321 research outputs found

    A slow and dark atomic beam

    Full text link
    We demonstrate a method to produce a very slow atomic beam from a vapour cell magneto-optical trap. Atoms are extracted from the trap using the radiation pressure imbalance caused by a push beam. An additional transfer beam placed near the center of the trap transfers the atomic beam into an off-resonant state. The velocity of the atomic beam has been varied by changing the intensity of the push beam or the position of the transfer beam. The method can be used to generate a continuous, magnetically guided atomic beam in a dark state.Comment: 14 page

    Vortex lattices in a stirred Bose-Einstein condensate

    Full text link
    We stir with a focused laser beam a Bose-Einstein condensate of 87^{87}Rb atoms confined in a magnetic trap. We observe the formation of a single vortex for a stirring frequency exceeding a critical value. At larger rotation frequencies we produce states of the condensate for which up to eleven vortices are simultaneously present. We present measurements of the decay of a vortex array once the stirring laser beam is removed

    Computing and Representing Sea Ice Trends: Toward a Community Consensus

    Get PDF
    Estimates of the recent decline in Arctic Ocean summer sea ice extent can vary due to differences in sea ice data sources, in the number of years used to compute the trend, and in the start and end years used in the trend computation. Compounding such differences, estimates of the relative decline in sea ice cover (given in percent change per decade) can further vary due to the choice of reference value (the initial point of the trend line, a climatological baseline, etc.). Further adding to the confusion, very often when relative trends are reported in research papers, the reference values used are not specified or made clear. This can lead to confusion when trend studies are cited in the press and public reports

    An absolutely calibrated survey of polarized emission from the northern sky at 1.4 GHz

    Full text link
    A new polarization survey of the northern sky at 1.41 GHz is presented. The observations were carried out using the 25.6m telescope at the Dominion Radio Astrophysical Observatory in Canada, with an angular resolution of 36 arcmin. The data are corrected for ground radiation to obtain Stokes U and Q maps on a well-established intensity scale tied to absolute determinations of zero levels, containing emission structures of large angular extent, with an rms noise of 12 mK. Survey observations were carried out by drift scanning the sky between -29 degr and +90 degr declination. The fully sampled drift scans, observed in steps of 0.25 degr to 2.5 degr in declination, result in a northern sky coverage of 41.7% of full Nyquist sampling. The survey surpasses by a factor of 200 the coverage, and by a factor of 5 the sensitivity, of the Leiden/Dwingeloo polarization survey (Spoelstra 1972) that was until now the most complete large-scale survey. The temperature scale is tied to the Effelsberg scale. Absolute zero-temperature levels are taken from the Leiden/Dwingeloo survey after rescaling those data by the factor of 0.94. The paper describes the observations, data processing, and calibration steps. The data are publicly available at http://www.mpifr-bonn.mpg.de/div/konti/26msurvey or http://www.drao.nrc.ca/26msurvey.Comment: 18 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Current-Carrying Ground States in Mesoscopic and Macroscopic Systems

    Full text link
    We extend a theorem of Bloch, which concerns the net orbital current carried by an interacting electron system in equilibrium, to include mesoscopic effects. We obtain a rigorous upper bound to the allowed ground-state current in a ring or disc, for an interacting electron system in the presence of static but otherwise arbitrary electric and magnetic fields. We also investigate the effects of spin-orbit and current-current interactions on the upper bound. Current-current interactions, caused by the magnetic field produced at a point r by a moving electron at r, are found to reduce the upper bound by an amount that is determined by the self-inductance of the system. A solvable model of an electron system that includes current-current interactions is shown to realize our upper bound, and the upper bound is compared with measurements of the persistent current in a single ring.Comment: 7 pager, Revtex, 1 figure available from [email protected]

    Thermal expansion, heat capacity and magnetostriction of RAl3_3 (R = Tm, Yb, Lu) single crystals

    Full text link
    We present thermal expansion and longitudinal magnetostriction data for cubic RAl3 (R = Tm, Yb, Lu) single crystals. The thermal expansion coefficient for YbAl3 is consistent with an intermediate valence of the Yb ion, whereas the data for TmAl3 show crystal electric field contributions and have strong magnetic field dependencies. de Haas-van Alphen-like oscillations were observed in the magnetostriction data of YbAl3 and LuAl3, several new extreme orbits were measured and their effective masses were estimated. Zero and 140 kOe specific heat data taken on both LuAl3 and TmAl3 for T < 200 K allow for the determination of a CEF splitting scheme for TmAl3

