27 research outputs found

    An electronic pressure profile display system for aeronautic test facilities

    Get PDF
    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPT) unit which interfaces with a host computer. The host computer collects the pressure data from the DPT unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems

    Investigation of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting radial Growth on a Rotating Disk

    Get PDF
    The Aeronautical Sciences Project under NASA`s Fundamental Aeronautics Program is extremely interested in the development of novel measurement technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Center`s High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied high-contrast random speckle pattern and imaging the pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.0-im in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be .shifted`. The resulting particle displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential speckle patterns, for future use on the rotating disk, are developed and investigated in the controlled experiment. A range of known shifts are induced on the patterns; reference and data images are acquired before and after the induced shift, respectively, and the images are processed using the cross-correlation algorithms in order to determine the particle displacements. The effectiveness of each pattern at resolving the known shift is evaluated and discussed in order to choose the most suitable pattern to be implemented onto a rotating disk in the Rotordynamics Lab. Although testing on the rotating disk has not yet been performed, the driving principles behind the development of the present optical technique are based upon critical aspects of the future experiment, such as the amount of expected radial growth, disk analysis, and experimental design and are therefore addressed in the paper

    Crack-Detection Experiments on Simulated Turbine Engine Disks in NASA Glenn Research Center's Rotordynamics Laboratory

    Get PDF
    The development of new health-monitoring techniques requires the use of theoretical and experimental tools to allow new concepts to be demonstrated and validated prior to use on more complicated and expensive engine hardware. In order to meet this need, significant upgrades were made to NASA Glenn Research Center s Rotordynamics Laboratory and a series of tests were conducted on simulated turbine engine disks as a means of demonstrating potential crack-detection techniques. The Rotordynamics Laboratory consists of a high-precision spin rig that can rotate subscale engine disks at speeds up to 12,000 rpm. The crack-detection experiment involved introducing a notch on a subscale engine disk and measuring its vibration response using externally mounted blade-tip-clearance sensors as the disk was operated at speeds up to 12 000 rpm. Testing was accomplished on both a clean baseline disk and a disk with an artificial crack: a 50.8-mm- (2-in.-) long introduced notch. The disk s vibration responses were compared and evaluated against theoretical models to investigate how successful the technique was in detecting cracks. This paper presents the capabilities of the Rotordynamics Laboratory, the baseline theory and experimental setup for the crack-detection experiments, and the associated results from the latest test campaign

    Model Attitude and Deformation Measurements at the NASA Glenn Research Center

    Get PDF
    The NASA Glenn Research Center is currently participating in an American Institute of Aeronautics and Astronautics (AIAA) sponsored Model Attitude and Deformation Working Group. This working group is chartered to develop a best practices document dealing with the measurement of two primary areas of wind tunnel measurements, 1) model attitude including alpha, beta and roll angle, and 2) model deformation. Model attitude is a principle variable in making aerodynamic and force measurements in a wind tunnel. Model deformation affects measured forces, moments and other measured aerodynamic parameters. The working group comprises of membership from industry, academia, and the Department of Defense (DoD). Each member of the working group gave a presentation on the methods and techniques that they are using to make model attitude and deformation measurements. This presentation covers the NASA Glenn Research Center s approach in making model attitude and deformation measurements

    Evaluation of a Microwave Blade Tip Clearance Sensor for Propulsion Health Monitoring

    Get PDF
    The NASA Glenn Research Center has investigated a microwave blade tip clearance system for the structural health monitoring of gas turbine engines. This presentation describes the sensors and the experiments that have been conducted to evaluate their performance along with future plans for their use on an engine ground test

    Turbine Engine Disk Rotor Health Monitoring Assessment Using Spin Tests Data

    Get PDF
    Detecting rotating engine component malfunctions and structural anomalies is increasingly becoming a crucial key feature that will help boost safety and lower maintenance cost. However, achievement of such technology, which can be referred to as a health monitoring remains somewhat challenging to implement. This is mostly due to presence of scattered loading conditions, crack sizes, component geometry and material properties that hinders the simplicity of imposing such application. Different approaches are being considered to assist in developing other means of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic events occur. These methods extend further to assess material discontinuities and other defects that have matured to the level where a failure is very likely. This paper is focused on presenting data obtained from spin test experiments of a turbine engine like rotor disk and their correlation to the development of a structural health monitoring and fault detection system. The data collected includes blade tip clearance, blade tip timing measurements and shaft displacements. The experimental results are collected at rotational speeds up to 10,000 Rpm and tests are conducted at the NASA Glenn Research Center s Rotordynamics Laboratory via a high precision spin system. Additionally, this study offers a closer glance at a selective online evaluation of a rotating disk using advanced capacitive, microwave and eddy current sensor technology

