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Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to

improve strength, conductivity, and other attributes. A developing concern is the potential

for carbon nanotube polymer nanocomposites to release nanoparticles into the environ-

ment as the polymer matrix degrades or is mechanically stressed. Here, we review charac-

teristics related to release potential of five sets of polymer systems: epoxy, polyamide,

polyurethane, polyethylene, and polycarbonate. Our review includes consideration of gen-

eral characteristics and use of the polymer (as related to potential MWCNT release) and its

MWCNT composites; general potential for nanomaterial release (particularly MWCNTs)

due to degradation and mechanical stresses during use; and potential effects of stabilizers

and plasticizers on polymer degradation. We examine UV degradation, temperature

extremes, acid–base catalysis, and stresses such as sanding. Based on a high-level sum-

mary of the characteristics considered, the potential for release of MWCNT with typical,

intended consumer use is expected to be low.
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1. Introduction

Multi-walled carbon nanotubes (MWCNTs) possess unique

physicochemical characteristics that in recent years allowed

them to be projected into industries as a valuable component

of polymer systems. With the addition of MWCNTs into poly-

mer matrices, manufacturers can manipulate a material’s con-

ductivity, strength, flexibility/flowability, thermal stability/

flame retardancy, static properties, weight, and need for other

fillers. Despite continued exploration of this technology, there

is a lack of widely-accepted methods for assessing the release

of MWCNTs from polymer systems. Examining the release po-

tential of MWCNTs is an important aspect of evaluating expo-

sure potential as part of any environment, health, and safety

risk assessment.

To assess the most useful methods for measuring the release

of MWCNTs from polymer systems, it is essential for the materi-

als to be commercially relevant and representative of a range of

characteristics. Based on these criteria and others, the following

set of polymer systems was chosen for initial focus [1]:

• Epoxy

• Polyamide (PA)

• Polyurethane (PU)

• Polyethylene (PE)

• Polycarbonate (PC)

An analysis was completed of existing knowledge of mate-

rial characteristics that may affect release of MWCNTs from

the chosen polymer systems. For each, the analysis included

consideration of the following:

• General characteristics and use of the polymer (as relevant

to potential MWCNT release).

• Use of carbon nanotubes (CNTs), particularly MWCNTs, in

the polymer (purpose and applications).

• General potential for nanomaterial release (particularly

MWCNTs) based on polymer properties and use

applications.

• MWCNT traits that may affect release from the polymer

system (i.e., type, alignment, dispersion, typical load, etc.).

• Potential effects of stabilizers and plasticizers on polymer

degradation, if applicable.

Potential scenarios for release of MWCNTs from the poly-

mer composite matrix have been recently considered by Now-

ack et al. [2]. Clearly the release potential depends on the

handling, use, and environment at each of the stages of the

life cycle. A few examples are discussed for the chosen poly-

mer systems in the conclusions.

To address the scope of this review, significant consider-

ations were given to specific end-products and applications,

especially where direct consumer contact to released CNTs is

probable during normal product use. For example, detailing

uses of CNTs in automotive, electronics, and sporting goods

applications was discussed due to market sizes and consumer

bases. Applications in textiles and tires were also considered

due to the potential for consumer contact with released CNTs.

For example, CNTs have recently been incorporated into
‘‘smart textiles’’ to add strain-sensing properties (see Polyure-

thane section as well as Zhang et al. [3]) or to improve flame

retardancy, with the latter leading to an evaluation of the life

cycle impacts of flame-retardant CNT textiles [4]. In the major-

ity of cases, insufficient market and product performance data

could be identified to substantiate an assessment of such spe-

cific uses. Ultimately, it was decided to focus on higher-level

polymer and polymer-CNT properties, aiming for conclusions

that would be broadly applicable to diverse products and

extrapolated to other polymer matrices. Similar decisions were

made about perspectives of different user groups of polymer–

CNT composites. It was generally acknowledged that profes-

sional users such as those at formulation, master-batch, and

assembly facilities, as well as military and defense personnel,

could encounter CNT release products in their work. This re-

view, however, will focus on general consumers of articles con-

taining polymer–CNT composites since they represent a

broader group and may not have the benefits of safety infra-

structure and training that professional users have.

Conclusions and recommendations were based on the

analysis and are summarized in Section 7. Data gaps were

identified, which is not surprising considering that interest

in CNT–polymer nanocomposites is relatively new. Further

testing is needed to assess release potential for MWCNTs of

each polymer system accurately, and measurement methods

must be established and standardized. Therefore, recommen-

dations in this report are not intended as a definitive indica-

tion of polymer systems that will have high/low release. For

purposes of establishing release measurements, a ‘‘release

potential’’ evaluation using existing data and expert opinion

is sufficient.
1.1. General overview of CNTs in polymer matrices

CNTs exhibit exceptional mechanical, thermal, optical, and

electrical properties. Combined with their low density and

high aspect ratios, CNTs are ideal fillers for fabricating light-

weight polymer composite materials with improved mechan-

ical performance, electrical conductivity, and multifunctional

properties. Properties of CNTs and their potential uses in di-

verse applications have been well documented in the aca-

demic literature [5,6] and will not be discussed in detail.

Global production of CNTs has already surpassed the kilo-

ton level and is expected to more than double in the next

4 years as existing manufacturers increase production and

new manufacturers emerge. This investment in CNT produc-

tion is driven by rapidly increasing demands in numerous

applications. Many current and near-term applications of

CNTs involve their integration into polymer matrices to im-

prove electrical, mechanical, and thermal properties. A sum-

mary of the use of CNT by major industry sector is presented

in Fig. 1. The largest industry consumers of CNTs are the elec-

tronics, data storage, defense, aerospace, and energy sectors,

which are early adopters of new materials and technologies.

CNTs are also increasing penetration into diverse consumer

goods markets such as sporting goods, packaging, and tex-

tiles. With continued advancements in cost reduction and

production scale the number and diversity of products and

technologies containing CNTs will continue to rise and the



Fig. 1 – Global CNT demand by application. Percentage data are adapted from a market report by Nanoposts.com [7]. (A color

version of this figure can be viewed online.)

36 C A R B O N 6 8 ( 2 0 1 4 ) 3 3 – 5 7
CNT industry could compete with the carbon fiber industry

and become a major additive for polymer-composite fabrica-

tion. Although the products and applications that can benefit

from CNTs are nearly limitless, leveraging of their most

straightforward properties, electrical conductivity and

mechanical strength, has been most exploited in early com-

mercial applications. Examples of commercial products con-

taining CNT–polymer composites are listed in Table 1.

Many more applications are nearing commercial readi-

ness, including structural aerospace composites, flame retar-

dant composites, gas sensors, spun CNT fiber textiles,

semiconductor interconnects, nano-electromechanical sys-

tems (NEMS), transparent electrodes, super-capacitors, pho-

tovoltaic devices, thermal management systems, sorbents,

skincare products, and anti-microbial packaging.

There are currently limited market data available that quan-

tify commercial use of CNTs in specific polymer types. Informa-

tion on Internet sites of companies advertising CNT products, as

well as anecdotal information from such companies, suggests

that CNTs already have commercial uses in a variety of polymer

matrices. There is evidence to suggest that a few types of poly-

mer–CNT nanocomposites are being produced at larger volumes

or with broader scopes of end-product use. In this subset, we

identifiedCNTnanocompositesof epoxyresins, polycarbonates,

polyamides, polyurethanes, and polyethylenes as having signif-

icant commercial use or potential use in consumer products,

and these are the focus of this review.
Table 1 – Current commercial applications of CNT–polymer com

Industry sector CNT–poly

Automotive Fuel system components, electrostatically
Aerospace Adhesives, electrostatic discharge and ele
Defense Anti-fouling coatings on naval vessels, co

jet fighters, armor materials
Electronics Antistatic packaging, scanning probe mic
Energy Lithium-ion battery electrodes, transpare
Sporting goods Baseball bats, skis, golf clubs, hockey stic
The current and future commercial use of CNT has re-

sulted in substantial academic interest in CNT–polymer

composites, with extremely rapid progress in recent years.

There are a number of literature reviews on the conductive

and mechanical properties of CNT–polymer composites [8–

20]. CNTs have also been investigated as additives in poly-

mers such as epoxies, polycarbonates, polyurethanes, poly-

ethylenes, polyamides, polyamides, polystyrene, and many

others. Methods of incorporating the CNT vary greatly, as

do observed impacts of the CNT on properties of polymers,

from reduced performance to significantly increased

mechanical properties and electrical conductivity. The

main challenge has been achieving uniform dispersion of

the CNT within the polymer matrix because improved dis-

persion leads to improved mechanical, electrical, and opti-

cal properties of composites. Optimizing interfacial

adhesion between the CNT and polymer matrix has also

been determined as an essential factor in extracting posi-

tive benefit from CNT additives. Functionalizing the CNT

with specific chemistries optimized for a given polymer

matrix is often necessary to achieve good CNT dispersion

and improved polymer properties. In general, optimizing

CNT chemistry and processing parameters to maximize

dispersion and interfacial bonding in the polymer matrix

can yield nanocomposites showing substantial improve-

ments in strength, toughness, and modulus as well as

electrical conductivity.
posites.

mer composite applications

painted parts, lightweight structural components
ctromagnetic interference shielding
nductive coatings for jet fighters, structural components for

roscopy tips, conductive inks
nt conductive films
ks, tennis racquets, bicycle frames and components
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1.2. Additional considerations influencing CNT release

The potential for CNT release from consumer products de-

pends on many factors, including the physical and chemical

properties of the polymer, the type of product, and how and

in what environment is it used. Another consideration is

the nature of the CNTs themselves. CNTs are not a single spe-

cies; rather, they are a family of related materials with similar

structures.

Although this report will focus exclusively on MWCNTs in

polymers used for consumer applications, there remain many

variables that characterize MWCNTs. They can be produced

by processes that involve different precursor materials, cata-

lysts, synthesis reactor technologies and conditions, and

post-processing steps. The specific distributions of the struc-

ture and properties of a MWCNT product are also strongly

dependent on the process and conditions under which they

are produced. Properties that can vary between MWCNT sup-

pliers include:

• Composition: catalyst metal and impurity carbon residue,

residues from post-processing.

• Physical properties: length, average diameter, diameter dis-

tribution, number of walls, end cap configuration, degree

of agglomeration, wall crystallinity and defect density, sur-

face charge, orientation.

