464 research outputs found

    Polymeric Matrices for Neural Graft Transplantation

    Get PDF

    Intracerebral Implantation of Ionic Synthetic Hydrogels: Effect of Polar Substrata on Astrocytosis and Axons

    Get PDF
    In previous studies, hyperporous synthetic hydrogels of poly(glyceryl methacrylate) or p(GMA), containing bioadhesive substrates of collagen, were implanted into rat cerebral tissue in order to provide systems of oriented guidance channels for directing the growth of the scar and axons /28/. In the present study, ionic p(GMA)- collagen hydrogels containing polar chemical groups, either basic amino groups or acidic carboxyl groups, were evaluated for their tolerance and their effects on the brain scarring response and axonal reactivity after long-term implantation in the cerebral cortex. In all animals, the implants were well tolerated. Although both types of gels influenced the astroglial reaction near the bioimplant, hydrogels carrying carboxyl groups had the strongest influence on the elongation, the direction and the organization of astrocytic processes so that a glial matrix could form in regions of the gel. Extracellular material (e.g. reticulin) was also deposited into the gels carrying carboxyl groups. Although cortical nerve fibers .in the surrounding tissue showed a regenerative response, extending onto or into the matrices, this behavior seemed to depend more on the organization of the .astrocytic scar imposed by the gel than on the type of gel. We conclude that matrices carrying negatively charged groups influence favorably the astrocytosis and the deposition of connective tissue, and that this approach represents a new avenue in attempting to modulate the brain scar formation

    Intracerebral Implantation of Hydrogel-Coupled Adhesion Peptides: Tissue Reaction

    Get PDF
    Arg-Gly-Asp peptides (RGD) were synthesized and chemically coupled to the bulk of N-(2-hydroxypropyl) methacrylamide-based polymer hydrogels. Fourier Transform Infrared Spectroscopy (FFIR) and amino acid analysis confirmed the peptide coupling to the polymer. Activated and control (unmodified) polymer matrices were stereotaxically implanted in the striata of rat brains, and two months later the brains were processed for immunohistochemistry using antibodies for glial acidic fibrillary protein (GFAP), laminin and neurofilaments. RGD-containing polymer matrices promoted stronger adhesion to the host tissue than the unmodified polymer matrices. In addition, the RGD-grafted polymer implants promoted and supported the growth and spread of GFAP-positive glial tissue onto and into the hydrogels. Neurofilament-positive fibers were also seen running along the surface of the polymer and, in some instances, penetrating the matrix. These findings are discussed in the context of using bioactive polymers as a new approach for promoting tissue repair and axonal regeneration of damaged structures of the central nervous system

    Peroxisome Proliferator–activated Receptors α and γ Down-regulate Allergic Inflammation and Eosinophil Activation

    Get PDF
    Allergic asthma is characterized by airway hyperresponsiveness, eosinophilia, and mucus accumulation and is associated with increased IgE concentrations. We demonstrate here that peroxisome proliferator–activated receptors (PPARs), PPAR-α and PPAR-γ, which have been shown recently to be involved in the regulation of various cell types within the immune system, decrease antigen-induced airway hyperresponsiveness, lung inflammation, eosinophilia, cytokine production, and GATA-3 expression as well as serum levels of antigen-specific IgE in a murine model of human asthma. In addition, we demonstrate that PPAR-α and -γ are expressed in eosinophils and their activation inhibits in vitro chemotaxis and antibody-dependent cellular cytotoxicity. Thus, PPAR-α and -γ (co)agonists might be of therapeutic interest for the regulation of allergic or inflammatory reactions by targeting both regulatory and effector cells involved in the immune response

    Forging Fluorine-Containing Quaternary Stereocenters by a Light-Driven Organocatalytic Aldol Desymmetrization Process

    Get PDF
    Reported herein is a light-triggered organocatalytic strategy for the desymmetrization of achiral 2-fluoro-substi- tuted cyclopentane-1,3-diketones. The chemistry is based on an intermolecular aldol reaction of photochemically generated hydroxy-o-quinodimethanes and simultaneously forges two adjacent fully substituted carbon stereocenters, with one bearing a stereogenic carbon–fluorine unit. The method uses readily available substrates, a simple chiral organocatalyst, and mild reaction conditions to afford an array of highly function- alized chiral 2-fluoro-3-hydroxycyclopentanones