    Possibility of long-range order in clean mesoscopic cylinders

    Full text link
    A microscopic Hamiltonian of the magnetostatic interaction is discussed. This long-range interaction can play an important role in mesoscopic systems leading to an ordered ground state. The self-consistent mean field approximation of the magnetostatic interaction is performed to give an effective Hamiltonian from which the spontaneous, self-sustaining currents can be obtained. To go beyond the mean field approximation the mean square fluctuation of the total momentum is calculated and its influence on self-sustaining currents in mesoscopic cylinders with quasi-1D and quasi-2D conduction is considered. Then, by the use of the microscopic Hamiltonian of the magnetostatic interaction for a set of stacked rings, the problem of long-range order is discussed. The temperature TT^{*} below which the system is in an ordered state is determined.Comment: 14 pages, REVTeX, 5 figures, in print in Phys. Rev.

    Release characteristics of selected carbon nanotube polymer composites

    Get PDF
    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer matrix degrades or is mechanically stressed. Here, we review characteristics related to release potential of five sets of polymer systems: epoxy, polyamide, polyurethane, polyethylene, and polycarbonate. Our review includes consideration of general characteristics and use of the polymer (as related to potential MWCNT release) and its MWCNT composites; general potential for nanomaterial release (particularly MWCNTs) due to degradation and mechanical stresses during use; and potential effects of stabilizers and plasticizers on polymer degradation. We examine UV degradation, temperature extremes, acid-base catalysis, and stresses such as sanding. Based on a high-level summary of the characteristics considered, the potential for release of MWCNT with typical, intended consumer use is expected to be low. © 2013 Elsevier Ltd. All rights reserved

    Valence Fluctuations Revealed by Magnetic Field Scan: Comparison with Experiments in YbXCu_4 (X=In, Ag, Cd) and CeYIn_5 (Y=Ir, Rh)

    Full text link
    The mechanism of how critical end points of the first-order valence transitions (FOVT) are controlled by a magnetic field is discussed. We demonstrate that the critical temperature is suppressed to be a quantum critical point (QCP) by a magnetic field. This results explain the field dependence of the isostructural FOVT observed in Ce metal and YbInCu_4. Magnetic field scan can lead to reenter in a critical valence fluctuation region. Even in the intermediate-valence materials, the QCP is induced by applying a magnetic field, at which the magnetic susceptibility also diverges. The driving force of the field-induced QCP is shown to be a cooperative phenomenon of the Zeeman effect and the Kondo effect, which creates a distinct energy scale from the Kondo temperature. The key concept is that the closeness to the QCP of the FOVT is capital in understanding Ce- and Yb-based heavy fermions. It explains the peculiar magnetic and transport responses in CeYIn_5 (Y=Ir, Rh) and metamagnetic transition in YbXCu_4 for X=In as well as the sharp contrast between X=Ag and Cd.Comment: 14 pages, 9 figures, OPEN SELECT in J. Phys. Soc. Jp

    Investigation of β-carotene–gelatin composite particles with a multiwavelength UV/vis detector for the analytical ultracentrifuge

    Get PDF
    A multiwavelength UV/vis detector for the analytical ultracentrifuge (MWL-AUC) has been developed recently. In this work, β-carotene–gelatin composite particles are investigated with MWL-AUC. Band centrifugation with a Vinograd cell is used to ensure maximum sample separation. Spectral changes of the system are observed in dependence of the sedimentation coefficient and are attributed to a previously unknown inhomogeneity of the β-carotene chemical composition with both H- and J-aggregates coexisting in a mixture. In addition, our data suggest that pure H- and J-aggregates exist in a particle while their relative concentrations in a mixture determine the color characteristics of the sample. The unique abilities and properties of MWL-AUC include sedimentation coefficient distributions for all possible wavelengths, full UV/vis spectra of each different species in the mixture and 3D movies of the sedimentation process. These properties significantly extend the scope of the analytical ultracentrifuge technique and show that complex biopolymer multicomponent mixtures can be resolved into their individual species
    corecore