• Chemical properties: surface functionalization, solubility.

These properties also influence their incorporation into a

polymer composite and the level of interaction with the poly-

mer matrix, and can impact the release of CNTs from the

polymer system. Information on the release of CNT from

polymer systems is very limited and that which is available

has assessed only a small number of CNT source materials

under a few select release scenarios. The role of surface func-

tionalization in CNT release is of particular interest since, in

practice, the chemistry of the CNT is often adapted to be com-

patible with the polymer matrix being used and chemical

bonding between the CNT and polymer will certainly influ-

ence the potential for CNT to be released from the matrix.

Unfortunately, only a very small number of studies have

examined the role of functionalized CNT in release scenarios,

or presented data from which the role of functionalization

might be inferred. To maintain a focused scope we have high-

lighted the studies that inform on the subject of CNT release

in the sections below; for a more general overview of the sub-

ject of surface functionalization one may refer to recent re-

view articles on this subject [21]. It is challenging to attempt

to generalize these data, and those pertaining to other CNT

properties, and make assessments and recommendations

that are relevant to all CNT materials.

Most polymers used in commerce are formulations of the

polymer plus additives to modify physical and chemical prop-

erties. Examples of physicochemical modifications include

toughening, making compatible, promoting adhesion,

increasing flexibility, and reducing friction. Additives used

to achieve such modifications include plasticizers, stabilizers,

surfactants, and polymerization modifiers. Wherever possi-

ble, assessment of the impact of CNT on polymer properties
and the potential for their release has accounted for such

additives in commercial formulations to be as representative

as possible of real materials in commerce. The assessments

provided here represent a combination of the current state

of knowledge in the field, including published literature, and

expert opinion from numerous stakeholder groups.

2. Epoxy

2.1. Description of the polymer

Epoxy resins deliver outstanding adhesion, corrosion and

chemical resistance, and toughness. They are found in a

range of markets including construction, transportation, elec-

tronics, packaging, and industry, where they are used as pro-

tective coatings, as adhesives, in fiber-reinforced forms, and

as structural materials. Global production of epoxy resins in

2009 was about 1,800,000 MT; the largest markets are in coat-

ings and electronics, which account for nearly 80% of all

epoxy resin use. Composites represent a minor use of epoxy

resins (<4% globally, but 11% of US consumption). High perfor-

mance markets for composites include applications such as

automotive leaf springs and fiberglass pipe. Composites are

also used in the aircraft/aerospace industry and have a grow-

ing presence in the wind turbine blade market. Epoxy resins

are among the most frequently used in advanced composites

where they are combined with glass fibers or carbon fibers to

deliver excellent lifetimes. Most epoxy resins are based on the

diglycidyl ether of bisphenol a (DGEBPA), which accounts for

80–85% of worldwide consumption [22].

2.2. Uses in conjunction with CNTs

Epoxy resin consumption in the aircraft/aerospace sector in-

creased from 2006 to 2009. In these various applications, CNTs

are being explored as the next generation of advanced com-

posites – either as replacement of carbon fiber or in combina-

tion with carbon fiber. The main incentive to move from

carbon fiber to carbon nanotubes is the potential weight sav-

ings that is available [23]. Epoxy composites are particularly

valuable to the aircraft and aerospace industries because of

their high strength-to-weight ratio and high-temperature

resistance. One example is their use in Lockheed’s F-35,

where carbon nanotube-reinforced epoxy will be used in

wingtip fairings. Tomahawk� missiles and various military

aircraft are using more composites. Military aircraft contain-

ing epoxy resin composites include the V-22 Osprey Tilt-Rotor

aircraft, a vertical-takeoff and -landing aircraft. Carbon/epoxy

composites account for 60–70% of its total weight [22]. Boe-

ing’s new passenger model, the 787, incorporates more car-

bon fiber composites than any previous model—an

estimated three times more than in the 777. The Boeing 787

is made up of �50% carbon composites, including the wings

and fuselage. Airbus’s rival plane is the A350-XWB, which

has a full composite fuselage and more than 39% composites

content, which is roughly comparable to Boeing’s 787. Ad-

vanced epoxy composites can contain 60–70% by weight

high-performance glass, aramid, carbon or boron fibers that

are continuous and oriented to maximize performance.
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Representative end uses for epoxy-glass composites include

fuselage sections, wing skins, and fairings in certain military

aircraft including the B-2 stealth bomber as well as numerous

components for the Boeing 757 and 767 jetliners and cargo

bay doors for the space shuttle. Epoxy–carbon and epoxy–ara-

mid composites are employed as the rocket motorcase for

many solid-fuel missiles and in structural uses for satellites.

Other uses for epoxy resin composites are in wind energy,

electronic packaging, sporting goods, and adhesives. Epoxy

resin composites are used in wind turbine blades; the major-

ity of wind blade manufacturers use epoxy resin systems and

either prepegs, vacuum-assisted resin transfer molding

(VARTM), or a combination of both. Carbon nanotubes also

have potential to act as electrically conductive fillers in poly-

mers used in electronic packaging where they are fillers in

electrically conductive epoxy adhesives. The aim is to im-

prove performance of conductive adhesives compared to

common products [24]. Epoxy–CNT composites also are used

in golf clubs, badminton racquets (Applied Nanotech, per-

sonal communication, 2012; [25]), and bicycle frames.

2.3. Degradation and potential for release

2.3.1. UV degradation
Photodegradation of MWCNT/epoxy composite was investi-

gated by exposure to artificial UV radiation at 50 �C and 75%

relative humidity (RH) [26]. Analysis of chemical degradation,

mass loss, and surface morphology showed the surfaces of

both neat and CNT-enhanced epoxy undergo rapid photodeg-

radation, with the rate for the MWCNT/epoxy being lower

than the neat epoxy. Degradation of the matrix resulted in a

gradual increase in concentration and aggregation of CNT
Fig. 2 – Field emission scanning electron microscopy (FE

SEM) images of 0.72% MWCNT/epoxy composite exposed to

UV/50 �C/75% RH, showing increasing amounts of CNTs on

the composite surface with exposure time. Reproduced from

Nguyen et al. [26].
on the surface (Fig. 2). This apparent accumulation is most

likely attributable to receding of the polymer matrix, while

more resistant MWCNTs remained and became exposed on

the surface. This effect has also been observed with

MWCNT/polyurethane composites [27].

2.3.2. Leaching
No literature reports were found in which leaching of CNTs

from epoxy composites was studied, although there were

studies of aging and degradation of fiber or glass reinforced

epoxy resins. These studies provided information on the com-

plex kinetics and diverse pathways involved in degradation of

these composites. Degradation of glass fiber-reinforced epoxy

resins was conducted to provide data on the long-term dura-

bility and service-life of these materials [27]. Some mecha-

nisms relate to epoxy resins, but much of the chemistry

was related to the glass fibers. Given the impact that the rein-

forcing material has on mechanisms of degradation, it may be

difficult to use studies conducted with non-CNT composites

to predict what will happen with CNT composites. In general,

most leaching studies with epoxy materials focused on the

potential release of monomers or other small molecules.

2.3.3. Temperature extremes
The cure kinetics and processing behaviors of epoxy resins

can be influenced by nanoparticle additives [28]. Addition of

unmodified MWCNTs has a negative effect on thermal stabil-

ity due to the poor affinity of neat MWCNT and the epoxy ma-

trix which increases voids in the nanocomposite. Conversely,

use of amine-modified MWCNTs led to improved thermal sta-

bility and promoted flame retardancy of the epoxy; this sug-

gests a better affinity for the polymer matrix. The

stabilization effect of MWCNT may be explained by a barrier

effect of the CNTwhich hinders diffusion of polymer degrada-

tion products into the gas phase. An increased interfacial

interaction between MWCNT and the epoxy leads to in-

creased degradation activation energy. Presence of carboxyl-

ated CNTs further stabilizes polycondensation polymers

which restrict thermal motion of the macromolecules, result-

ing in increased thermal stability, with 2–5 wt% generally

leading to the highest thermal stabilization. At higher nano-

particle content, aggregation causes deterioration of thermal

stability because a microcomposite rather than a nanocom-

posite is formed, lessening the shielding effect of the nano-

particles. The general trend of increased thermal stability of

epoxy–CNT nanocomposites suggests very limited potential

for release of MWCNT with typical consumer use due to ele-

vated temperatures.

2.3.4. Chemical resistance (including acids/bases)
Epoxy resins are generally highly resistant to solvents, acids,

and bases. Given the wide variation in the resins, curing

agents, and curing conditions, there is also variability in sus-

ceptibility of these resins to various conditions including

exposure to acids or bases. Studies of the acid or base treat-

ment of CNT epoxy composites have not been published.

Exposure to high concentrations of mineral acids such as sul-

furic or hydrochloric can have a significant effect on the

epoxy resin. Base treatments have little effect on the resins.

Exposure to weak, organic acids such as acetic acid had a
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larger effect than mineral acids, with around 14% weight loss

taking place over 120 days of exposure to acetic acid. In other

cases, total decomposition of the resin after 28 days of expo-

sure to acetic acid was observed. The extent of MWCNT re-

lease would likely be proportional to the degree of resin

decomposition, with more susceptible resins having a greater

propensity to release CNT.

2.3.5. Mechanical stresses (abrasion, deformation)
Functionalization of the CNT surface can enhance linkage

with the epoxy to enable a stress transfer between the poly-

mer and the CNT. Addition of carboxylic acid groups to the

surface enabled better dispersion, but the stress transfer from

the matrix to the tube is low and pull-outs were observed [29].

Further derivatization introduced amino functional groups

which led to covalent bonds with the epoxy resin. TEM micro-

graphs showed enhanced interfacial interaction in that the

CNTs were completely covered with matrix and telescopic

pull-out was observed; interaction of the outermost layer of

the MWCNT remains in the matrix while the inner tubes, held

only by van der Waals forces, pull apart. Fig. 3 shows a sche-

matic representation of possible fracture mechanisms of CNT

[30].

Continued efforts compared mechanical properties of sev-

eral epoxy/CNT systems (Table 2) [30].

Two major conclusions related to potential release of CNT

can be drawn from the results: 1) amino functionalization im-

proves dispersion and integration of the CNTs into the epoxy

network structure; and 2) agglomeration and higher filler con-

tents can result in improper impregnation in the epoxy ma-

trix and lead to composite failure.