    Progress of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    Get PDF
    The Aeronautical Sciences Project under NASA's Fundamental Aeronautics Program is interested in the development of novel measurement technologies, such as optical surface measurements for the in situ health monitoring of critical constituents of the internal flow path. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. The present study, aims to further validate and develop an optical strain measurement technique to measure the radial growth and strain field of an already cracked disk, mimicking the geometry of a sub-scale turbine engine disk, under loaded conditions in the NASA Glenn Research Center's High Precision Rotordynamics Laboratory. The technique offers potential fault detection by imaging an applied high-contrast random speckle pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds (loaded conditions) induces an external load, resulting in a radial growth of the disk of approximately 50.0-m in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be 'shifted'. The resulting particle displacements between the two images is measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. A random particle distribution is adhered onto the surface of the cracked disk and two bench top experiments are carried out to evaluate the technique's ability to measure the induced particle displacements. The disk is shifted manually using a translation stage equipped with a fine micrometer and a hotplate is used to induce thermal growth of the disk, causing the particles to become shifted. For both experiments, reference and test images are acquired before and after the induced shifts, respectively, and then processed using PIV software. The controlled manual translation of the disk resulted in detection of the particle displacements accurate to ~1.75% of full scale and the thermal expansion experiment resulted in successful detection of the disk's thermal growth as compared to the calculated thermal expansion results. After validation of the technique through the induced shift experiments, the technique is implemented in the Rotordynamics Lab for preliminary assessment in a simulated engine environment. The discussion of the findings and plans for future work to improve upon the results are addressed in the paper

    Improving Data Collection and Analysis Interface for the Data Acquisition Software of the Spin Laboratory at NASA Glenn Research Center

    Get PDF
    In jet engines, turbines spin at high rotational speeds. The forces generated from these high speeds make the rotating components of the turbines susceptible to developing cracks that can lead to major engine failures. The current inspection technologies only allow periodic examinations to check for cracks and other anomalies due to the requirements involved, which often necessitate entire engine disassembly. Also, many of these technologies cannot detect cracks that are below the surface or closed when the crack is at rest. Therefore, to overcome these limitations, efforts at NASA Glenn Research Center are underway to develop techniques and algorithms to detect cracks in rotating engine components. As a part of these activities, a high-precision spin laboratory is being utilized to expand and conduct highly specialized tests to develop methodologies that can assist in detecting predetermined cracks in a rotating turbine engine rotor. This paper discusses the various features involved in the ongoing testing at the spin laboratory and elaborates on its functionality and on the supporting data system tools needed to enable successfully running optimal tests and collecting accurate results. The data acquisition system and the associated software were updated and customized to adapt to the changes implemented on the test rig system and to accommodate the data produced by various sensor technologies. Discussion and presentation of these updates and the new attributes implemented are herein reporte

    Advanced Optical Instrumentation for the NASA Glenn Research Center's Aeronautical Test Facilities

    Get PDF
    The development of optical non-intrusive measurement techniques that can make global surface measurements in aero flow fields with increased temporal and spatial resolution is of major interest to the aeronautical research community. The ability to globally measure quantities such as velocity, temperature, density and pressure can provide better insight into the complex flow characteristics associated with the aero vehicle and aero propulsion concepts being investigated by NASA. In addition, these measurements are needed to validate Computational Fluid Dynamic (CFD) codes that are being developed to model aero phenomena and predict system performance. This presentation will give an overview of the advanced optical techniques that are being developed at the NASA Glenn Research Center (GRC) for the measurement of flow field and surface parameters in the GRC aeronautical test facilities

    Microwave Sensor for Blade Tip Clearance and Structural Health Measurements

    Get PDF
    The use of microwave based sensors for the health monitoring of rotating machinery is being explored at the NASA Glenn Research Center. The microwave sensor works on the principle of sending a continuous signal towards a rotating component and measuring the reflected signal. The phase shift of the reflected signal is proportional to the distance between the sensor and the component that is being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in the rotating machinery. It is intended to use these probes in the hot sections of turbine engines for closed loop turbine clearance control and structural health measurements. Background on the sensors, an overview of their calibration and preliminary results from using them to make blade tip clearance and health measurements on a large axial vane fan will be presented
    corecore