    Novel hydrogel obtained by chitosan and dextrin-VA co-polymerization

    Get PDF
    A novel hydrogel was obtained by reticulation of chitosan with dextrin enzymatically linked to vinyl acrylate (dextrin-VA), without cross-linking agents. The hydrogel had a solid-like behaviour with G′ (storage modulus) >> G″ (loss modulus). Glucose diffusion coefficients of 3.9 × 10−6 ± 1.3 × 10−6 cm2/s and 2.9 × 10−6 ± 0.5 × 10−6 cm2/s were obtained for different substitution degrees of the dextrin-VA (20% and 70% respectively). SEM observation revealed a porous structure, with pores ranging from 50 µm to 150 µm

    Tandem chemoselective Suzuki-Miyaura cross-coupling enabled by nucleophile speciation control

    Get PDF
    Control of boronic acid speciation is presented as a strategy to achieve nucleophile chemoselectivity in the Suzuki-Miyaura reaction. Combined with simultaneous control of oxidative addition and transmetallation, this enables chemoselective formation of two C-C bonds in a single operation, providing a method for the rapid preparation of highly functionalized carbogenic frameworks

    Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion

    Get PDF
    A wide variety of biomaterials and bioactive molecules have been applied as scaffolds in neuronal tissue engineering. However, creating devices that enhance the regeneration of nervous system injuries is still a challenge, due the difficulty in providing an appropriate environment for cell growth and differentiation and active stimulation of nerve regeneration. In recent years, bacterial cellulose (BC) has emerged as a promising biomaterial for biomedical applications due its properties, such as high crystallinity, an ultrafine fiber network, high tensile strength and biocompatibility. The small signaling peptides found in the proteins of extracellular matrix are described in the literature as promoters of adhesion and proliferation for several cell lineages on different surfaces. In this work, the peptide IKVAV was fused to a carbohydrate-binding module (CBM3) and used to modify BC surfaces, with the goal of promoting neuronal and mesenchymal stem cell (MSC) adhesion. The recombinant proteins IKVAV-CBM3 and (19)IKVAV-CBM3 were successfully expressed in E. coli, purified through affinity chromatography and stably adsorbed to the BC membranes. The effect of these recombinant proteins, as well as RGD-CBM3, on cell adhesion was evaluated by MTS colorimetric assay. The results showed that the (19)IKVAV-CBM3 was able to significantly improve the adhesion of both neuronal and mesenchymal cells and had no effect on the other cell lineages tested. The MSC neurotrophin expression in cells grown on BC membranes modified with the recombinant proteins was also analyzed.Renata A. N. Pertile gratefully acknowledges support by the Programme Al beta an, the European Union Programme of High Level Scholarships for Latin America (Scholarship No. E07D401931BR). The author Susana Moreira is recipient of a SFRH/BPD/64726/2009 fellowship from Fundacao para a Ciencia e a Tecnologia (FCT, Portugal). Fabia K. Andrade is the recipient of a fellowship from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES, Brazil)

    A Functional γδTCR/CD3 Complex Distinct from γδT Cells Is Expressed by Human Eosinophils

    Get PDF
    BACKGROUND:Eosinophils are effector cells during parasitic infections and allergic responses. However, their contribution to innate immunity has been only recently unravelled. METHODOLOGY/PRINCIPAL FINDINGS:Here we show that human eosinophils express CD3 and gammadelta T Cell Receptor (TCR) but not alphabeta TCR. Surface expression of gammadeltaTCR/CD3 is heterogeneous between eosinophil donors and inducible by mycobacterial ligands. Surface immunoprecipitation revealed expression of the full gammadeltaTCR/CD3 complex. Real-time PCR amplification for CD3, gamma and delta TCR constant regions transcripts showed a significantly lower expression in eosinophils than in gammadeltaT cells. Limited TCR rearrangements occur in eosinophils as shown by spectratyping analysis of CDR3 length profiles and in situ hybridization. Release by eosinophils of Reactive Oxygen Species, granule proteins, Eosinophil Peroxidase and Eosinophil-Derived Neurotoxin and cytokines (IFN-gamma and TNF-alpha) was observed following activation by gammadeltaTCR-specific agonists or by mycobacteria. These effects were inhibited by anti-gammadeltaTCR blocking antibodies and antagonists. Moreover, gammadeltaTCR/CD3 was involved in eosinophil cytotoxicity against tumor cells. CONCLUSIONS/SIGNIFICANCE:Our results provide evidence that human eosinophils express a functional gammadeltaTCR/CD3 with similar, but not identical, characteristics to gammadeltaTCR from gammadeltaT cells. We propose that this receptor contributes to eosinophil innate responses against mycobacteria and tumors and may represent an additional link between lymphoid and myeloid lineages
    • …
    corecore