Other studies have examined release of MWCNTs by abra-

sion. No free CNTs were released during cutting and sanding

of an epoxy nanocomposite [31]. Release of CNTs from a

DGEBPA epoxy system was investigated using a Taber Abraser

with an enclosure for particle collection [32]. Addition of CNT

filler resulted in a 70- to 90-nm shift in the first mode of par-
Fig. 3 – (a) Initial state of CNT in matrix. (b) Pull-out resulting fro

interfacial adhesion plus extensive/fast local deformation. (d) Tel

der Waals between the tube layers. (e) Crack bridging and partia

vol. 370, Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K, Surface

composites, p. 820–4. Copyright � 2003, with permission from
ticle size distribution to the right, indicating larger abraded

particles and a change in component properties. In contrast

to similar studies, particles smaller than 100 nm were not ob-

served by aerosol measurement tools. Moreover, this was the

first study to report free-standing CNTs resulting from abra-

sion. The raw material CNTs added to the epoxy system

had a length of 0.7 ± 0.2 lm, while the abraded CNT particles

averaged 304 ± 251 nm, which suggests that the CNTs were

chopped during abrasion. This study also questions the ability

of particle size distribution to show release of nanofiller since

aerosol instruments used did not show an additional mode

consistent with sizes of free-standing CNTs observed by TEM.

Hand sanding of a 2 wt% MWCNT/epoxy composite test

stick produced particles exhibiting protrusions that appeared

to be parts of the CNTs (Fig. 4) [33–35]. Observations of this

sanding study were as follows:

• SEM showed that bulk CNT had protrusions similar to

those on the sanding particle.

• Dark field TEM exhibited dark areas indicating elements of

low atomic number (i.e., carbon), as well as bright areas

indicating elements of high atomic number (i.e., metal cat-

alyst residues from CNT production).

• Bright field TEM: dark areas revealed thicker regions or

regions with a higher atomic number.

• EDS X-ray mapping: X-ray EDS peaks corresponded to elec-

trons excited by the X-ray; multiple peaks for the same ele-

ment corresponding to electrons in different energy shells;

EDS mapped onto surface of images – turquoise color cor-

responds to carbon, red to iron, and blue to nickel. Protru-

sions seen from sanding dust particles had EDS X-ray

signatures consistent with CNT.

There is no indication of significant nanoparticle release

based on number concentration measured during this sand-

ing process, as demonstrated in Table 3 [33]. There is, how-

ever, a significant increase of general respirable-sized
m weak interfacial adhesion. (c) Rupture of CNT from strong

escopic pull-out due to stronger interfacial bonding than van

l debonding of the interface. Reprinted from Chem Phys Lett,

modified multi-walled carbon nanotubes in CNT/epoxy-

Elsevier [30].



Table 2 – Mechanical properties of CNT/epoxy systems.

Filler type/
content (wt%)

Young’s modulus
(MPa)

Ultimate tensile
strength (MPa)

Fracture toughness
KIc (MPa m ½)

Epoxy 0.0 2599 (±81) 63.80 (±1.09) 0.65 (±0.062)
Epoxy/CB 0.1 2752 (±144) 63.28 (±0.85) 0.76 (±0.030)

0.3 2796 (±34) 63.13 (±0.59) 0.86 (±0.063)
0.5 2830 (±60) 65.34 (±0.82) 0.85 (±0.034)

Epoxy/SWCNT 0.05 2681 (±80) 65.84 (±0.64) 0.72 (±0.014)
0.1 2691 (±31) 66.34 (±1.11) 0.80 (±0.041)
0.3 2812 (±90) 67.28 (±0.63) 0.73 (±0.028)

Epoxy/DWCNT 0.1 2785 (±23) 62.43 (±1.08) 0.76 (±0.043)
0.3 2885 (±88) 67.77 (±0.40) 0.85 (±0.031)
0.5 2970 (±29) 67.66 (±0.50) 0.85 (±0.064)

Epoxy/DWCNT-NH2 0.1 2610 (±104) 63.62 (±0.68) 0.77 (±0.024)
0.3 2944 (±50) 67.02 (±0.19) 0.92 (±0.017)
0.5 2978 (±24) 69.13 (±0.61) 0.93 (±0.030)

Epoxy/MWCNT 0.1 2780 (±40) 62.97 (±0.25) 0.79 (±0.048)
0.3 2765 (±53) 63.17 (±0.13) 0.80 (±0.028)
0.5 2609 (±13) 61.52 (0.19)a a

Epoxy/MWCNT-NH2 0.1 2884 (±32) 64.67 (±0.13) 0.81 (±0.029)
0.3 2819 (±45) 63.64 (±0.21) 0.85 (±0.013)
0.5 2820 (±15) 64.27 (±0.32) 0.84 (±0.028)

Reprinted from Chem Phys Lett, vol. 370, Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K, Surface modified multi-walled carbon nanotubes in

CNT/epoxy-composites, p. 820–4. Copyright � 2003, with permission from Elsevier [30].
a High viscosity disabled degassing – composite contained numerous voids.

Fig. 4 – SEM images of sanded surface of particle of epoxy containing 2% by weight MWCNTs. More details are provided in the

text of Section 2.3.5. Reprinted from J Occup Environ Hyg, vol. 8, Cena LG, Peters TM, Characterization and control of airborne

particles emitted during production of epoxy/carbon nanotube nanocomposites, p. 86–92. Copyright � 2011 with permission

from Taylor & Francis Ltd. (http://www.tandf.co.uk/journals) [33].

Table 3 – Impacts of sanding on release of nanoparticles from epoxy–CNT composite.

Process N GM GSD Ratio to background

Number concentration (10 nm to 1 lm) Sanding 100 3889 #/cc 1.48 1.04
Respirable mass concentration Sanding 130 2.68 lg/m3 6.57 5.90

Particle number and respirable mass concentrations observed during the sanding processes. N = number of data points logged by the

instrument, GM = geometric mean, GSD = geometric standard deviation. Data are adapted from Cena [31].
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particulates during sanding. These results suggest that the

nanoparticles (in this case, MWCNT) are contained within

the epoxy matrix during this specific abrasion event. Data
have begun to emerge on health effects associated with

MWCNT protrusions on the surface of the sanding dust parti-

cles [36].

http://www.tandf.co.uk/journals
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2.4. Composite traits that affect mechanical release

The most important factors of the MWCNTs that affect their

release include their successful dispersion and incorporation

into the epoxy matrix, length, and orientation of the MWCNT,

and surface functionalization; for example, carboxylation of

MWCNT achieved much better, more uniform dispersion in

the epoxy matrix [37]. Effects of amine functionalization are

discussed in Section 2.3. Another factor to consider is that for-

mation of MWCNT-rich areas on the surface can help to pro-

tect the epoxy from UV degradation and reduce the potential

for MWCNT release. This is in contrast to observations of sil-

ica particle-reinforced epoxy materials where silica particles

were released after UV exposure [38].

2.5. Effects of stabilizers and plasticizers on degradation

Epoxy resin degradation in outdoor exposure environments is

primarily due to water/humidity and solar ultraviolet radia-

tion. Outdoor exposure data [39] from several locations sug-

gest the strength loss on from natural exposure is �25%

over a 10-year period. UV-induced surface cracking of epoxy

composite laminated in humid outdoor environments has

been reported [40]. In this study by Sookay et al. [40], 20 weeks

of exposure in South Africa led to extensive surface cracking

of the epoxy. Although the depth of cracks was not enough to

affect the strength of composite, it could allow release of any

filler on the surface layer. The epoxy in the study did not use

filler, but was reinforced at 50 wt% with glass fiber. In addition

to light-initiated degradation epoxy resins degrade by autoox-

idation or inherent oxidation processes [41].

3. Polyamide

3.1. Description of the polymer

Polyamides are generally classified as non-nylon resins, poly-

amide elastomers, and nylons which can be resins or fibers.

Consumption of polyamide elastomers is very minor, at about

18,000 MT per year [42]. The consumption of non-nylon polya-

mides is larger at �130,000 MT, but is still much smaller than

the global production and consumption of nylons [43]. Nylon

resins are the largest volume of polyamides consumed, with a

reported global consumption of about 2,000,000 MT in 2009

[44].

Nylons can be made via two pathways: by a combination

of a diacid with a diamine, or by polymerization of an amine

functional acid. The most common nylons, by far, are Nylon

6,6 and Nylon 6. Nylon 6,6 is made by polymerization of adipic

acid with hexamethylene diamine (hence, each portion of the

polymer is composed of a monomer having 6 carbons, leading

to the 6,6 designation). Nylon 6 is prepared from caprolactam,

which readily undergoes self-condensation. Manufacturing in

the United States for Nylon 6 and Nylon 6,6 represents about

90% of the total production.

Polyamides are used in fibers and resins. The market for

nylon fibers is mostly carpeting and textiles, with minor

markets in paint brush bristles or toothbrushes or as fila-

ments for fishing line and weed trimmers. As resins, nylons
are a member of engineering thermoplastics and are used

in some of the same applications as epoxy resins, polycarbon-

ate resins, and polyacetals; these are frequently used in filled

or reinforced systems. Glass fiber reinforcement is common,

as are mineral (clay) fillers; however, carbon black and carbon

fiber are also used for some applications. Nylons are noted for

their strength, toughness, and wear properties. While they

are highly crystalline, they are less brittle than typical epoxy

resins. Most nylon and reinforced nylon resins are injection

molded, not extruded. Typical applications might be gears

for the automotive and trucking industries. Reinforced nylons

are replacing metal in many applications where they provide

the required strength, wear, and impact resistance with fewer

weight and corrosion concerns.

By far, the largest uses of reinforced nylon resins are in the

automotive industry, including the following:

• Body. Side molding/cladding, exterior mirror housings,

exterior door handles, window lift mechanism, grille/

headlamp support, rear end panel, interior handles, or

window latches.

• Interior. Instrument panel, airbag housing, interior steering

column housing, interior speedometer components.

• Powertrain and chassis. Brake fluid reservoir, fuel vapor can-

ister, fuel line, interior pedals, transmission components,

wheel covers, windshield wiper components/tubing, wir-

ing harness, connectors, switches/sockets, and fuse/junc-

tion systems.

