egress task).
It is possible that at some point during mapping, the current
processor and all its neighbors fail to meet the requirement
of both empty thread and enough interconnection capacity.
This indicates the system processing demand Psys exceeds
system capacity. In this case, Psys needs to be adjusted (e.g.
dropping a flow at the system input interface) and mapping
needs to be repeated.

5.2 Evaluation
To show the effectiveness of the mapping algorithm, we

show several evaluation results. We use a simulation based
on PacketBench [16] using seven representative packet pro-
cessing functions including packet classification, IPv4 for-
warding (LC trie and radix tree), string matching, IPsec en-
cryption and decryption , and QoS for workload evaluation.
These packet processing functions are partitioned into a task
graph representation comprised of 25 tasks and 29 edges. We
evaluate the quality of mapping for different hardware con-
figurations (i.e., different number of processors and threads
per processor).

As our packet processing architecture focuses on computa-
tional capacity by deploying more processors, it is important
to understand the effect of increasing number of processors
on overall system workload. Figure 6 shows results of av-
erage processor utilization, which indicates the balance of

Algorithm 1 Resource Mapping Algorithm.

Require: Cx,y | x, y ∈ 1 . . . N is initialized
1: function map next(i,p)
2: while ∃ ei,j with tj unmapped do
3: k ← argmaxj(u(ei,j))
4: if tasks allocated to(p) ≤ M and Cp,p ≥ u(ei,j)

then
5: m(tk)← p

6: map next(k,p)
7: Cp,p ← Cp,p − u(ei,j)
8: else
9: if ∃ p’s neighbor q with Cp,q ≥ u(ei,j) and

tasks allocated to(q) ≤M then
10: m(tk)← q

11: map next(k,q)
12: Cp,q ← Cp,q − u(ei,j)
13: else
14: mapping failed
15: end if
16: end if
17: end while
18: return
19:
20: function map()
21: m(t1)← 1
22: map next(1,1)
23: return m

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 9 16 25 36 49 64 81

A
v
e

ra
g

e
 p

ro
c
e

s
s
o

r
u

ti
liz

a
ti
o

n

Number of processors

2 threads/processor
4 threads/processor
6 threads/processor
8 threads/processor

Figure 6: Processor utilization increases with num-
ber of processors indicating an effective use of sys-
tem resources.

workload among processors. In general, higher utilization
implies less idle time for processors, thus leads to higher
throughput as processors devote more time to packet pro-
cessing. It can be observed from Figure 6 that processors
get better utilization when more processors are present in
system. Due to more effective task duplication, the work-
load is spread more evenly across processors. In addition,
average utilization is typically better with more threads per
processor.

System performance is also determined by inter-processor
communication. With insufficient capacity on the intercon-
nect, the system encounters a bottleneck. Therefore we
explore the need for inter-processor communication in Fig-

7

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

4 9 16 25 36 49 64 81M
a

x
im

u
m

 i
n

te
rc

o
n

n
e

c
t

u
s
a

g
e

 r
e

la
ti
v
e

 t
o

 s
y
s
te

m
 t

h
ro

u
g

h
p

u
t

Number of processors

2 threads/processor
4 threads/processor
6 threads/processor
8 threads/processor

Figure 7: Inter-processor connection utilization.

ure 7. The figure shows the maximum interconnect usage
relative to system throughput. One important observation
form this figure is that connection utilization drops with in-
creasing number of processors. This effect is due to higher
levels of replication that lead to lower edge utilization. This
results indicates the scalability of proposed packet process-
ing platform. Even with a large number of processors, a
simple local interconnect for inter-processor communication
suffices.

6. SUMMARY AND CONCLUSION
Flexible packet processing is important in the current In-

ternet as well as in future generation networks. To counter
the difficulties of programming increasingly complex packet
processing platforms, we propose a packet processor design
that manages processing context in hardware. The result-
ing processor is easy to program and perform efficiently. Our
design space exploration shows that we can achieve scalable
systems with a large number of packet processors. The man-
agement of such a highly parallel system can be handled by
a runtime system that uses dynamic task mapping. Our
proposed mapping algorithm shows that processors can be
utilized effectively and low interconnect speed suffice for ef-
ficient operation.

We believe that this packet processing system present an
important step towards router deigns with data paths that
are simpler to program and operate than in current net-
works.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-0447873.

7. REFERENCES
[1] Anderson, T., Peterson, L., Shenker, S., and

Turner, J. Overcoming the Internet impasse through
virtualization. Computer 38, 4 (Apr. 2005), 34–41.

[2] Cisco Systems, Inc. The Cisco QuantumFlow
Processor: CiscoŠs Next Generation Network
Processor. San Jose, CA, Feb. 2008.

[3] Decasper, D., Dittia, Z., Parulkar, G., and

Plattner, B. Router Plugins - a modular and

extensible software framework for modern high
performance integrated services routers. In Proc. of
ACM SIGCOMM 98 (Vancouver, BC, Sept. 1998),
pp. 229–240.