• Underhood/engine. Intake manifold, air cleaner, radiator-fan

shield, radiator-end tanks, radiator fan, air conditioner

fan, coolant system heater core end, vacuum system,

power steering reservoir, engine control system, engine

oil pan, engine timing belt/torque chain, engine camshaft,

gears.

Nylon resins have a high value; estimates place the con-

tent of recycled resin manufacturing scrap and off-spec mate-

rials at about 10% for nylons. These recycling efforts may not

have much impact on the release of carbon nanotubes since

the main feedstock is carpeting, which is not expected to pro-

vide a significant opportunity for CNT composites, unless

contemplated for flame retardancy in carpet fibers.

3.2. Uses in conjunction with CNTs

CNT composites with nylons or polyamides have been made

by melt compounding or in situ polymerization. Properties

of examples made by both approaches are reviewed by Byrne

and Gun’ko [45]. Polyamide composites with CNT are antici-

pated to deliver extended wear, lower friction resistance, in-

creased load capacity, and mechanical strength. A three-fold

improvement in Young’s modulus at a loading of 1.5–2%

CNT was reported in both melt processing and in situ

polymerization.

Further research targets include flame-retardant materials

[46], and conducting materials [47].

Commercial products of PA-6, PA-66, or PA-12 with carbon

nanotubes are available with applications for the following

[48]:
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• Electrostatic Discharge (ESD) and electrically conductive

parts.

• Electrical and Electronics (E&E) and Industrial.

• Injection molding, extrusion.

• Automotive fuel filters and connectors.

For example, the master-batch product PLASTICYLTM

PA1503 is reported to have a CNT loading of 15 ± 1.0 wt%

[49]. This technical data sheet also recommends using poly-

mers with a high Melt Flow Index (MFI) to get well-dispersed

CNT aggregates. Inferior dispersion could lead to pockets of

unbound CNT that could be released following disturbance

of the surrounding polymer.

3.3. Degradation and general potential for release

All evidence suggests that properly dispersed MWCNTs are

tightly bound in the polyamide matrix. Although the relation-

ship between degradation and MWCNT release is not well

known, the potential for release is expected to increase as

the polyamide undergoes structural or chemical changes. It

is therefore anticipated that the most likely mechanism for

release will come from degradation of the polyamide resins.

3.3.1. UV degradation
Samples of carbon fabric-reinforced Nylon 6 composite lami-

nates, exposed for up to 600 h of UV radiation, showed con-

siderable yellowing; however, they maintained structural

integrity with no effects observed on the flexural or impact

properties of the composite [50]. Although this exposure time

is relatively short compared to what may possibly be encoun-

tered in many real-world uses of Nylon 6 composites, this

suggests that significantly longer exposure times are needed

to degrade the resin to the point that potential for release of

CNTs from the composite increases. Aggregating exposure
Fig. 5 – Activation energy (Ea) as function of the conversion degr

composites. Ribeiro B, Nohara LB, Oishi SS, Costa ML, Botelho EC

reinforced with carbon nanotubes. J Thermoplast Compos Mater

� 2012. Reprinted by permission of SAGE [54].
conditions (e.g., UV in addition to moisture from outdoor

humidity or rain) may also increase the potential for degrada-

tion and subsequent release. MWCNTs in composites with

polyamide 6 slowed the UV degradation of the polymer

matrix compared to the polymer itself [51]. The surface

concentration of the MWCNT increased during the aging

process.

3.3.2. Temperature extremes
Structure of the polymer matrix and interaction between

CNTs and the matrix may be key factors for thermal degrada-

tion behavior of CNT-filled polymer composites. In a thermal

degradation study of a multi-walled carbon nanotubes/poly-

amide 6 composite [52], the presence of MWCNTs was shown

to improve thermal stability of PA-6 under air atmosphere,

but had little effect on thermal degradation behavior under

nitrogen atmosphere. The activation energy (Ea) value for deg-

radation under air was 153, 165, and 169 kJ/mol for neat PA-6,

purified-MWCNT/PA6, and amino-functionalized-MWCNT/

PA6, respectively.

Another study [53] showed that adding up to 1.0 wt%

MWCNT to PA-6 increased the onset temperature of thermal

degradation measured by thermal gravimetric analysis. It

suggests that the presence of MWCNTs lowers molecular

mobility at the interface, improving thermal stability. Conse-

quently, maximum degradation temperature has been shown

to increase in PA 6.6/CNT systems, with the most significant

improvement from 334 to 536 �C at 0.5% CNT loading and

low heating rates, and increases further from 405 to 585 �C
at higher heating rates (Fig. 5) [54].

Ribeiro et al. [54] also showed that neat PA 6.6 has lower

activation energy, Ea, than its CNT-containing composites,

again supporting that nanocomposites have higher thermal

stability than pristine polymer. The curves in Fig. 5 indicate

that higher energy is required for bond breaking as CNT is
ee (a) for the polyamide 6.6 (PA 6.6) and their nanostructured

. Nonoxidative thermal degradation kinetic of polyamide 6, 6

[published online ahead of print March 25, 2012]. Copyright
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added to the polymer system, with 0.5% CNT loading being

the optimal formulation. It is theorized that agglomeration

behavior at CNT loading of 1.0% explains decreasing thermal

stability of the higher CNT content. These data suggest that

nanofiller loading should be optimized to create composites

with less likelihood of releasing nanomaterials under thermal

stress conditions.

3.3.3. Chemical resistance
Nylons are stable in many solvents and in most inorganic

media, including liquid ammonia, sulfurous acid, and others,

but may be eroded with oxidants such as hydrogen peroxide,

concentrated inorganic acids, and chlorine-based decolo-

rants. The resins are significantly resistant to alkaline solu-

tions but are very susceptible to deterioration in some weak

organic acids such as acetic acid and some alcohols including

isopropyl alcohol [55,56].

Although data describing impacts of CNTs on chemical

stability of nylon composites are not available, it is reasonable

to expect that the potential for release of MWCNTs will in-

crease in solvent media to which the resin has poor chemical

resistance.

3.3.4. Mechanical stresses
In a study by Giraldo et al. [53] of tribological properties of PA-

6 reinforced with up to 1 wt% MWCNTs, it was observed that

scratch hardness increased significantly with introduction of

MWCNT reinforcement. From sliding wear tests performed at

loads from 5 to 25 N, the stiffness of the composite increased

with the presence of MWCNT; however, there was no evi-

dence of debris formation on the surface caused by the pres-

ence of MWCNTs. In a separate friction and wear study [57] of

carbon nanotubes reinforced PA-6 composites, results

showed that CNTs could improve wear resistance and reduce

the friction coefficient of PA-6 considerably under dry and

water-lubricated sliding conditions, due to effective reinforc-

ing and self-lubricating effects of CNTs on the PA-6 matrix.

Given the improvements to mechanical properties of

MWCNT-nylon composites, we conclude that mechanical

wear represents a low probability pathway to release of

MWCNTs. Further investigation is needed to quantify level

of release and determine if there is any propensity to release

free MWCNTs, or if nanotubes remain bound to polymer

fragments.

3.3.5. Other factors (humidity and leaching)
Exposure to moisture can affect long-term structural durabil-

ity and properties of polyamide composite materials, espe-

cially for the PA matrix that can absorb moisture up to 10%

of its weight. Hydrolysis and plasticization strongly affect in-

ter-laminar shear and impact resistance. A study of carbon

fabric-reinforced Nylon 6 composite laminates, exposed to

moisture at 100 �C, resulted in a 45% reduction of flexural

strength where the main factor contributing to lowering of

mechanical properties was plasticization of the matrix and

attack on the fiber-matrix interface by the water [50]. No

information was found on leaching of CNTs from composites

with PA. Solvents capable of dissolving or softening the poly-

amide could favor diffusion and release of CNTs.
3.4. Composite traits that affect release

As with most CNT composites, effective dispersion of nano-

tubes in the polymer and strength of the interaction between

polymer and nanotubes play key roles in developing desired

properties. As identified by the resulting mechanical proper-

ties of Nylon 6 composites, aromatic amine-functionalized

MWCNT resulted in superior dispersion, compared to pristine

MWCNTs, and in situ polymerization was superior to melt

blending [58]. Several other studies functionalized MWCNTs

with amine groups using a grafting technique [52,59]. The

fractured surface of MWCNT-NH2/Nylon 6 composites

showed uniform dispersion of MWCNTs and strong interfa-

cial adhesion with the matrix, as evidenced by many broken,

but strongly embedded MWCNTs in the matrix in the absence

of debonding from the matrix. These factors are also likely to

impact potential release of CNTs from nylon composites.

3.5. Effects of stabilizers and plasticizers on degradation

Properties of polyamide resins are typically modified by addi-

tives and many are added in far higher proportions than the

typical 1% range of MWCNTs. One example of heat stable

plasticizers with typical use levels of 5–20% are the sulfona-

mides sold by companies including Unitex (UniPlex 214 [60])

or Ferro-Plast ([61]). Ferro-Plast also offers master-batches of

polyamides with various additives, including some with car-

bon nanotubes. For applications such as fishing line, grass-

trimming line, and thread-bonding, a high degree of flexibility

is required; up to 30% of the plasticizer may be added, which

lowers chances of impact failure and stress cracking but in-

creases surface abrasion potential.

Polyamides are more resistant to flame and ignition than

many other polymers and are used in applications where a

high degree of flame retardancy is required. They are then

modified with halogenated or phosphorous based flame retar-

dants. To reach the V-0 rating in the UL 94 class, one must use

20 wt% of brominated polystyrene with antimony trioxide or

14 wt% of red phosphorus or 18 wt% of Clariant Exolit OP

1312 organic phosphinate additive [62]. All of these additives

reduce mechanical properties of polyamide composites.

UV stabilizers such as hindered amine light stabilizers

(HALS) (e.g., from BASF and the former Ciba Chemical) are

typically added in levels <0.5%. It is thus unlikely they will

have much effect on the release of CNTs other than the in-

tended one of reducing matrix degradation, thus lowering

the probability of release by weathering.

Impact modifiers are used in cases where the polyamide is

required to have good impact strength at low temperatures.

Impact strength at or below 0 �C temperatures can be dramat-

ically improved by adding these modifiers. Dow’s Paraloid line

of impact modifiers is one class used at levels up to 15%, or

even 20%, if lower temperature performance is required [63].

Additives that reduce elongation at break and notched impact

strength (certainly flame retardants and possibly heat stabi-

lizers) are likely to increase the probability of CNT protrusions

on sanding fragments and CNT release, which was identified

as the critical parameter for CNT release by sanding on other

matrices [27].
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4. Polyurethane

4.1. Description of the polymer

Polyurethane (PU) is one of the most versatile and actively

used polymers, with low-density foams (0.025 kg/l) up to

compact materials, and highly elastic materials to highly

cross-linked rigid materials. Current industrial uses of poly-

urethane foams include homopolymers and many different

copolymer matrices (e.g., polyesters and polyethers) [64]. In

global plastics consumption (230 million tons in 2005), PU

holds a market share of 5.5%. Typical markets include con-

sumer-relevant applications such as automotive, building,

furniture, electronics, shoes, and sports.

Conventional PU is often sold as two-component precur-

sors to be mixed, applied/shaped, and polymerized at the

OEM customer: polyol and di- or polyfunctional isocyanate,

which condenses to a thermoplastic, thermoset, or elastic

urethane polymer. Tailor-made properties are possible by di-

or polyfunctional monomers and by diverse particulate or dis-

solved additives, such as blowing or gelling catalysts, blowing

agents, antioxidants, fire retardants, pigments, surfactants,

and various fillers.

In order of increasing foam density, PU elastic foams are

then sold as slabstock foams (for furniture) or as molded

foams (for office or automotive seating). PU rigid foams

mainly serve as thermal insulation in buildings. Flexible inte-

gral foams are used in shoe soles. Inline skate wheels are

made from hot-cast PU elastomer (density 1 kg/l). Thermo-

plastic PU (TPU) (1.1 kg/l) is marketed as granulate, to be

melt-processed into cable sheathing, plugs and terminations,

spiral tubing, films, ski-boot shells, and technical moldings.

TPU tensile strength is below 100 MPa and tear strength is be-

low 100 kN/m, but the elongation at break reaches several

hundred percent. Nanocomposites enable enhanced func-

tionalities by incorporating a variety of fillers such as silica

nanoparticles [65], clays [66], glass or carbon fibers [67,68],

and graphene sheets [69] into the TPU matrix.
Fig. 6 – Sensor application of a CNT–TPU composite: (a) when m

resistivity R increases because the CNT network cannot follow

effect can be cycled several times with reproducible changes, hi

composites based on epoxy and other polymers, with implicatio

Phys, vol. 179, Zhang R, Deng H, Valenca R, Jin J, Fu Q, Bilotti E, e

good strain sensing capability, p. 83–9. Copyright � 2012, with p

be viewed online.)
4.2. Uses in conjunction with CNTs

There is currently little information on CNT–PU composites in

the marketplace and no information on production volume.

Anecdotal information gleaned from the Internet indicates

CNT-PU composites are available for industrial use. The

Nanocyl website [48] includes studies on optimization of

PU–CNT composites through melt modification and tracking

of the composite’s electrical, mechanical, and thermal prop-

erties. The company also has reports on PU-MWCNTs as effi-

cient flame retardants. Bayer utilizes PU–CNT composites for

wind turbine blades [70]. Media information indicates another

MWCNT manufacturer, Zyvex Corporation, has developed

MWCNT (and SWCNT) for easy dispersion into polyurethane

matrices [71,72]. Similar information is available for Arkema

(GraphiStrength), which has a line of PU–CNT master-batches

that contain up to 45 wt% of CNTs for composites.

Limited literature indicates clear advantages of these com-

posites over traditional PU systems. For example, Loos et al.

found increased fatigue life of PU composites for wind blades,

which included MWCNTs (Baytubes C150P), by 248% over his-

torically used systems. A review by Köhler et al. [73] suggests

that PU–CNT coatings have enhanced thermal mechanical

and electrical properties. Song et al. [74] found an increase

in coefficient of friction and high-wear resistance for PU-

MWCNT films compared to traditional films. Studies have

looked at effects of glass transition temperatures of neat PU

and PU-MWCNT, finding dramatic differences between the

two [75,76]. While the mechanisms of change in thermal sta-

bility remain largely unknown, a flux obstruction type

hypothesis is the prevalent theory [75].

One PU variant that was used for evaluation of the release

of CNTs is the thermoplastic PU (TPU) [27].The commercial

motivation for including CNTs is to achieve antistatic or con-

ductive properties. The advantage over traditional fillers is

that lower filler content is needed to reach percolation, such

that mechanical properties are less downgraded than a car-

bon-black composite of equal conductivity.
echanical strain is applied to the elastic TPU matrix, the

the deformations entirely (weight% CNT is indicated); (b) the

ghlighting the elasticity that sets it apart from CNT–polymer

ns for release probability. Reprinted from Sensor Actuator A-

t al. Carbon nanotube polymer coatings for textile yarns with

ermission from Elsevier [3]. (A color version of this figure can



Fig. 7 – Sample of MWCNTs dispersed in a HBPU matrix (left)

compared to a sample of MWCNTs dispersed in DMF (right).

Sample A was dispersed adequately for over 7 months,

while MWCNTs in sample B agglomerated within a week.

Reprinted from Carbon, vol. 48, Deka H, Karak N, Kalita RD,

Buragohain AK. Biocompatible hyperbranched

polyurethane/multi-walled carbon nanotube composites as

shape memory materials, p. 2013–22. Copyright � 2010,

with permission from Elsevier [80]. (A color version of this

figure can be viewed online.)
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Based on the large number of reports examining the addi-

tion of CNT to polyurethanes, it is possible to state the follow-

ing generalized characteristics of PU–CNT composites [65–

68,75,77–87]:

• Tensile strength and modulus increase, with increase in

wt% of CNTs.

• Tensile strength and modulus increase, with increased

dispersion and alignment of CNTs.

• Thermal stability increase (higher decomposition temper-

ature) with CNTs.

• Electrical conductivity increase with CNTs.

• Increased phase separation of PU with CNTs.

More advanced PU–CNT technologies include responsive

materials where strain-sensitive resistivity of the CNT net-

work (of vanishing elastic elongation) depends on the strain

exerted on the (elastic) PU matrix (Fig. 6). Applications as elec-

trically-read strain sensors for smart textiles are being devel-

oped [3,88] and even higher levels of system integration are

targeted by shape-memory CNT-PU composites for smart

actuators in micro-aerial systems [69].

4.3. Composite traits that affect release

Typical CNT loading levels in CNT–TPU composites are be-

tween 0.1 and 5 wt%. In terms of the matrix, there are studies

that discuss degradation and biodegradation pathways of PU

[81,89–91]. A recent study by Lattuati-Derieux et al. [86] indi-

cates that PU foams (soft matrices of PU) are amenable to deg-

radation from aging, with hydrolysis and photo-oxidation as

the major pathways.

PU can be tailored to strong interfacial activity with CNTs

as shown by Deka et al. [80], using hyper-branched PU-

MWCNT composites (HBPU-MWCNT) made from Mesua ferrea

L. seed oil; the duration and extent of dispersion of nanotubes

in the matrix increased dramatically, according to TEM and

SEM analysis (Fig. 7). This effect can possibly be attributed

to functional groups added to the MWCNT to facilitate hydro-

gen bonds with the HBPU and thus better phase adhesion.

4.4. Degradation and general potential for release

4.4.1. UV degradation
The first study on weathering of a PU-nanocomposite ad-

dresses PU-graphene oxide [77] and indicates accumulation

of graphene-oxide flakes on the sample surface under UV

radiation. The authors found that the PU matrix underwent

photodegradation, resulting in the emergence of graphene

oxide nanoflakes on the substrate surface after 15 days in a

22-fold accelerated UV intensity. Presence of the nanofiller

tended to slow photo-oxidation, but only as a % effect. After

continued irradiation, agglomerates that were orders of mag-

nitude thicker than individual flakes remained on the surface.

Actual release after UV irradiation has not been studied.

A detailed study of a CNT–TPU composite matrix has been

reported [27]. After weathering, the polymer matrix receded,

while more resistant CNTs remained and became exposed

as an entangled network on the surface; this is very similar

to the effects observed on epoxy (Fig. 2). Presence of naked
CNTs was confirmed by photoelectron spectroscopy (XPS)

where it became evident that wet weathering is roughly a fac-

tor of 3 more progressive than UV-only weathering (Fig. 8).

The carbon photoelectron spectra are selective for specific or-

ganic groups. The comparison to a positive control reference

(bottom graph, Fig. 8) identifies the chemical bonding state

and especially the contribution of CNTs. The TPU polymeric

matrix obviously vanishes on the order of or below 1 lm per

year; van der Waals forces hold the remaining CNT network

together and keep it attached to protruding CNTs from the in-

tact composite below. As hypothesized by Nguyen, these CNT

networks collapse due to strong van der Waals attraction,

form a dense layer, and do not release spontaneously. Using

the same methods of induced release after weathering, it

takes worst-case combinations of weathering plus ultrasonic

wear to release CNTs from their network [35].

We conclude from indications of PU–graphene oxide [77]

and TPU–CNT [27] that UV irradiation is a potential route of

release of CNTs from PU if additional strong mechanical

forces disrupt the collapsed CNT network [35]. It is expected

that the physical and chemical properties of the CNT will

influence the necessary force or energy thresholds.

4.4.2. Temperature extremes, acids/bases and biodegradation
Technical processing temperatures of neat polyurethanes

reach up to 240 �C. There are limited reports of the thermal
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Fig. 8 – TPU + CNT lifecycle: Surface chemistry in the upper 10 nm after degradation. (Left column) Fragments collected after

mechanical treatment by Taber Abraser or by sanding (rotating plate) by X-ray photoelectron spectroscopy (XPS). The CNT

positive control is shown as the bottom panel. The C 1s detail spectra of fragments exhibit no signal from low binding-

energy-photoelectrons that are characteristic for CNTs, regardless of the mechanical degradation scenario. (Right column)

Nanocomposite surface after weathering. When the samples were exposed to UV irradiation only, matching 9 months’

equivalent weathering, a shoulder that is characteristic for naked CNTs appears and cannot be explained by any other

functional group. The remaining material after prolonged weathering is dominated by CNTs. Reproduced from Wohlleben

et al. [27] with permission from The Royal Society of Chemistry. (A color version of this figure can be viewed online.)
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properties of PU–CNT composites. Degradation temperatures

are higher for PU–CNT composites, compared to neat PU. Neat

hyper-branched polyurethane (HBPU) typically has various

steps to degradation temperatures, although with HBPU-

MWCNT composites only one degradation temperature was

found [80]. Thermoset polyurethane (TPU) is attacked by con-

centrated acids and alkaline solutions, even at room temper-

ature. Ketones (acetone, methylethylketone) are partial

solvents; highly polar organic solvents such as DMF, DMSO,

and THF dissolve the matrix. The potential for CNT release

from TPU nanocomposites is, therefore, expected to be higher

where they are exposed to such chemical environments.