[4] Eatherton, W. The push of network processing to
the top of the pyramid. In Keynote Presentation at
ACM/IEEE Symposium on Architectures for
Networking and Communication Systems (ANCS)
(Princeton, NJ, Oct. 2005).

[5] Feldmann, A. Internet clean-slate design: what and
why? SIGCOMM Computer Communication Review
37, 3 (July 2007), 59–64.

[6] Ganapathy, S., and Wolf, T. Design of a network
service architecture. In Proc. of Sixteenth IEEE
International Conference on Computer
Communications and Networks (ICCCN) (Honolulu,
HI, Aug. 2007), pp. 754–759.

[7] Goglin, S. D., Hooper, D., Kumar, A., and

Yavatkar, R. Advanced software framework, tools,
and languages for the IXP family. Intel Technology
Journal 7, 4 (Nov. 2003), 64–76.

[8] Grunewald, M., Le, D. K., Kastens, U.,

Niemann, J.-C., Porrmann, M., Ruckert, U.,

Slowik, A., and Thies, M. Network application
driven instruction set extensions for embedded
processing clusters. In Proc. of the International
Conference on Parallel Computing in Electrical
Engineering (PARELEC) (Dresden, Germany, Sept.
2004), pp. 209–214.

[9] Hutchinson, N. C., and Peterson, L. L. The
x-kernel: An architecture for implementing network
protocols. IEEE Transactions on Software Engineering
17, 1 (Jan. 1991), 64–76.

[10] Intel Corporation. Intel Second Generation
Network Processor, 2005. http://www.intel.com/
design/network/products/npfamily/.

[11] Kohler, E., Morris, R., Chen, B., Jannotti, J.,

and Kaashoek, M. F. The Click modular router.
ACM Transactions on Computer Systems 18, 3 (Aug.
2000), 263–297.

[12] Kokku, R., Riché, T., Kunze, A., Mudigonda, J.,

Jason, J., and Vin, H. A case for run-time
adaptation in packet processing systems. In Proc. of
the 2nd Workshop on Hot Topics in Networks
(HOTNETS-II) (Cambridge, MA, Nov. 2003).

[13] Kuhns, F., DeHart, J., Kantawala, A., Keller,

R., Lockwood, J., Pappu, P., Richard, D.,

Taylor, D. E., Parwatikar, J., Spitznagel, E.,

Turner, J., and Wong, K. Design of a high
performance dynamically extensible router. In Proc. of
DARPA Active Networks Conference and Exhibition
(San Francisco, CA, May 2002).

[14] Lockwood, J. W., McKeown, N., Watson, G.,

Gibb, G., Hartke, P., Naous, J., Raghuraman,

R., and Luo, J. NetFPGA–an open platform for
gigabit-rate network switching and routing. In MSE
’07: Proceedings of the 2007 IEEE International
Conference on Microelectronic Systems Education
(San Diego, CA, June 2007), pp. 160–161.

[15] Milliken, W. C., and Dietz, J. Execution unit for a
network processor. United States Patent 7,289,524,
Oct. 2007.

8

[16] Ramaswamy, R., and Wolf, T. PacketBench: A
tool for workload characterization of network
processing. In Proc. of IEEE 6th Annual Workshop on
Workload Characterization (WWC-6) (Austin, TX,
Oct. 2003), pp. 42–50.

[17] Shah, N., Plishker, W., Ravindran, K., and

Keutzer, K. NP-Click: A productive software
development approach for network processors. IEEE
Micro 24, 5 (Sept. 2004), 45–54.

[18] Spalink, T., Karlin, S., Peterson, L., and

Gottlieb, Y. Building a robust software-based router
using network processors. In Proc. of the 18th ACM
Symposium on Operating Systems Principles (SOSP)
(Banff, AB, Oct. 2001), pp. 216–229.

[19] Taylor, D. E., Turner, J. S., Lockwood, J. W.,

and Horta, E. L. Dynamic hardware plugins:
Exploiting reconfigurable hardware for
high-performance programmable routers. Computer
Networks 38, 3 (Feb. 2002), 295–310.

[20] Tennenhouse, D. L., and Wetherall, D. J.

Towards an active network architecture. ACM
SIGCOMM Computer Communication Review 26, 2
(Apr. 1996), 5–18.

[21] Wolf, T. Challenges and applications for
network-processor-based programmable routers. In
Proc. of IEEE Sarnoff Symposium (Princeton, NJ,
Mar. 2006).

[22] Wolf, T., Weng, N., and Tai, C.-H. Run-time
support for multi-core packet processing systems.
IEEE Network 21, 4 (July 2007), 29–37.

[23] Wu, Q., and Wolf, T. On runtime management in
multi-core packet processing systems. In Proc. of
ACM/IEEE Symposium on Architectures for
Networking and Communication Systems (ANCS)
(San Jose, CA, Nov. 2008).

[24] Wu, Q., and Wolf, T. Design of a network service
processing platform for data path customization. In
Proc. of The Second ACM SIGCOMM Workshop on
Programmable Routers for Extensible Services of
TOmorrow (PRESTO) (Barcelona, Spain, Aug. 2009).

9