PU is known to be susceptible to microbial degradation by

microorganisms. This depends on polymers’ properties such

as the presence of functional groups, orientation, crystallin-

ity, and cross-linking since these address the organism’s

accessibility to the polymer. Polyester-based PU is more sus-

ceptible to microbial attack than polyether-based variants

[92].
4.4.3. Mechanical stresses (abrasion, deformation)
The nature of deformation for a large-scale PU-MWCNT com-

posite is not unlike a neat PU elastomer, as determined by

Koerner et al. [84], in which the composite persists to deform

as unfilled PU does at various concentrations of CNTs; this

suggests the mechanics of deformation are at least on a scale

influenced by the PU matrix. This expectation was confirmed

by a release study on PU and CNT-PU in which both sanding

(high shear, machining simulation) and Taber Abraser (nor-

mal use simulation) were tested, aerosols monitored, and

the released fragments assessed by a battery of techniques

(SMPS, CPC, XPS, SEM, AUC, LLD). For both the nanocomposite

and the TPU reference, the aerosol number concentration

during machining was around 6000–8000 P/cm3. Positive evi-

dence of free CNTs was not found in morphology (SEM,

Fig. 9) by surface chemistry (XPS, Fig. 9) or by classification

and size-selective quantification. The size-selective detection

used both positive and negative controls and found amounts

around 0.2 wt% in the range below 100 nm where free CNTs



Fig. 9 – Debris after Taber Abraser degradation of TPU + CNT, showing large fragments of 10–100 lm, confirmed by laser

diffraction. The fiber in (b) is one order of magnitude thicker than the CNTs present in the product. In accordance with

chemical identification (Fig. 8), such fibers must be polymeric in nature; this observation indicates that the very soft matrix of

TPU deforms under shear up to 600%, much more than CNTs. Adapted from Wohlleben et al. [27] with permission from The

Royal Society of Chemistry.
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would appear, but the same content in this size range is found

for the reference material without CNTs. Compare these

numbers to the total content of 3 wt% CNTs in the sample.

Tubular protrusions are not observed, in contrast to brittle

epoxy degradation.

As a possibly generic phenomenon, it was hypothesized

that the relative softness of the material actually enhances

the embedding of CNTs in its degradation fragments because

TPU elongates 600% before it breaks and flows around the

embedded CNTs during shear. The same mechanism was ob-

served for POM (30% elongation), but not for epoxy (5%) or ce-

ment (1%) [27].

We conclude that mechanical forces without matrix degra-

dation do not lead to a significant probability of CNT release

from TPU.

4.5. Effects of stabilizers and plasticizers on degradation

Additives are common practice for PU, including TPU: anti-

static, flame retardant (halogen free), hard phase modifier,

surface matting, UV stabilizer, plasticizer, and lubricant.

Mechanical degradation will obviously change if hard phase

modifier, plasticizer, or lubricants are compounded. Weather-

ing degradation is controlled by UV stabilizers/antioxidants.

5. Polyethylene

5.1. Description of the polymer

Polyethylene (PE) is the most widely used plastic, with an an-

nual production of �80 million MT. It is a thermoplastic poly-

mer that is a typical injection-molded material consisting of

long chains produced by combining the ingredient monomer

ethylene. PE has several grades with varying properties: the

largest volume grades are high density polyethylene (HDPE),

low-density polyethylene (LDPE), and linear low-density poly-

ethylene (LLDPE). PE has multiple consumer uses that vary

according to grade. Approximately 50% of PE demand is made

up of HDPE, one-third by LLDPE, and the balance by LDPE. PE’s

inherent properties include strength, light weight, ease of

processing, and resistance to chemicals, abrasion, and im-
pact. Industrial and consumer packaging accounts for over

half of PE’s use, followed by consumer/institutional uses for

approximately one-fourth, and the balance in construction

and other uses.

HDPE has a low degree of branching, thus stronger inter-

molecular forces and tensile strength, and is harder and able

to withstand higher temperatures, compared to LDPE. It also

has excellent resistance to moisture. Typical density values

are 0.935–0.96 g/cm2. Global demand increased from 15.5 mil-

lion tons in 2000 to 23.1 million tons in 2009, growing at a rate

of 4.5% during the period. Typical processing methods include

blow molding, extrusion, and rotational and injection mold-

ing. HDPE consumer uses are milk jugs, detergent bottles,

margarine tubs, garbage containers, and paint ‘‘cans,’’ along

with injection-molded toys and housewares. Industrial uses

include automotive gas tanks and chemical storage contain-

ers. Construction applications include water pipes, fencing,

decking, and playground equipment.

LDPE has a comparatively lower density range of 0.910–

0.940 g/cm3 that is related to the small amount of branching

in the chain (on about 2% of the carbon atoms). LPDE is a

branched homopolymer of ethylene and branching results

in weaker intermolecular forces and lower tensile strength.

It is another widely-used grade of PE at about 20 million tons

in 2012. It is translucent to opaque, robust enough to be virtu-

ally unbreakable and simultaneously quite flexible. It has a

variety of uses, but the most common are plastic bags, stretch

wrap and shrink wrap film, some adhesives, and paperboard

coating. Additional products include trays, general purpose

containers, and corrosion-resistant work surfaces.

This grade of PE has a similar density to LDPE but contains

only short branching. LLDPE is not a homopolymer, but a

branched copolymer of ethylene with short chain (C4-8) al-

kenes. The global demand for LLDPE increased from 10.6 mil-

lion tons in 2000 to 15.49 million tons in 2009. Packaging and

construction industries are the major consumers. Like LDPE,

LLDPE is used for plastic bags and sheets, plastic wrap, stretch

wrap, pouches, toys, covers, lids, pipes, buckets and contain-

ers, cable covering, geomembranes, and flexible tubing

including squeeze bottles. The majority of LLDPE is used in

film form. It has higher tensile strength and higher impact



48 C A R B O N 6 8 ( 2 0 1 4 ) 3 3 – 5 7
and puncture resistance compared to LDPE. It is very flexible

and elongates under stress. It can be used to make thinner

films with better environmental stress cracking resistance.

It also has good resistance to chemicals and good electrical

properties.

Ultra-high-weight polyethylene is of increasing impor-

tance due to its strength, toughness, and resistance to abra-

sion. Applications range from industrial to medical/

orthopedics to high-strength fibers.

5.2. Uses in conjunction with CNTs

CNT-enhanced variants have the potential for rapid market

adoption. The combination of exceptional conductivity (elec-

trical and thermal), low density and mechanical properties of

CNTs prompted exploration of their use in filled PE compos-

ites [11,12,17,93–104]. The electrical and thermal conductivity

of PE is dramatically improved by the addition of CNTs

(Fig. 10). Examples of uses of PE–MWCNT composites include

automotive external body components, electrostatic dissipa-

tion materials, hot melt adhesives, materials and yarns and

conductive plastics for surface resistivity. As in other polymer

applications, the principal challenge is in their dispersion and

the interfacial bonding between CNTs and the polymer
Fig. 10 – Comparison of (a) electrical and (b) thermal

conductivity for isotropic (tilted filled triangles) SWNT/LDPE

and (filled circles) SWNT/HDPE composites at various SWNT.

Reprinted with permission from Haggenmueller R, Guthy C,

Lukes JR, Fischer JE, Winey KI. Single wall carbon nanotube/

polyethylene nanocomposites: thermal and electrical

conductivity. Macromolecules 2007;40:2417–21. Copyright �
2007 American Chemical Society [105].
matrix. PE–MWCNT master batches are increasingly available

in pelleted form for ease in downstream use. Producers in-

clude Arkema (Graphistrength C M4-30 Polyethylene Master-

batch, 30% by weight MWCNT in a low-density polyolefin

matrix), Nanocyl (Plasticyl LDPE200, 20% by weight MWCNT;

HDPE1501, 15% by weight MWCNT), and Hyperion Catalysis

(HDPE MB 3520). As described in the Introduction, both single

wall nanotubes (SWCNTs or SWNTs) and multi-walled nano-

tubes (MWCNTs) have been used in composites with PE. The

literature that describes MWCNT-PE composites often does

not specify the particular form of MWCNT used in the study.

5.3. Degradation and general potential for release

Several papers were recently published regarding possible

pathways for release of nanomaterials from polymer matrices

[106], including polymer MWCNT composites. Although they

do not specifically address PE–MWCNT composites, their dis-

cussions remain relevant. Mechanical release via abrasion

from smaller particles is one possible mechanism. PE gener-

ally is a flexible polymer that is less susceptible to abrasion

than harder polymers being considered in this evaluation.

Within the range of PE grades, the harder HDPE is most likely

to release MWCNTs via this pathway; yet, the applications

targeted are not typically subject to mechanical abrasion.

Degradation appears to be the most likely pathway for release

in PE–MWCNT composites. Degradation also generally

changes the tensile strength of polymers and promotes frag-

mentation to smaller particles which, in turn, are more bio-

logically degradable. Leaching of hydrophobic substances

such as MWCNTs is not likely to be a significant release

mechanism for undegraded material, however, once de-

graded; the potential is greater for leaching.

PE generally resists degradation by acids, bases, and

microbial activity. This is illustrated by the fact that PE often

is selected as the liner for long-term retention of waste in

sanitary landfills. With exposure to light, the primary path-

way for initial breakdown involves auto-oxidation by free rad-

icals that include reactive oxygen species [107–110]. Auto-

oxidation is mediated by chain-propagating processes that in-

volve the intermediacy of hydroperoxides. This process is

accelerated by exposure to UV radiation and increases in tem-

perature. Most grades of PE contain trace amounts of sub-

stances that could eventually initiate auto-oxidation

processes. Addition of pro-oxidants to the PE can accelerate

its decomposition, especially when exposed to UV radiation.

Carbonyl compounds build up in PE upon exposure to light

and free radicals [111]. Photochemical cleavage of carbonyl

moieties by Norrish Type I and Type II photoreactions contrib-

utes to further fragmentation of PE chains [108]. The light-in-

duced breakdown into smaller fragments, coupled with

changes in composition, greatly enhances susceptibility to

biological degradation [108,112].

Often UV stabilizers and free radical scavengers are added

to retard degradation [108]. In the case of light-initiated degra-

dation, the stabilizers function in part by screening out UV

radiation. PE itself is quite transparent to UV radiation and,

in the absence of UV screening additives, effective wave-

lengths of light can penetrate the polymer matrix signifi-

cantly. Antioxidants added to the polymer scavenge free
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radicals and inhibit degradation by breaking free radical chain

reactions. MWCNTs could influence degradation of PE–

MWCNTs composites by screening out UV radiation and/or

by scavenging or producing reactive oxygen species that initi-

ate degradation processes [38,113,114]. MWCNTs are a type of

fullerene structurally related to SWCNTs and Buckminster

fullerene, both of which produce and scavenge reactive oxy-

gen species [115,116].

5.4. Composite traits that affect release

There are currently no studies available that have evaluated

the release of MWCNTs from PE. As with other MWCNT–poly-

mer nanocomposites, however, the degree of dispersion of

CNTs and strength of the interfacial interaction between the

polymer and nanotubes will greatly influence final properties

of the composites. It is likely these same factors will impact

potential release of carbon nanotubes from PE composites.

The nature of the surface functionalization of the CNT and

method of incorporation into the matrix will also strongly

influence release potential.

6. Polycarbonate

6.1. Description of the polymer

Polycarbonates are an unusual, extremely useful class of high

heat polymers known for toughness and clarity. The vast

majority are based on bisphenol A (BPA) and sold under the

trade names Lexan (GE), Makrolon (Bayer), Caliber (Dow), Pan-

lite (Teijin), and Iupilon (Mitsubishi); many other producers

and suppliers are also available. BPA polycarbonates have

glass-transition temperatures (Tg) in the range of 140–155 �C,

and are widely regarded for optical clarity and exceptional im-

pact resistance and ductility at or below room temperature.

Other properties such as modulus, dielectric strength, and

tensile strength are comparable to other amorphous thermo-

plastics at similar temperatures below their respective Tg val-

ues. Whereas most amorphous polymers are stiff and brittle

below their Tg values, polycarbonates retain ductility. Many

important products are based on polycarbonate in blends

with copolymers, branched resins, flame-retardant composi-

tions, foams, and other materials. They are produced by more

than a dozen companies, with global manufacture at just over

2 million tons annually. Polycarbonate is also the object of

academic research due to its widespread utility and unusual

properties. Research on polycarbonates has increased stea-

dily over the past 2 decades, with over 5000 publications on

the topic since 1995, and with nearly 20,000 patents globally

(see Brunelle [117] and references therein).

6.2. Uses in conjunction with CNTs

No information for the production volume of CNT PC compos-

ites can be found, but it is known that companies such as

Bayer, Hyperion, Carbon NT&F21, RTP, and Nanocyl currently

produce CNT PC composites. According to a 2007 report [118],

the largest North American producer, Hyperion, may produce

50 tons/year of masterbatch materials, i.e., CNTs dispersed in
monomer or polymer, and PC CNTs are part of this total

volume.

Of the known uses of virgin polycarbonates [117], CNT PC

composites could be used as replacements to improve proper-

ties for the following:

1. Electrical, electronic, and technical applications use poly-

carbonates for a variety of purposes. The worldwide mar-

ket is �160,000 tons annually.

2. Medical and health care-related applications consume

�30,000 tons of polycarbonate annually. Polycarbonate is

popular because of its clarity, impact strength, and low

level of extractable impurities.

3. Automotive applications account for �150,000 tons of

worldwide consumption annually, with applications for

various components including headlamp assemblies, inte-

rior instrument panels, bumpers, etc.

It is expected that CNT PC will take over some of the mar-

ket share of PC for the above uses. A few current uses of CNT

PC are as follows:

1. Restricting electrical interference in electrical equipment

and removing heat generated by electric circuits [119].

2. High strength, impact resistant materials [120].

3. Mechanical processing of soft material surfaces at the

nanoscale [121].

4. Lightning strike protection for aircraft, cars, and wind tur-

bines [122].

The form of polymer/composite used in bulk material,

films, coatings, and fibers can be buckypaper sheets distrib-

uted in PC, bulk CNTs, or surface-modified CNTs distributed

in PC.

MWCNTs are added to change the physical-chemical and

mechanical properties of the PC. The distribution and form

of CNTs in the PC matrix will have an effect on overall prop-

erties. As a result of increasing CNT content in PC, the follow-

ing properties can be modulated: compressive strength,

Young’s modulus, ductility, viscosity, and conductivity.

6.2.1. Increasing compressive strength
As shown below (Fig. 11), the MWCNT-reinforced polymer has

a higher compressive strength than virgin polymer. The lower

molecular weight polycarbonate exhibited greater increase in

compression strength with MWCNT reinforcement, than

blending with higher molecular weight polymer.

6.2.2. Increasing Young’s modulus
Manual stretching of the polycarbonate and CNT-reinforced

polymer results in increased elastic strength [123]. The virgin

polycarbonate lacks the entanglement and extensive bridging

mechanism enabled by the carbon nanotubes. Bridging en-

hances toughness and structural integrity of the polycarbon-

ate. Another study showed that adding 5% MWCNT

reinforcement to virgin polycarbonate resulted in a 70% in-

crease in the elastic modulus [124]. Surface modifications on

CNTs have also been shown to affect mechanical properties

of the polycarbonate. In fact, a 95% increase is seen in the



Fig. 11 – Compressive strength of virgin polymer mixtures and of VG–MWCNT–polymer mixture composites. Reproduced

from Loutfy et al. Reprinted from Perspectives of Fullerene Nanotechnology, 2002, p. 317–25, Carbon nanotube–polycarbonate

composites, Loutfy RO, Withers JC, Abdelkader M, Sennett M, Fig. 5, with kind permission from Springer Science and

Business Media [120].

50 C A R B O N 6 8 ( 2 0 1 4 ) 3 3 – 5 7
elastic modulus at a 5% epoxy surface-modified MWCNT

loading to the virgin polycarbonate.

6.2.3. Ductility
Ductility of PC CNT composites is generally retained, com-

pared to virgin PC, with the addition of up to 6 wt%

MWCNT to the polymer [125]. Increasing MWCNT wt% in a

polycarbonate CNT composite at 77 K increases rigidity

and brittleness; however, there seems to be a threshold in

CNT loading where ductility of the polymer composite de-

creases and, at a loading of up to 0.1% of MWCNT into

the polycarbonate, the CNT acts more like an impurity.

Thus, SEM observations show that with an increase in

MWCNT content, fracture surfaces are rougher and grainier

which is consistent with decreasing ductility, while increas-

ing CNT content [126].
Fig. 12 – Complex viscosity (g*) of PC/MWCNT composites

with MWCNT content at 260 �C. (a) MWCNT was untreated.
6.2.4. Increasing viscosity
With increasing CNT loading, increased viscosity is observed

(Fig. 12). Furthermore, PC/MWCNT composites treated with

hydrogen peroxide and freeze-dried show a further increase

in viscosity due to better dispersion of MWCNT within the

polycarbonate matrix. The increased dispersion is directly re-

lated to surface oxidation of the MWCNTs and results in more

polar groups on the surface.

It is also noteworthy that the dynamic modulus was

shown to increase with increases in compression strength,

Young’s modulus, and viscosity.
(b) MWCNT was freeze-dried after treatment with H2O2.

Reprinted from Macromol Res, vol. 17, 2009, p. 863–9, Effect

of multi-walled carbon nanotube dispersion on the

electrical, morphological and rheological properties of

polycarbonate/multi-walled carbon nanotube composites,

Han MS, Lee YK, Kim WN, Lee HS, Joo JS, Park M, et al. with

kind permission from Springer Science and Business Media

[127].
6.2.5. Increasing conductivity
Increasing CNT content enhances PC conductivity [127].

Treatment of the PC/MWCNT composite with hydrogen per-

oxide provides increased conductivity due to better disper-

sion of CNTs in the polymer matrix. The increased

dispersion is directly related to surface oxidation of the

MWCNTs, resulting in more polar groups on the surface.



Table 4 – Variation in CNT incorporation technique and
loading for polycarbonate–CNT composites with resulting
storage modulus.

CNT Incorporation
Technique

Weight% tubes Storage
modulus (GPa)

Buckypaper impregnation SWNT: 20 6.2
Melt mixing MWNT: 1.5–15 Approx. 1.0
Solution casting SWNT: 0.05–0.25 1.6–2.1

Functionalized
SWNT: 0.5–2

2.35–2.52

MWNT: 5–20 1.1–2.42

Data are adapted from Wang et al. [130] and references therein.
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6.3. General potential for release

Release information for specific CNT/PC composites by vari-

ous degradation pathways has not been extensively studied,

but it is well known that sunlight, humidity, and oxygen

cause PC to degrade (Diepens and Gijsman [128] and refer-

ences therein). It has been argued that photo-oxidation is

the dominant degradation pathway that leads to releases in

polycarbonate, with minor contribution from the photo-Fries

rearrangement (Diepens and Gijsman [128] and references

therein). In Fig. 13 below, the mechanism for side chain oxida-

tion reactions is depicted for bisphenol A polycarbonate.

It can be assumed that CNT/PC composites will also under-

go degradation by a similar photo-oxidation mechanism as

polycarbonate.

With growing interest in cryogenic systems for space,

hydrogen storage, and superconductivity, the need for new,

high strength, low weight, cost-effective cryogenic structural

materials is clear and investigations into effects of low temper-

ature on PC/CNT composites is an area of interest [126]. Oliver

et al. elucidated the degradation mechanism at low tempera-

ture and it involves interfacial debonding (breaking of the weak

van der Waals bonds between the polymer and the CNTs)

where interfacial debonding increases at 77 K, especially with

higher CNT concentration samples [126]. Increase in interfacial

debonding is directly related to the coefficient of thermal

expansion of CNTs, and CNTs will contract less than the PC.

It is also well known that polycarbonates are susceptible to

degradation under basic conditions [129]. It can be expected

that incorporating MWCNT will not hinder degradation of

the PC matrix under basic conditions.
Fig. 13 – Photo-oxidation of bisphenol A polycarbonate. Reprint

Photodegradation of bisphenol A polycarbonate, p. 397–406. Co
6.4. Composite traits that affect release

CNT formulation/incorporation techniques may affect overall

releases of CNTs from polycarbonates (CNTs typically incor-

porated are those synthesized by arc discharge or chemical

vapor deposition). Typical PC CNT incorporation techniques

include solvent casting, melt mixing, and buckypaper

impregnation.

To illustrate differences in the resulting storage modulus

from different CNT incorporation techniques and loadings,

see Table 4 below. Wang et al. imply that good CNT dispersion

and higher loadings of CNTwill lead to a higher storage mod-

ulus, as seen with their buckypaper impregnation method.

Thus, different formulations of CNT PC lead to changes in

storage modulus, which in turn lead to different rates of

release.
ed from Polym Degrad Stabil, vol. 92, Diepens M, Gijsman P.

pyright � 2007, with permission from Elsevier [128].
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6.5. Effects of stabilizers and plasticizers on degradation

Polycarbonate is susceptible to photo-oxidation and antioxi-

dants are necessary to maintain the low color and high trans-

parency critical to end-use applications. Phosphites (0.1%)

minimize color development during processing. The inherent

stability of PC is related to the level of phenolic end groups.

These can increase as a result of humidity-induced hydroly-

sis, catalyzed by acid. The phosphite chosen must be very sta-

ble to avoid generating catalytic amounts of phosphorus acids

(Thomas et al. [131] and references therein).

It is not expected that CNT impregnation into the polycar-

bonate matrix would affect the rate of the various degrada-

tion pathways for the virgin polymer significantly; therefore,

when degradation occurs, it is expected to release CNTs. More

research is needed to verify this assumption.

7. Conclusions

A high-level summary of our assessment of the potential for

CNT release from polymer composites and the impact of dif-

ferent polymer properties is presented in Table 5. Despite

numerous differences between properties and end uses of

the test-case CNT–polymer nanocomposite systems exam-

ined here, a number of common tendencies have been de-

duced with respect to potential for MWCNT release from

consumer goods.

Polymer degradation represents the greatest potential for

CNT release. Degradation can involve photoreaction, hydroly-
Table 5 – High-level summary of considerations fo
systems (epoxy, PC, PA, PU, PE) as relevant to rele

Epoxy Polyamide Polyurethan

Mechanical 

Characteristics

Hard, brittle Soft, ductile Soft, ductile,

elastomer

Photodegradation Rapid, CNT 

can stabilize

Susceptible Susceptible

Oxidation Susceptible Susceptible Susceptible

Hydrolysis Susceptible Susceptible Susceptible

Thermolysis Low Low Low

Mechanical 

Degradation

Low Low Low

Lifecycle* End of life 

processing

End of life 

processing

End of life 

processing

Summary Low Low Low

Green – low susceptibility for release; yellow – moderatel

release.
*Life cycle stages most relevant for degradation which can

is not considered in this report.
**Increasing brittleness with higher loading of CNT.
sis, oxidation, and thermolysis of the polymer matrix. Release

of MWCNT by thermolysis at elevated temperatures is ex-

pected to result in low potential for CNT release, especially

since CNTs have been shown to improve thermal stability of

most polymer matrices into which they have been incorpo-

rated. Rates of degradation depend on structural features of

the polymer as well as physical, chemical, or biological agents

that drive the processes. For example, chemical agents such

as acids or bases can accelerate the hydrolysis of PA, PU,

and PC, but PE is not susceptible to hydrolysis. On the other

hand, UV photodegradation appears to be a generally signifi-

cant outdoor process for all polymers considered here.

As CNT–polymer composites move through various phases

of their life cycles, changes in their chemical environments al-

ter susceptibility to degradation and CNT release potential [2].

Limited life cycle analyses have been conducted of the polymer

systems considered in this review. These analyses have indi-

cated that highest potential for release occurs during the man-

ufacturing and end-of-life phases. Nowack et al. [2] reached

similar conclusions but also point out that exposure can be

best controlled during the manufacturing phase. Several

examples illustrate the usefulness of life cycle analyses:

• An analysis of the life cycle of epoxy resins and their nano-

composites as possible routes for exposure to respirable

CNTs [132] found that the following four activities have

the highest release potential:

1. Bulk handling of CNTs where powder or dust is

possible.
r material characteristics of MWCNT–polymer
ase potential.

e Polyethylene Polycarbonate

 Soft, ductile Hard but 

ductile**

Low Susceptible

Susceptible Susceptible

Low Susceptible 

(esp. when 

exposed to 

base)

Low Low

Low Low

End of life 

processing

End of life 

processing

Low Low

y susceptible for release; red – high susceptibility for

influence release potential. The manufacturing stage
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2. Polymer compounding where transfer of CNTs and

dust from grinding may be present.

3. Recycling operations in which grinding, milling,

chemical treatment, or re-compounding may gener-

ate small particulates.

4. Uncontrolled incineration which may destroy the

epoxy but not the CNTs, presenting the risk of inha-

lation of these materials.
• Another general example involves potential release from

thermoplastic polymer composites during the manufac-

turing process [133]. Production of composites often

involves polymer melt processes with potential for ther-

mal decomposition and polymer recondensation and/or

mechanical processing that may generate fragments that

contain CNTs. Standard industrial hygiene is effective to

insure occupational safety.

• Composites of PA and PC (e.g. in compact disc waste) likely

will end up in a landfill. In both cases biodegradation cou-

pled with hydrolysis could result in release of the CNTs

occur over time. The CNTs themselves appear to exhibit

very limited biodegradability, though a recent study sug-

gests they may biodegrade very slowly under some condi-

tions [134]. There is also a possibility that any released

CNT may be transformed over time, depending on the

local conditions.

During the use-phase of their life cycles, composites in con-

sumer goods are designed to be resistant to degradation and re-

lease will occur slowly, if at all. Nevertheless, alternative use

and misuse by consumers might expose CNT composites to

incompatible chemical environments that accelerate

degradation. Sufficient warnings, therefore, should be ex-

pressed by manufacturers about the hazards of using these

nanocomposites under conditions for which they were not

designed.

Of greatest interest here is the potential for MWCNT re-

lease via environmental degradation during consumer use.

Breakdown of the polymer matrix by photoreaction, hydroly-

sis, oxidation, or other weathering mechanisms alters

mechanical properties of the polymer and potentially weak-

ens interfacial interactions with the CNT fillers, increasing

the potential for release over the pristine nanocomposite.

Products that are frequently used outdoors could display

higher rates of decomposition than those used exclusively in-

doors although the potential for long-term dust generation

from slow degradation indoors should not be ignored. Evi-

dence suggests that CNT fillers help to stabilize polymers to

environmental degradation, as demonstrated in UV-induced

degradation of epoxy and PU systems; this stabilizing effect

mitigates the potential for release. These studies further indi-

cate that after weathering of the composites, the polymer

matrix receded, while more resistant CNTs remain and be-

come exposed as an entangled network on the surface. Unfor-

tunately, there is insufficient evidence to indicate whether

this is a broad trend across many types of polymer nanocom-

posites or merely isolated cases. In any case, it is recom-

mended that manufacturers incorporate appropriate

coatings and stabilizers for polymer–CNT nanocomposites

for intended environments.
Mechanical degradation and wear appears to pose only a

minor risk to MWCNT release for all polymers studied. This

is attributed to the fact that commercially developed compos-

ite formulations for consumer applications have undergone a

process of optimizing the chemistries and processing of inte-

gration of CNT into the polymer to achieve the level of disper-

sion and interfacial interaction necessary for desired

properties of the nanocomposite. The result is a tendency

for the polymer nanocomposite to resist release of free

MWCNT, even under situations of significant mechanical

stress and wear. Softer, more flexible polymer matrices such

as PE and PU are expected to show stronger resistance to re-

lease of CNT due to mechanical degradation, while harder

resins such as epoxies will have a higher potential for release.

Evidence to date suggests that it is fairly unlikely that free

MWCNT will be released, but that CNT embedded in or at-

tached to small polymer fragments is the most likely form

of release.

Limited information pertaining to commercial use of CNT

in specific polymer matrices proved to be a significant obsta-

cle to this review. Narrowing the scope of our work to poly-

mers and sub-variants with strong present or near-term

commercial presence for CNT nanocomposites in consumer

goods was a primary goal at the outset. A lack of market data

and direct industry feedback detailing the types and volumes

of polymer–CNT nanocomposites in active commerce, how-

ever, represented a challenge to objectively assessing poly-

mers upon which to focus directly. To bridge this gap,

research relied on information available on the Internet sites

of companies known to conduct commerce in this area, anec-

dotal information on known and suspected CNT–polymer

composites in commercial production, and internal expert

assessments to arrive at the present group of polymers.

Similarly, data specific to the release of CNT from polymer

nanocomposites are very limited, and comparability between

those studies is hindered by the variability in the methods

and conditions that were used (e.g. timeframes, experimental

conditions, sampling and measurement methods). This pre-

sented challenges in assessing release potential of CNT from

polymers based solely on reported properties of the nano-

composites. Again, internal expert assessments were drawn

upon when there were insufficient data. There is a significant

need for work to quantify the degree of release of CNTs from

polymer nanocomposites. Questions about the quantity and

nature (free MWCNT, attached to polymer fragments, etc.) of

CNT that can be released, as well as their correlation with

properties of the nanocomposites are largely outstanding

for most polymer matrices. Greater insight into the factors

influencing the release of CNT from polymer matrices could

also be attained if more similar methods could be used across

different materials, thus improving direct comparability be-

tween studies.

Based on the available evidence, we have concluded that

the potential for release of MWCNT from the selected types

of polymer nanocomposites is low in typical consumer appli-

cations unless the nanocomposite is exposed to conditions

which degrade the bulk integrity of the polymer matrix. Con-

siderably more work is needed in this area to address the

many challenges and uncertainties that are present.
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